
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXXX 1

Study of the Subjective and Objective Quality of
High Motion Live Streaming Videos

Zaixi Shang, Student Member, IEEE, Joshua P. Ebenezer,Yongjun Wu, Hai Wei, Sriram Sethuraman, Alan C.
Bovik Fellow, IEEE

Abstract—Video livestreaming is gaining prevalence among
video streaming services, especially for the delivery of live, high
motion content such as sporting events. The quality of these
livestreaming videos can be adversely affected by any of a wide
variety of events, including capture artifacts, and distortions
incurred during coding and transmission. High motion content
can cause or exacerbate many kinds of distortion, such as
motion blur and stutter. Because of this, the development of
objective Video Quality Assessment (VQA) algorithms that can
predict the perceptual quality of high motion, live streamed
videos is greatly desired. Important resources for developing
these algorithms are appropriate databases that exemplify the
kinds of live streaming video distortions encountered in practice.
Towards making progress in this direction, we built a video
quality database specifically designed for live streaming VQA
research. The new video database is called the Laboratory for
Image and Video Engineering (LIVE) Livestream Database.
The LIVE Livestream Database includes 315 videos of 45
source sequences from 33 original contents impaired by 6 types
of distortions. We also performed a subjective quality study
using the new database, whereby more than 12,000 human
opinions were gathered from 40 subjects. We demonstrate
the usefulness of the new resource by performing a holistic
evaluation of the performance of current state-of-the-art
(SOTA) VQA models. We envision that researchers will find
the dataset to be useful for the development, testing, and
comparison of future VQA models. The LIVE Livestream
database is being made publicly available for these purposes at
https://live.ece.utexas.edu/research/LIVE_APV_Study/apv_index
.html

Index Terms—live streaming, video quality assessment, video
quality database, objective VQA algorithm evaluation

I. INTRODUCTION

V IDEO traffic now occupies more than 70% of all total
downstream Internet traffic and is still expected to grow

[1], [2]. Major content providers such as Amazon Prime Video,
YouTube, Netflix, and Hulu are providing increasing amounts
of video on demand (VoD) content, as well as live streaming
videos, to an expanding audience. live streaming, which is
real-time audio and video transmission of live events, is
gaining popularity very rapidly, especially for sporting events
like the Super Bowl [3].

Although significant efforts have been made to enable
the delivery of high-quality, high-resolution VoD, little effort
has focused on live, high motion video streaming. In live
streaming, there are still a variety of factors that can adversely
affect the quality of live streaming videos. For example,
bandwidth and stability may affect the received video source
quality, causing distortion like blocking, banding, deinterlacing
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motion mismatches, local flicker [4], aliasing and interpolation
artifacts [5]. If the network connection is unstable or the bitrate
inadequate, then frame drops may also occur. The videos may
be distorted by stutter or motion blur, especially when there
is rapid motion. By contrast with VoD streaming, a large
portion of live streamed content is still interlaced and then
deinterlaced, causing combing effects, flicker or noticeable line
movements.

Video impairments like these can severely impair the deliv-
ered video quality and users’ holistic levels of visual satisfac-
tion. This is a pressing problem for high motion, action content
such as sports videos. high motion videos generally contain
richer temporal information and are harder to compress, hence
compression artifacts are often more severe in sports videos.
Other distortions can also be exacerbated by high motion. For
example, at lower frame rates, high motion sports may appear
discontinuous over time, and may exhibit obvious judder.
Likewise, high motion can worsen the visual appearance of
interlacing, by causing jagged moving edges.

While it is highly desirable to create algorithms that can
successfully predict the visual impacts of these distortions,
subjective data is necessary to understand these perceptual
phenomenon and to design and test the underlying objective
models. Human subjective studies make it possible to better
understand and model the specific factors that contribute to
the perceived quality of streaming videos. This data can be
used to design or learn objective Video Quality Assessment
(VQA) models that are consistent with subjective human
evaluations of quality. The development of subjective video
quality assessment datasets has been an ongoing effort for
two decades [6]–[16], yet none of these are specific to live
streaming distortions. Among existing datasets, most include
fewer than 20 pristine source video contents of Standard
Definition (SD) or High Definition (HD) resolutions, along
with various distorted versions of them. The distortions in
these resources are largely limited to compression and aliasing,
and the datasets lack other live streaming distortions. What is
needed is a database of higher resolution (UHD), high-quality
source videos that have been processed to include distortions
characteristic of those encountered in live streaming scenarios.

Towards filling this gap, we have created a new resource that
we call the LIVE Livestream Database, which includes a large
number of high motion sports videos, impaired by the most
common distortions that impact the perceptual quality of live
streamed videos. The new database contains 315 videos, built
from 45 source sequences from 33 original contents impaired
by six types of common processing distortions. Unlike prior,
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legacy VQA databases, the LIVE Livestream database consists
of Full High Definition (FHD) and Ultra High Definition
(UHD) videos of high motion sports content captured by
professional videographers. Using these videos, we conducted
a large human subjective study, whereby we presented the
videos to a large pool of volunteers to obtain Mean Opinion
Scores (MOS). To demonstrate the usefulness of the new
dataset, we used it to perform a holistic evaluation of current
state-of-the-art VQA models, to compare their performance
and to gain insights into potential future live streaming VQA
problems.

The rest of the paper is organized as follows: In Section II
we introduce prior work related to our study and in Section III
we discuss the relevance and novelty of the work. In Section
IV, we explain the details of the construction of new database
and the protocol of the human study. Section V elaborates on
the processing and analysis of the obtained subjective scores.
Section VI compares the performances of various state of the
art (SOTA) VQA models on the new database. Finally, Section
VII concludes the paper with thoughts regarding future efforts.

II. RELATED WORK

Over the past decade, there have been many efforts to build
subjective video quality databases. Among those, the LIVE
VQA Database [6] includes 10 pristine videos processed with
compression and packet loss distortions. Similarly, the later
database in [17] contains 156 videos modified by H.264 com-
pression artifacts and wireless packet losses. The LIVE QoE
Database for HTTP-based Video Streaming [13] studies the
quality of experience (QoE) of users who viewed compressed
videos with simulated video stalls, which can arise when there
is low channel throughput. This database models the percep-
tion of video quality on mobile devices, and the human study
was performed on mobile phones and tablets. Another QoE
database proposed in [23] aims to motivate QoE prediction
in video streaming, with different bitrate levels and stalling
events. Among 20 1080p source sequences, 5 videos contain
high motion content. Another database [28] studied H.264
compressed videos transferred through an error-prone network,
including 156 sequences at CIF and 4CIF spatial resolutions.
The LIVE Mobile Video Quality Database [19] consists of
200 distorted videos created from 10 RAW HD reference
videos, including compression and wireless packet-losses, with
dynamically varying distortions. The MCL-V database [29]
was designed for streaming video quality assessment, and
contains 12 source video clips and 96 distorted video clips
impaired by H.264 compression, as well as compression
followed by spatial scaling. The TUM databases [30], [31],
contain several synthesized videos with H.264 compression.
Other exemplars include the MCL video quality database [32],
ECVQ and EVVQ [33], and the Poly@NYU Video Quality
Databases [34], [35].

More recently, novel databases have been introduced that
contain user-generated-content (UGC) videos with authentic
distortions. The LIVE-VQC database [8] contains 585 videos,
all of unique contents captured by a large group of users
deploying various camera devices, including smartphones of
all brands. The LIVE-VQC videos cover a wide range of

qualities, and include complex, often commingled authentic
distortions. The large KoNViD-1k [36] video quality database
contains 1,200 video sequences, covering a wide variety of
contents and authentic distortions. The YouTube UGC Dataset
[37] contains 1500 20-second video clips covering popular
UGC video categories, including gaming and sports.

A number of deficiencies limit the usefulness of all of these
databases for the study of the quality of live video streams.
Older, legacy databases contain only limited numbers of SD
source contents, which are not representative of current high-
resolution live streaming. Although most databases consider
compression distortions and packet loss, other prevalent dis-
tortions common to live streaming videos are rarely found
in them. Given exploding interest in live streaming video,
a comprehensive database that includes both ample video
content and representative live streaming distortions is needed.

UGC video quality databases usually include a large number
of contents, but there is a lack of professionally captured
content, and the distortions encountered in live streaming
often significantly differ from those caused by typical casual
social media users. The only existing publicly available VQA
database designed for live streaming is the LIMP Video
Quality Database [38]. The LIMP database consists of nine
high-quality videos taken from the LIVE Video Quality Video
Database [6], with simulated compression modeling transmit-
ted in a controlled network. However, it suffers from the same
problems mentioned above. Motivated by an apparent dearth
of live streaming databases containing enough high-resolution
video contents and sufficiently representative live streaming
distortions, we have created a large new resource intended
to address modern aspects of the live sports streaming video
quality problem.

III. RELEVANCE AND NOVELTY

In recent years, the streaming of live high motion video
content such as sports has exploded [1]. Live streaming
high motion videos often suffer from severe distortions less
often encountered in the streaming of generic content. In live
streaming, considerations of network instability and bandwidth
limitations imply greater challenges when attempting to con-
trol video quality. Moreover, the real-time requirement greatly
limits the time available for post-processing to compensate for
defects. The unique nature of live streaming introduces many
obstacles that differ from those encountered in generic on-
demand video streaming. For example, sports videos usually
include content containing complex, large motions. Rapid and
irregular camera motions occurs frequently, when tracking
moving objects, such as balls or players. Temporal distortions
often arise that are annoying and that adversely affect the
viewer experiences.

The new psychometric database that we describe here has
a number of unique attributes. It contains a larger number of
unique source contents and distortion types. We summarize
the attributes of public video quality databases in Table I.
The new database includes 45 source sequences token from
33 unique contents. All of the videos contain complex, fast
motions, which are rarely included in existing databases. The
new resource contains a wide variety of distortion classes
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TABLE I
A SUMMARY OF PUBLISHED VQA DATABASES AND THE NEW DATABASE.

Database Year # SRC # DST # total resolution distortions
EPFL-PoliMI [17] 2009 12 144 156 704×576 compression

LIVE VQA [6] 2010 10 150 160 768×432 compression, transmission error
IVP [18] 2011 10 128 138 1920×1088 compression, transmission error

LIVE-Mobile [19] 2012 10 200 210 1280×720
compression, transmission error,

rate adaptation, frame-freeze
LIVE-Flicker [20] 2015 6 66 72 1280×720 flicker

CVD2014 [21] 2014 - 234 234 up to 1920×1080 authentic
LIVE QoE [13] 2014 8 18 18 1280×720 rate-adaptation

LIVE-Netflix [22] 2017 14 112 112 1920×1080 network fluctuations
Streaming QoE [23] 2017 20 200 220 1920×1080 compression, stalling
SMD Panoramic [24] 2018 10 50 60 - compression

BVI-HD [25] 2018 32 384 416 1920×1080 compression
CSCVQ [26] 2020 11 165 176 1280×720 compression

LIVE-SJTU [27] 2020 14 336 336 1920×1080
video compression,

scaling, audio compression

LIVE Livestreaming 2021 45 270 315 1920×1080, 3840×2160
compression, aliasing, judder,
flicker, frame drop, interlacing

common to sports live streaming content that is not found
in existing VQA databases. Although LIVE-Flicker and Live-
Mobile include specific temporal distortions such as flicker
or frame-freeze, neither contains a holistic collection of high
motion, live streaming distortion types.

IV. DETAILS OF SUBJECTIVE STUDY

We constructed a new video quality database that consistent
of 315 video sequences including 45 reference videos and
6 copies of synthetically distorted version of each reference
video. Those videos are used as stimuli in the subjective study.

A. Source Sequences

We collected 33 uncompressed, high-quality source videos
with sports content. These videos are freely available online
from multiple sources, including from Tampere University
[39], the MCML Group [40], the Netflix Public Dataset [41],
the VQEG HD3 Dataset [42], the Consumer Digital Video
Library (CDVL) [43], and the SJTU Media Lab [44]. All of
the selected videos were captured with professional, high-end
camera equipment and are distortion-free. The original pristine
videos all have resolutions of 1920x1080 or 3840x2160 pixels,
and were progressively scanned in YUV 4:2:0 format with
audio components removed. The videos have frame rates at 30
fps. The video contents include 10 different types of sports,
including running, football, and soccer, and one video of the
audience in a stadium, as exemplified in Fig. 1.

The original 33 videos that we collected are of durations
ranging from 5s to 26s. However, since viewing videos of
such differences of durations could cause biases in subjective
and objective judgments, longer videos may exhibit visible
changes of distortion over time. While the effects of video
duration is interesting and worthy of study, this also would
increase the dimensionality of the study. Thus, we manually
cropped the longer videos along the temporal dimension into

one or two shorter clips of about 7 seconds with no overlap or
close proximity between the clips. Based on internal studies
at UT-LIVE, it has been observed that very short videos of
sports videos may cause annoying content disruptions, such
as incomplete “play,” but these events are usually shorter than
8s. To avoid unpleasant cuts during action scenes, we allowed
some flexibility of the video durations, hence the final set
of original videos had lengths in the range 5s-8s, averaging
7.88s with a standard deviation of 1.36s. In this way, 45 video
clips were created from the 33 originals, of which 22 clips
are of resolution 1920x1080 and 23 clips are of resolution
3840x2160.

B. Synthetic Distortions

We created 6 distorted video sequences from each of the
pristine sequences, using six different distortion processes.
These included H.264 compression, aliasing, judder, flicker,
frame drops, and interlacing. Since our primary goal is to
model the visual quality high motion live sports videos, the
distortions chosen were judged to be the most common and
salient ones that are encountered during live sports events.
During live streaming of high motion contents, certain distor-
tions may produce more severe effects than on more generic
video content. For example, a moving object may cause large
pixel offsets between neighboring frames or fields. If the
video is interlaced, then severe edge combing and blur may
occur. If the frame rate is too slow, then judder from 3:2
conversion [45], [46] may be visible in high motion regions,
which can seriously and adversely impact the appearances of
sports videos. Purely temporal distortions, such as frame drops,
which cause discontinuities and motion stalls, are difficult to
detect.

When applying different levels of each distortion type, we
sought to ensure that the distorted videos would be both per-
ceptually separable and also cover a wide range of perceptual
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Fig. 1. Exemplar screenshots of frames from source videos in the LIVE Livestream Database.

(a) (b) (c) (d)

Fig. 2. Simulation of motion judder from 3:2 pulldown. (a) Original frames at 23.94 fps. (b) Odd video fields. (c) Even video fields (d) Resulting frames at
29.97 fps

(a) Flicker level 1 (b) Flicker level 2 (c) Flicker level 3

Fig. 3. Three levels of flicker synthesis.

qualities, following successful practice in numerous previous
studies [6]–[8]. However, given the large number of source
sequences, it is not practical to include multiple copies of
the same content, which can greatly increase the duration of
the human study. Moreover, having larger number of unique

contents can contribute to improved model building. Hence,
given the fairly large number of source videos, we dictated
that each would only have a single level of severity of each
distortion type applied to it. For example, four levels of H.264
compression, corresponding to different constant rate factors
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(CRF) were defined. This was accomplished in a “round robin”
sequential manner: the first reference video could only be
compressed using the first CRF level, the second reference
was only compressed using the second CRF level, and so on.
The fifth source video then had the first level of distortion
applied. However, to ensure that there would be no content-
related quality bias, the first video in the quality level cycle
was also sequenced as subsequent distortions were applied.
In this way, each of the 45 clips taken from the original 33
pristine source videos has 6 associated distorted versions of
it, yielding 315 videos including the 45 reference videos.

1) H.264 Compression

H.264 remains the most widely-accepted and used video
compression standard. A 2020 streaming industry survey [47]
found that 91% of streaming services use H.264. Although
newer codecs exist, such as HEVC, VP9 and AV1, they are not
yet as widely adopted. Browsers and devices also don’t have
full support for all codecs. The Apple Safari browser supports
HEVC, but not VP9, while Chrome and Firefox support VP9
and AV1, but not HEVC. All browsers support H.264. Hence,
when designing this VQA database, we deemed H.264 to
be most representative of current practice. Moreover, even
emerging standards still follow the basic hybrid codec method
of distortion, viz., quantization of DCT blocks, while several
distortions are not compression-related. Hence, we believe that
the new database will retain usefulness as the compression
standards evolve. We fixed four levels of H.264 compression
using the criteria described earlier, by varying the CRF values.
Similar to other successful VQA databases [6], [17], [29],
we included a wide range of compression CRFs to ensure
that the distorted videos cover a wide range of perceptual
qualities, while also ensuring perceptual difference between
the applied compression levels, to allow for improved model-
building. Since in practice, the compression parameters differ
on videos of different resolution, we selected different sets of
CRFs for the 4K videos and the 1080p videos. The CRF values
selected for the 4K videos were 9, 27, 39, and 43, while those
for 1080p videos were 9, 25, 35, and 39. All of the compressed
videos were generated using FFmpeg.

2) Aliasing

Aliasing was simulated by first downscaling each video,
then upscaling it back to its original dimensions. The down-
scaling was performed by spatially downsampling the video to
half the original size without the use of an anti-aliasing filter,
while the upscaling was performed using a Lanczos filter.

3) Judder

Motion judder is an artifact that is introduced when scenes
shot at 23.94 fps are converted to 29.97 fps by a process called
2:3 pulldown. The ratio of these frame rates is 4:5: for every
4 input frames, 5 output frames were created by temporally
downsampling the video to 23.94 fps, then converting the
frame rate to 29.97 by 2:3 pulldown. The odd video field of
every 2nd frame, and the even video field of every 3rd frame of
each group of 4 frames were combined to form an additional
frame, for each group of 4 frames. This process is shown

in Fig. 2. Classic 2:3 pulldown followed a slightly different
pattern where the 2nd and 3rd frames of the original video
would be interlaced to form the 3rd frame of the juddered
video, and the 4th and 5th frames of the original video would
be interlaced to form the 4th frame of the juddered video.
This had the disadvantage of producing two “dirty” frames,
which were the 3rd and 4th frames in each group, but was
used in legacy systems where the buffer could not hold fields
from more than one frame at a time. The version we use here
is a more advanced pulldown, supported by cameras released
after 2000 such as the Panasonic DVX100 [48] or the Canon
XL2 [49]. The more advanced version of pulldown generates
only one “dirty” frame and also allows for better compression
and easier conversion back to 23.94 fps.

4) Flicker

We simulated flicker distortion from compression by alter-
nating the H.264 quantization parameter (QP) on the video.
The QP is fixed at a constant value by passing this parameter
to libx264. These QP values were applied to each frame,
regardless of the frame type, content and motion. Three pairs
of QPs were chosen to form three flicker distortion levels:
QP26 and QP32, QP26 and QP 38, and QP26 and QP44. The
flicker rate, which is the number of QP alternations per second,
was kept a constant roughly 5 Hz i.e. by alternating the QP
every 3 frames. This process is depicted in Fig. 3.

5) Frame Drops

We simulated video frame losses that occur when a source
video is transmitted over a channel, such as a wireless network.
We simulated frame drop clusters of adjacent frames to
account for 10%-30% of a group of pictures (GOP). When
a cluster of frames was removed from a video, the previous
frame was repeated as many times as needed so that the total
video duration remained unchanged. Three levels of frame
drop densities were chosen: 3, 6 and 9 frames per cluster,
yielding a slight to severe impact on the perceptual qualities
of the videos.

6) Interlacing

On each frame of the video, the even and odd lines were
separated to form two fields, field A and field B. Field B from
each current frame and field A from each next frame were then
combined to create interlaced frames. In the presence of mo-
tion, combing effects become evident. Since interlaced video
fields are captured at different moments in time, interlaced
frames often exhibit motion combing artifacts, when objects
move quickly enough to be at different positions in each field.

C. Subjective Testing Environment and Display

The human study was carried out in the LIVE Subjective
study room at The University of Texas at Austin. The Lab
was arranged to simulate a living room environment. The
windows were covered, and background distractions were
removed. A Samsung UN65RU7100FXZA Flat 65-Inch 4K
UHD TV was used to display all of the videos. All advanced
motion optimization options on the TV, including the anti-
judder and anti-flicker functions, were disabled. The viewing
distance was about 2H, where H is the height of the TV so
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that the subjects could comfortably view the videos and assess
the video distortions. The level of illumination was set to be
similar to a living room, using one stand-up incandescent lamp
and two indirect white LED studio lights behind the viewer.
The lights were positioned to eliminate reflections from the
lights on the screen.

Since the TV is able to upscale 1080p content using an
unknown algorithm, all of the 1080p videos were instead
upscaled using the Lanczos resizing function in OpenCV [50],
to avoid any unpredictable effects. The 1080p videos were
upscaled to 4K, after the distortions were applied. To ensure
perfect playback, all of the videos were stored as raw YUV
4:2:0 files. The powerful Venueplayer application developed
by VideoClarity was used to guarantee smooth playback of
the 4K videos, without introducing any additional artifacts that
could impact the perception of video quality.

After displaying each of the test videos, a continuous rating
bar was displayed on the screen with a randomly placed cursor.
The quality bar was marked with labels “Bad,” “Poor,” “Fair,”
“Good,” and “Excellent” quality to facilitate the subjects in
making decisions. The scores given by the subjects were
sampled as integers from [0, 100] although numerical values
were not made visible to the subjects. A Palette gear console
was provided to enable the subjects to move the cursor without
distraction. After moving the cursor to each desired scoring
position, the subject depressed the button next to the sliding
bar to confirm the score, which was then recorded without
any further change. After each score was stored, the system
immediately began to play the next video on the playlist.

D. Subjective Testing Design

In the human study, a single-stimulus (SS) method was
employed, as described in the ITU-R BT 500.13 recommen-
dation [51]. The reference videos are included as “hidden
reference”, not explicitly marked as “distorted” or “reference.”
The subjects used a rating bar to record their subjective opinion
scores. Video rating scores were given after watching each
video on an (invisible) scale ranging from 0 to 100, where 0
indicates the worst quality and 100 indicates the best quality.
Due to the large number of video sequences, each subject
participated in two sessions. The 45 contents associated with
the pristine videos were divided into two sessions, where the
reference videos and their corresponding distorted versions
were grouped into the same session. The playlists within each
of the two sessions were placed in randomized order for each
subject, where videos of the same content, were separated by at
least one video. This was done to counter any visual memory
effects that might affect the subjective quality judgments, or
any bias caused by playing the videos in a particular order.
Each session required about 40 minutes.

E. Subjects and Training

A total of 40 human subjects were recruited from the
student population at The University of Texas at Austin. The
male/female gender ratio of the subject pool was 4.0. The
mean and standard deviation of the ages of the participants
was 23.47 and 1.78. Each subject participated in two sessions
separated by at least 24 hours. Two of the subjects finished

only one of the two sessions, while the rest of the 38 human
subjects finished both sessions. 180 of the videos were rated
by 40 subjects, while 187 videos were rated by 38 subjects.
The subject pool was inexperienced with the topic of video
quality assessment and video distortions.

The Snellen test and the Ishihara test were performed to
validate each subject’s vision. Two subjects were found to
have 20/30 visual acuity, while one subject was found to have
a color deficiency. However, these subjects were allowed to
participate since the overall subject pool was deemed to be a
good representation of the general population, following our
common practice [52]. We conducted the tests as a screen
against an unusual percentage of deficient subjects. Before the
study, each subject was presented with a brief introduction
to the study. The introduction described the study’s goals,
and gave detailed instructions on how to operate the system
and assign scores. Each subject was asked to rate each video
by quality only, without regard to the appeal of the content.
Before the actual study commenced, each subject participated
in a training session on two videos, to familiarize themselves
with the system. The training videos and their scores were not
included in the final database.

V. PROCESSING OF SUBJECTIVE SCORES

Subjective Mean Opinion Scores (MOS) were computed
using the formulas below: Let sij denote the score by subject i
for the video j. The subject scores were then converted into Z-
scores zij for each subject. Subject rejection was performed
based on the ITU-R BR 500.11 recommendation [51]. The
scores zij for each video were tested against the normal
distribution using the β2 test:

β2j =
m4

(m2)2
, (1)

where

mx =

N∑
i=1

(zij − zij)x

Nj
(2)

for subject i and video j, where Nj is the number of subjects
that viewed video j. A score was regarded as normally
distributed if β2j fell between 2 and 4. We calculated the
quantities Pi and Qi for each subject i, by comparing zij with
the mean z̄j standard deviation σj of video j: If the score for
video j was found to be normally distributed then:

if zij ≥ z̄j + 2σj , then Pi = Pi + 1
if zij ≤ z̄j − 2σj , then Qi = Qi + 1
If the score for video j was found to not be normally

distributed, then:
if zij ≥ z̄j +

√
20σj , then Pi = Pi + 1

if zij ≤ z̄j −
√

20σj , then Qi = Qi + 1.
A subject i was rejected if the following two conditions

held:
Pi +Qi

N
> 0.05, (3)

and ∣∣∣∣Pi −Qi

Pi +Qi

∣∣∣∣ < 0.3. (4)

In our study, 8 of the 40 subjects satisfied these two condi-
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TABLE II
INTERNAL CONSISTENCY

PLCC mean PLCC median

All subjects 0.9616 0.9632

Reject Group 2 & 3 0.9603 0.9618

Reject Group 3 0.9635 0.9647
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Fig. 4. (a) The correlations against MOS of all subjects. Group 1 are subjects
not rejected by the ITU method. Group 2 are all subjects that were rejected
by the ITU method. Group 3 consists of the single lowest-correlating subject.
(b) Distribution of MOS over all videos in the LIVE Livestream Database.

tions. However, since most of the rejected subjects fell close
to the decision boundaries, we decided to revisit how the
rejection criteria should be used. Given that the intent of
subject rejection is to eliminate the outcomes of less engaged,
distracted, or otherwise deficient subjects, we believed it worth
considering whether any of the high-deviation subjects were
actually representative, as we have done in other recent studies
[53]. We therefore computed the correlations between each
subject’s score and the MOS calculated using three different
variations of the rejection criterion: 8 rejected, none rejected,
and 1 (most anomalous) subject rejected, as shown in Fig.
4a. Specifically, the subjects were divided into three groups:
Group 1 included all subjects not excluded by the ITU method.
Group 2 and Group 3 included only the 8 subjects that were
rejected, while Group 3 considered only of the single subject
having the worst correlation against MOS. In the end, we
chose to report all of the foregoing results by only excluding
the single subject in Group 3.

Table II shows our analysis of the data’s internal consis-
tency. Our modification of the typical outlier rejection criterion
finds support in the analysis, and allows for a larger amount of
likely representative data for model-building. We randomly di-
vided the subjects into two equally sized groups and computed
the Pearson correlation coefficient (PLCC) between the two
groups’ scores. We repeated this calculation over 1000 results,
and report the mean and median correlations in Table. II. As
may be seen, the best results were attained by removing the
single very anomalous subject. We also observed negligible
effect of the choice of rejection criteria on the objective
algorithm performances reported later.

The Z-scores were then linearly rescaled from [-3,3] to
[0,100]:

z′ij =
100(zij + 3)

6
. (5)

Finally the Mean Opinion Score (MOS) of each video was

calculated:

MOSj =
1

Nj

Nj∑
i=1

z′ij . (6)

The converted MOS score is shown in Fig. 4b.

Fig. 5 shows the distributions of scores for each individual
video distortion class. The shapes of the MOS distributions
of the reference videos are more Gaussian-like. The distorted
video classes exhibit different distribution shapes, since they
reflect different types and levels of distortion. Further, the
MOS of the different levels of compression, flicker, and
frame drop distortions are shown in Fig. 6. Generally, the
MOS ranges of different distortion levels are mostly well-
separated, but there are overlaps between distortion levels,
largely because of the different interactions that occur between
content and distortion. The perceptual quality of distorted
(compressed videos) is affected by content masking, e.g. in
regions containing significant high frequency spatial energy
or high motion. While spatial masking is well-understood,
temporal masking is less so, although it is known that motion
has a silencing effect on flicker [4].

Fig. 7 plots the MOS against spatial resolution for each
distortions class. The purely temporal distortions: judder and
frame drops yielded similar ranges of MOS for 1080p and
4K videos. However, aliasing resulted in very different MOS
ranges, likely because of the additional upscaling of 1080p
videos when displayed on the 4K TV.

Tables III and IV show measurements of the consistency
of human scores for each of the different distortion types.
The Tables list the Spearman’s Rank Order Correlation Coeffi-
cient (SROCC) and the Pearson Linear Correlation Coefficient
(PLCC) computed on the entire database and for each distor-
tion type, again by randomly dividing the subjects into two
groups. It may be observed that the SROCC was slightly lower
than the PLCC, which might be explained by subjects having
difficulty supplying correctly ordered ratings of videos of very
similar quality. but still generally able to make predictions in a
linear manner. Overall, the results of the results indicate a very
high degree of internal consistency and agreement amount the
human subjects on all of the distorted video types.

Although MOS is a good representation of the subjective
quality of videos and is necessary for the development and
evaluation of NR VQA algorithms, the Difference MOS
(DMOS) is more commonly used in the development and
evaluation of FR VQA models, since it allows a way to reduce
content dependencies of quality labels. Since we are supplying
this resource for the study of both NR and FR models, we
also calculated the DMOS of the videos with references. We
calculated the DMOS according to:

DMOSj = MOSref
j −MOSj , (7)

where MOSj is the MOS of video j, and MOSref
j is the

MOS of the reference video j, which is regarded as a “hidden
reference,” since it is not identified as such to the subjects.
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Fig. 5. Distribution of MOS of original, and synthetically distorted videos.

(a) (b) (c)

Fig. 6. MOS of videos affected by compression, flicker, and frame drops. Each dot in the plot is a video and the line and the shadowed regions indicate the
average MOS and the 95% confident interval. (a)Compression, (b) Flicker, and (c) Frame drops.

TABLE III
MIN, MEDIAN, AND MAX SROCC OF HUMAN SCORES DIVIDED INTO TWO GROUPS.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

MIN 0.9326 0.8285 0.8097 0.9092 0.8071 0.8543 0.8908

MEDIAN 0.9552 0.8967 0.8714 0.9425 0.8860 0.9151 0.9283

MAX 0.9685 0.9470 0.9250 0.9701 0.9373 0.9565 0.9651

TABLE IV
MIN, MEDIAN, AND MAX PLCC OF HUMAN SCORES DIVIDED INTO TWO GROUPS.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

MIN 0.9292 0.9547 0.9688 0.9334 0.9287 0.8891 0.9253

MEDIAN 0.9648 0.9728 0.9792 0.9633 0.9607 0.9383 0.9524

MAX 0.9741 0.9870 0.9875 0.9795 0.9763 0.9644 0.9725

VI. OBJECTIVE VQA MODEL COMPARISON

We evaluated several publicly available objective VQA
algorithms on the LIVE Livestream Database to demonstrate
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TABLE V
SROCC OF THE COMPARED FR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 0.3760 0.8750 0.4012 0.2117 0.5264 0.3024 0.7507
SSIM 0.6976 0.9171 0.7341 0.3933 0.8758 0.5291 0.6623

MS-SSIM 0.6757 0.9154 0.7335 0.3622 0.8652 0.5997 0.6179

SpEEDQA 0.6894 0.8979 0.8124 0.3165 0.8780 0.5993 0.6130

ST-RRED 0.6564 0.8943 0.8269 0.2968 0.8653 0.5635 0.7121

FAST 0.6192 0.9283 0.7269 0.2769 0.9391 0.7733 0.5960

VMAF 0.6434 0.9135 0.9153 0.3039 0.9243 0.7843 0.5346

TABLE VI
PLCC OF THE COMPARED FR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 0.4192 0.9586 0.4885 0.3452 0.5723 0.5886 0.7840
SSIM 0.7107 0.9659 0.7483 0.5679 0.8308 0.5770 0.7460

MS-SSIM 0.6907 0.9690 0.7696 0.5259 0.8589 0.6421 0.7105

SpEEDQA 0.7235 0.9526 0.9234 0.5037 0.8432 0.6183 0.7806

ST-RRED 0.6694 0.9483 0.9425 0.3952 0.8358 0.5915 0.7465

FAST 0.6520 0.9587 0.8329 0.4142 0.9391 0.8298 0.6978

VMAF 0.6355 0.9675 0.9296 0.3043 0.9242 0.8654 0.6242

TABLE VII
RMSE OF THE COMPARED FR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

PSNR 10.3355 4.2304 13.6253 4.3601 9.5390 5.2311 3.9024
SSIM 8.0082 3.8493 10.3588 3.8237 6.4740 5.2852 4.1864

MS-SSIM 8.2324 3.6708 9.9705 3.9510 5.9578 4.9605 4.4235

SpEEDQA 7.8589 4.5223 5.9924 4.0129 6.2531 5.0856 3.9294

ST-RRED 8.4573 4.7155 5.2190 4.2673 6.3858 5.2174 4.1832

FAST 8.6315 4.2267 8.6452 4.2282 3.7669 3.6114 4.5028

VMAF 8.7894 3.7600 5.7557 4.4251 4.4430 3.2435 4.9154

TABLE VIII
SROCC OF THE COMPARED NR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 0.3232 0.2775 0.2860 0.2863 0.2832 0.2842 0.2780

BRISQUE 0.6381 0.6409 0.7482 0.8039 0.6440 0.4180 0.8720

CORNIA 0.6778 0.7399 0.8142 0.7049 0.7193 0.0000 0.8782
HIGRADE 0.6916 0.7234 0.7337 0.5784 0.6429 0.5748 0.8060

V-BLIINDS 0.7330 0.7131 0.7482 0.8679 0.5769 0.7513 0.7936

TLVQM 0.7503 0.6574 0.7915 0.8246 0.6966 0.8927 0.8369

ChipQA 0.7994 0.7482 0.7998 0.8514 0.7668 0.7874 0.8111
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TABLE IX
PLCC OF THE COMPARED NR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED.

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 0.4962 0.2805 0.2865 0.2860 0.2848 0.2849 0.2850

BRISQUE 0.6698 0.7616 0.9415 0.8362 0.7166 0.4265 0.9185

CORNIA 0.7257 0.8197 0.9595 0.7409 0.7841 0.0000 0.9234
HIGRADE 0.6990 0.8395 0.9426 0.6310 0.6938 0.5806 0.8528

V-BLIINDS 0.7477 0.8313 0.9277 0.9239 0.6238 0.7850 0.8826

TLVQM 0.7513 0.6991 0.9550 0.8850 0.8037 0.9153 0.8648

ChipQA 0.8156 0.8408 0.9613 0.9040 0.8608 0.8470 0.8587

TABLE X
RMSE OF THE COMPARED NR VQA MODELS. THE SCORES OF THE TOP PERFORMING ALGORITHM ARE BOLDFACED

ALGORITHM OVERALL COMPRESSION ALIASING JUDDER FLICKER FRAME DROP INTERLACING

NIQE 50.4055 45.7805 45.8797 50.8770 49.9032 50.8316 50.9243

BRISQUE 9.6376 9.1434 5.5712 7.1173 8.4869 9.1254 4.3474

CORNIA 9.6960 8.0173 4.6140 8.5343 7.3121 9.7778 4.3074
HIGRADE 9.6469 7.7381 5.2704 9.9567 8.6036 8.0093 5.8163

V-BLIINDS 8.4058 7.7836 6.1912 4.7971 9.3751 5.8211 5.1704

TLVQM 8.7217 10.0801 4.8209 6.1302 7.1367 4.0113 5.5803

ChipQA 7.2874 7.7510 4.3791 5.3599 5.6626 5.0459 5.6679

Fig. 7. Box plot comparing MOS against distortion type for both considered
video resolutions. The labels on the horizontal axis represent: f: flicker; j:
judder; c: compression; a: aliasing; i: interlacing; d: frame drop and o: original
(reference videos).

the usefulness of the new resource. Given MOS and DMOS,
we are able to test and compare both FR and NR VQA
models. The performances of the objective VQA algorithms
were evaluated using three standard metrics: the Spearman’s
Rank Order Correlation Coefficient (SROCC), the Pearson
Linear Correlation Coefficient (PLCC), and the Root Mean
Square Error (RMSE).

A. Performances of FR VQA Models

Here we present the results for the following seven popular
FR VQA models: PSNR, SSIM, MS-SSIM, SpEEDQA, ST-
RRED, FAST, and VMAF. The distorted versions of the
45 reference contents (270 videos in total) were processed
to produce predictions that were cast against the DMOS.
Note that most FR VQA models require that there be an
equal number of frames between each reference video and
its corresponding compared distorted video. However, the
videos subjected to interlacing distortions have one less frame
than the originals they derive from. Hence, the final frame
of the interlaced video is duplicated to match the reference.
The predicted scores s were passed though a five-parameter
nonlinear logistic regression function before the PLCC and
MSE were computed:

f(s) = β1(
1

2
− 1

(1 + exp(β2(s− β3))
) + β4s+ β5, (8)

where s are the predicted scores produced by the tested
algorithm and f(s) is the mapped score. By fitting parameters
βi (i = 1, 2, 3, 4, 5), the MSE between the mapped and sub-
jective scores is minimized. The SROCC, PLCC, and RMSE
for each category of distortions are calculated by comparing
the predictions made by the FR models and the ground truth
for each of those distortions separately. Table V, VI, and VII
show the performance metrics of the compared algorithms,
which will be discussed shortly.
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TABLE XI
COMPUTATION TIME ON A SINGLE 3840X2160 VIDEO WITH 210 FRAMES

FROM THE LIVE LIVESTREAM VQA DATABASE

Algorithm Time (s) GFLOPS Complexity
NIQE 1008 3094 O(k2NT )

BRISQUE 301 352 O(k2NT )

TLVQM 1002 477
O(k21NT+

(log(N) + k22)NT2))
CORNIA 2056 4480 O(k2MNT )

VBLIINDS 3086 465
O((k2N+

log(w)N + w2d3)T )
HIGRADE 16240 9604 O(3(2k2 + k2)NT )

ChipQA 814 700 O(( k2

D2 + Q
RD2 +

Q logQ
R3D2 )NT )

k: window size; N pixel number per frame; T : number of frames;
TLVQM: k1,k2: filter size, T2: number of representative frames;
CORNIA, M : codebook size;
V-BLIINDS, w: window size, d: motion vector tensor size;
HIGRADE, k2: gradient kernel size;
ChipQA, D: downsampling factor Q: chip search’s quantization factor, R:

size of each dimension of a chip

B. Performance of NR VQA Models

We compared the quality predictions made by a variety
of NR models against the MOS. The NR VQA algorithms
that were tested include NIQE [54], BRISQUE [55], HI-
GRADE [56], CORNIA [57], TLVQM [58], V-BLIINDS [59],
and ChipQA [60], [61]. BRISQUE, HIGRADE, CORNIA,
TLVQM, V-BLIINDS, and ChipQA are supervised learning
algorithms that use a support vector regressor (SVR) to
learn mappings from ‘quality-aware’ features to mean opinion
scores. These algorithms were tested on 1000 random train-
test splits. On each split, 80% of the data was used for training,
and 20% for testing. Follow common practice, 5-fold cross-
validation was applied within each training set to find the best
parameters for the SVR. Care was taken to ensure that no
content could appear in both the training and testing set, or
the training and validation set.

NIQE, BRISQUE and HIGRADE are image quality assess-
ment (IAQ) algorithms, so they were used to extract features
frame by frame, followed by temporal average pooling.

For the unsupervised methods (NIQE), the scores s were
passed through the same nonlinear logistic regression process
before the PLCC and MSE were computed, as described
earlier. The performances of the compared VQA models on
the entire database, as well as for each synthetic distortion, are
shown in Tables VIII, IX, and X, where the best performing
model on each distortion category is boldfaced. The results for
each specific distortion were acquired by training the SVR on
the reference sequences and the specific distorted sequences.
Scatter plots of some selected objective VQA models against
MOS are shown in Fig. 8.

C. Statistical Evaluation

A one-sided t-test was performed on the 1000 SROCC
scores of the NR VQA models computed on the LIVE
Livestream Database, using the 95% confidence level to eval-
uate whether one VQA algorithm was statistically superior

to another. The results are shown in Table XII. Results on the
entire database and on individual distortions are both included.
Each entry in the table consists of 7 symbols corresponding
to the entire database, and the 6 distortions, in the order
of compression, aliasing, judder, flicker, frame drop, and
interlacing. A symbol ‘1’ indicates using the performance of
the algorithm on the row was statistically superior to that of
the column, while a symbol ‘0’ indicates that the column
algorithms was statistically better than the row algorithm. A
symbol of ‘-’ indicates that the performances of the row and
the column algorithms were statistically equivalent.

D. Computational Cost

Since we are interested in live streaming use scenarios, we
studied the computational costs, the number of giga floating
point operations (GFLOPS), and complexity of the compared
models, as shown in Table XI. TheO(·) figures make clear that
all of the compared algorithms could be implemented as real-
time hardware realizations. To measure computation time, we
used a single 4K video having 210 frames. Of the compared
algorithms, V-BLIINDS, and ChipQA were implemented in
Python. All other algorithms were implemented in MATLAB®.
All the algorithms were run on an Intel Xeon E5-2620 CPU
with a maximum frequency of 3 GHz.

While none of the tested algorithms runs in real time in
their current implementations, they may be optimized to do
so. In most of the algorithms, the most expensive step is
filtering. For example, in BRISQUE the largest computation is
computing the mean subtracted contrast normalized (MSCN)
coefficients. However, filtering scales up linearly and is highly
parallelizable. Frame based algorithms can be applied at a
lower frame rate with little loss of prediction efficacy [62].
While V-BLIINDS expends considerable computation on mo-
tion computation, motion vectors can be re-used from those
produced by the involved codec. The complexity of CORNIA,
which computes dot-products between local descriptors and
visual codewords, is affected by the codebook size, which can
be quite large.

E. Discussion of Results

The results presented in Tables V, VI and VII suggest that,
other than PSNR, the compared FR VQA models generally
delivered similar overall performances on the entire database,
but some algorithms yielded better performances on certain
distortions. For example, SSIM, which performed well overall,
obtained the highest correlation against DMOS on the com-
pressed videos, but low correlation on the judder videos. The
main reason that SSIM delivers low performance on judder
videos is that it is a frame-based model. Judder is a temporal
distortion that arises when high motion is present in a video.
The greater the magnitude of the motion, the more apparent
the distortion is likely to be. While SSIM effectively captures
spatial distortions (like compression), it is unable to capture
the temporal effects of judder. ST-RRED does include limited
temporal information expressed as NSS features from adjacent
frame differences, which is inadequate to model complex
or longer-duration temporal distortions, hence it does not
outperform the other compared FR models. VMAF yielded
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(a) Reference (b) Compression (c) Aliasing

(d) Flicker (e) Frame Drop (f) Interlacing

(g) Judder

Fig. 8. Scatter plots of the predicted scores produced by several NR VQA models against MOS for each class of distorted videos.

TABLE XII
RESULTS OF ONE-SIDED T-TEST PERFORMED BETWEEN SROCC VALUES OF VARIOUS ALGORITHMS ON THE LIVE LIVESTREAM DATABASE. EACH
CELL CONTAINS 7 ENTRIES: THE ENTIRE DATABASE, 6 DISTORTIONS IN THE ORDER: COMPRESSION, ALIASING, JUDDER , FLICKER, FRAME DROP,

AND INTERLACING. A VALUE OF ’1’ INDICATES THAT THE ROW IS STATISTICALLY SUPERIOR (BETTER VISUAL QUALITY) THAN THE COLUMN,
WHILE A VALUE OF ’0’ INDICATES THAT THE COLUMN IS STATISTICALLY SUPERIOR THAN THE ROW. A VALUE OF ’-’ INDICATES STATISTICAL

EQUIVALENCE BETWEEN ROW AND COLUMN.

ALGORITHM NIQE BRISQUE CORNIA HIGRADE V-BLIINDS TLVQM ChipQA

NIQE ------- 0000000 0000000 0000000 0000000 0000000 0000000

BRISQUE 1111111 ------- 00-101- 0011-01 00-0101 01--101 0000001

CORNIA 1111111 11-010- ------- 011-001 01-0001 01-0101 0-10001

HIGRADE 1111111 1100-10 100-110 ------- 0000101 010010- 0000000

V-BLIINDS 1111111 11-1010 10-1110 1111010 ------- 11-1-0- 0001000

TLVQM 1111111 10--010 10-1010 101101- 00-0-1- ------- 0000011

ChipQA 1111111 111110 1-01110 1111111 1110111 1111100 -------



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. X, NO. X, XXXX 13

the highest correlation on the aliased and flicker videos, but
low correlations on the interlaced videos. The FR VQA models
tended to deliver decent performances on common distortions
found in other VQA databases, such as compression, and
also flicker, which is compression based. These distortions
are better studied and easier to catch with the presence of
the reference. However, when tested on the purely temporal
distortions, all of the compared FR VQA models delivered
low correlations against DMOS. This suggests ample room for
research on developing better models of temporal and motion-
related distortions.

From Tables VIII, IX, and X, it may be observed that
ChipQA performed the best among the compared NR VQA
algorithms, while TLVQM and V-BLIINDS also achieved
relatively higher correlations against the human judgments.
TLVQM achieved the top performance on flicker and frame
drops, likely because of the large number of temporal features
it uses. ChipQA builds a statistical representation of local spa-
tiotemporal data that is attuned to local orientations of motion
over large spatial fields, motivated by processes in areas V1
and MT of the brain. The explicit modeling of deviations from
statistical regularity in the spatiotemporal domain allows it to
perform well on both spatial and temporal distortions. NIQE
and BRISQUE are similar methods, but BRISQUE is trained
while NIQE is completely blind, hence BRISQUE usually can
deliver predictions having higher correlations against human
quality judgments. Similar statistical features are used in V-
BLIINDS and HIGRADE. The frame-based models NIQE,
BRISQUE, HIGRADE, and CORNIA do not access any
motion information, which greatly limits their performance.
CORNIA yielded top performances on compression, aliasing,
and interlacing, all of which present strong spatial aspects of
distortion. However, the overall performance of CORNIA was
lower than that of V-BLIINDS, TLVQM, and ChipQA, due to
the lack of temporal information.

VII. CONCLUSION

We created a large scale video quality database targeting
high motion, live streaming scenarios. The new resource
includes 45 source sequences from 33 original contents and
6 different distortion types. The new database can be used
to create, test, and compare both NR and FR VQA models.
We are making the new LIVE Livestream database publicly

available. Future steps include developing new NR VQA
models using the proposed database.
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