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Abstract—The topics of visual and audio quality assessment
(QA) have been widely researched for decades, yet nearly all of
this prior work has focused only on single-mode visual or audio
signals. However, visual signals rarely are presented without
accompanying audio, including heavy-bandwidth video streaming
applications. Moreover, the distortions that may separately (or
conjointly) afflict the visual and audio signals collectively shape
user-perceived quality of experience (QoE). This motivated us
to conduct a subjective study of audio and video (A/V) quality,
which we then used to compare and develop A/V quality mea-
surement models and algorithms. The new LIVE-SJTU Audio
and Video Quality Assessment (A/V-QA) Database includes 336
A/V sequences that were generated from 14 original source
contents by applying 24 different A/V distortion combinations
on them. We then conducted a subjective A/V quality perception
study on the database towards attaining a better understanding
of how humans perceive the overall combined quality of A/V
signals. We also designed four different families of objective A/V
quality prediction models, using a multimodal fusion strategy.
The different types of A/V quality models differ in both the
unimodal audio and video quality prediction models comprising
the direct signal measurements and in the way that the two
perceptual signal modes are combined. The objective models are
built using both existing state-of-the-art audio and video quality
prediction models and some new prediction models, as well as
quality-predictive features delivered by a deep neural network.
The methods of fusing audio and video quality predictions that
are considered include simple product combinations as well as
learned mappings. Using the new subjective A/V database as a
tool, we validated and tested all of the objective A/V quality
prediction models. We will make the database publicly available
to facilitate further research.

Index Terms—Quality assessment, audio-visual quality, video
quality, audio quality, multimodal fusion.
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I. INTRODUCTION

STREAMING media now dominate the internet, and statis-
tics on its composition show that video and audio stream-

ing occupy about 60% of global network traffic [1]. Video
streaming services like Netflix, YouTube, Amazon Video,
Facebook Watch, and Hulu consume the largest fraction, but
audio streaming services like Spotify and Apple Music are also
among the top tier of consumers of internet capacity. While
video streaming indisputably commands more resources, audio
is also a resource hog, and like video, is important to con-
sumers. Moreover, vision and audition are the richest sources
of sensory data that we use to gather information from the
world around us. Furthermore, streamed video is nearly always
accompanied by audio, and certainly the perceived quality of
experience (QoE) when viewing streaming video is deeply
affected by both perceptual video quality and perceptual audio
quality, or more precisely, their conjoint quality.

In streaming applications, video and audio signals generally
pass through a processing pipeline consisting of several rep-
resentative stages, including content generation, processing,
encoding at the server side, streaming through the network,
and finally, decoding and presentation to consumers at the
end-user side [2]. Various impairments may be introduced
along the way to either or both of the video and audio
signals, which degrade the end-user’s QoE. Modern streaming
media consumers are increasing savvy about audio and video
(A/V) technology, and expect high QoE when viewing and
listening using increasingly high-resolution and high-fidelity
A/V systems, whether they be on mobile devices or in their
living rooms. Thus, there is significant impetus to develop
and deploy efficient and accurate audio and video quality
assessment (A/V-QA) models that can be used to monitor and
control end-user QoE.

End-user perceived QoE depends on a wide variety of
spatio-temporal factors related to content acquisition, pro-
cessing, transmission, and visual and auditory perception.
Typical distortions that degrade A/V content quality include
acquisition errors, compression, resizing/rate changes, and
much more, including temporal factors such as rebuffering
and quality switching. A wide variety of picture and video
quality databases are available that contain streaming video
distortions, including the LIVE Video Quality Assessment
Database [3] and the EPFL-Polimi Dataset [4], which include
compression and transmission loss distortions. Similar audio
resources include the ITU-T coded-speech database [5], which
includes audio encoding distortions, environmental noise, and
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(a) BigGreenRabbit (b) Boxing (c) Car (d) CrowdRun (e) Drama

(f) FootMusic (g) Fountain (h) Goose (i) PowerDig (j) RedKayak

(k) Sparks (l) Speech (m) Stream (n) Town

Fig. 1. Sample frames of the 14 source videos used in the LIVE-SJTU A/V-QA Database.

channel degradations. More recent databases address distor-
tions that occur over longer time spans or at the client’s
side. For example, the LIVE-Netflix Video QoE Database [6]
models the effects of both bitrate changes and rebuffering
events, while a variety of objective streaming QoE predictors
are proposed in [7]. These databases have been used to create,
test, and compare a large number of video quality assessment
(VQA) and video QoE models [7]–[16], and also audio quality
assessment (AQA) models [17]–[22]. Useful surveys of VQA
and AQA studies can be found in [2], [23]–[25].

Although many studies have separately addressed video
and audio quality, very few have simultaneously addressed
both. This is unfortunate, since both types of sensory signals
shape user-perceived QoE. Some A/V-QA studies have been
conducted [26]–[31], and there are relevant surveys that sum-
marize and critique the available A/V-QA studies [32], [33]
and their limitations.

Despite the limited volume of research on the topic, A/V-QA
algorithms could be of great value in practice. For example,
video streaming service providers like Netflix and Amazon
Prime Video benefit by adaptive streaming of both video and
audio [34]. Since the goal of adaptive streaming is to provide
the best overall QoE under any network conditions, it makes
sense to optimize audio and video QoE simultaneously. Since
bandwidth-hungry surround sound is becoming more perva-
sive, perceptual audio rate control has become more important,
and should be a significant factor in A/V QoE optimization,
especially when the available bandwidth becomes limited.
These issues greatly motivate us to study these problems.

In this paper, we make a number of contributions. First, we
constructed a unique new audio-visual quality resource, which
we call the LIVE-SJTU A/V-QA Database. The database is
comprised of 14 source A/V sequences and 336 distorted
versions of them, each of which was quality-rated by 35
human subjects. We limit the study to the perception of space-

time A/V distortions that are localized in time, setting aside
for now the study of longer-duration temporal patterns of
rebuffering events/stalls and bitrate changes. Specifically, we
target streaming applications, where A/V signal compression
and scaling are the main distortion sources. The videos were
impaired by two types of distortions: compression, and com-
pression after spatial downsampling. Four levels of each type
of distortion were applied. The audio signals were subjected
to one type of compression distortion applied at three levels of
severity. All of the possible combinations of these video and
audio distortion conditions constitute the overall 24 distortion
conditions that were applied to each source A/V sequence.

Second, we designed and conducted a large, comprehen-
sive subjective A/V-QA study on the new LIVE-SJTU A/V-
QA Database. As described further herein, we develop an
appropriate A/V subjective testing environment, and invited
35 human subjects to participate in a subjective human study
of A/V quality. These subjects were each asked to record their
opinions of each distorted A/V sequence. We conducted a
careful statistical validation analysis of the obtained subjective
ratings, including a post-study questionnaire, and we arrived
at a number of interesting conclusions regarding how humans
perceive and assess A/V quality under various combinations
of audio and visual distortion conditions.

Third, we designed four families of objective A/V-QA
models, which can be differentiated according to the strategies
used to fuse the measurements made on the two signal
modalities. The first family of models integrates single-mode
AQA and VQA models by fusing them using simple products
and weighted products. The second family of models is learned
by training support vector regressors (SVRs) to fuse A/V
quality scores or features. Thirdly, we developed a set of
audio quality models that derive from picture quality research,
by adapting a set of classical 2D visual quality models for
application to 1D audio signals. By combining these visually-
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Fig. 2. Workflow of the human subjective study, which followed 5 stages: preparation, training, 2 testing sessions, and a posterior questionnaire.

inspired AQA models with VQA models, we arrive at a third
family of A/V-QA models. The fourth family of models is
defined by first computing 2D spectral representations of the
audio signals, then using a pretrained deep neural network
(DNN) to learn to extract content- and distortion-aware A/V
features and to predict perceptual A/V quality. We conducted
extensive experiments to illuminate the absolute and relative
performances of these four families of new A/V-QA models,
using the new LIVE-SJTU A/V-QA Database.

The rest of the paper is organized as follows. The detailed
construction of the new LIVE-SJTU A/V-QA Database and the
protocol we followed when conducting the subjective A/V-QA
study are described in Section II. Section III introduces and
details the four families of objective A/V quality prediction
models. The experimental results are laid out in Section IV.
Section V gives some recommendations on practical usage
and deployment of the proposed AV-QA models. Section VI
concludes the paper with a number of cogent observations.

II. SUBJECTIVE AUDIO-VISUAL QUALITY ASSESSMENT

To facilitate our work on A/V quality measurement, we first
constructed the new LIVE-SJTU Audio and Video Quality As-
sessment (A/V-QA) Database, and then conducted a sizeable
human subjective study on it. Based on the collected subjective
data, we give some observations regarding the outcomes of the
human study, and their implications regarding multimodal A/V
perceptual fusion mechanisms.

A. Reference and Distorted Contents

1) Source Contents: We collected a set of 14 diverse source
videos with corresponding soundtracks from the Consumer
Digital Video Library (CDVL) [35]. All of the selected videos
are of very high visual and auditory quality. The videos all
have resolutions of 1920×1080 pixels, and are provided in
raw YUV 4:2:0 format. The frame rates of the 14 videos
range from 24 to 29.97 frames per second, and all of the
videos are of 8 seconds duration. The corresponding audio
soundtracks are stereophonic audios with two channels which
are provided in raw pulse-code modulation (PCM) format with
a bit depth of 16 and a sampling rate of 48 kHz. Sample
frames of all 14 source videos are provided in Fig. 1. The
video contents include normal daily activities, television show,
landscape, animation, people at work, and so on. The audio
contents include human speech, music, machine sounds, water,
and more.

2) Distortion Sources: We generated a much larger set of
distorted contents by applying quality degradation processes
that occur in video streaming applications. Hence, we focused
on A/V signal compression, and compression combined with
scaling. Specifically for video, we modeled the following two
distortion types.

• Video compression: We chose the high efficiency video
coding (HEVC) as the video compression method, given
its status as the latest ITU global video compression
standard. The specific implementation of HEVC that
we used is the ffmpeg x265 encoder. For each source
video, 4 different compression levels were applied by
selecting the constant rate factor (CRF) mode, and setting
the CRF = 16, 35, 42, and 50. These quality factors
were selected to generate a wide range of perceptually
well-separated video compression qualities over a range
containing typical operating points.

• Video compression plus scaling: Modern video stream-
ing systems often spatially downsample videos prior
to compressing them, then upscale them following de-
coding, prior to display [14]. We created distorted
videos by downsampling original 1080p videos to res-
olution 1280×720 (720p), compressing these using the
same compression settings as described above, then spa-
tially upscaling them back to the original resolution
of 1920×1080. Lanczos resampling [36] was used to
upscale the reduced and decompressed videos, given its
prevalence in video players and displays.

We distorted the audio content as follows.

• Audio compression: Audio signals are also generally
compressed before being distributed to users. We chose
the advanced audio coding (AAC) as the audio compres-
sion method, using the basic ffmpeg AAC encoder im-
plementation. We again used the constant bit rate (CBR)
mode, and set the bitrate at the three levels 128, 32 and
8 kbps, thereby generating three levels of perceptually
well-separated audio compression distortion.

Finally, all possible combinations of the above video and
audio distortions were used to generate the complete set of
distorted A/V signals. In summary, 24 distortion conditions
(generated from all possible combinations of 2 video distortion
types, 4 video distortion levels, and 3 audio distortion levels)
were applied to the 14 reference A/V sequences, yielding a
total of 336 distorted A/V sequences.
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Fig. 3. Histogram of MOSs from the LIVE-SJTU A/V-QA Database.

B. Subjective Human Study

1) Experiment Setup: We conducted a subjective human
study in LIVE to obtain data representative of how humans
perceive distorted A/V quality. The A/V testing environment
included a ASUS G750JX-TB71 PC equipped with a HP
VH240a 23.8-inch 1920×1080 monitor and a Bose Com-
panion 20 speaker which was located next to the display.
We designed a user interface whereby the subjects could
view/listen and rate the videos. All videos were displayed
at native resolution to avoid further scaling distortions. The
refresh rate of 60 Hz is larger than the frame rates of all of the
the videos. Prior to the study, we carefully tested playback of
all A/V sequences to eliminate any concerns regarding latency,
frame drops, loss of A/V synchronization, etc.

2) Testing Methodology: We adopted a single stimulus
continuous quality evaluation (SSCQE) strategy to obtain the
subjective quality ratings on all of the distorted A/V sequences.
After each A/V sequence was viewed, a continuous quality
rating bar was presented to the subject. The quality bar was
labeled with five Likert adjectives: Bad, Poor, Fair, Good
and Excellent, allowing subjects to smoothly drag a slider
(initially centered) along the continuous quality bar to select
their ratings. All subjects were instructed to give an opinion
score of the overall A/V quality they perceived. They were
seated at a distance of about 2 feet from the monitor, and this
viewing distance was roughly maintained during each session.

3) Testing Procedure: The human subjective study was
conducted in the LIVE subjective study room at The Uni-
versity of Texas at Austin. A total of 35 subjects participated
in the study, most of them UT-Austin graduate students. A
workflow of the human subjective study, comprised of 5
stages, is illustrated in Fig. 2. Before participating in the
test, each subject read and signed a consent form which
explained the human study, and participated in a Snellen visual
acuity test [37]. All subjects were determined to have normal
or corrected-to-normal vision. General information about the
study was supplied in printed form to the subjects, along
with instructions on how to participate in the A/V task. Each
subject then experienced a short training session where 10
A/V sequences (not included in the actual test) were played,
allowing them to become familiar with the user interface and
the general range and types of distortions which may occur.
The same distortion generation procedure was conducted for
the training videos as for the test videos. The entire collection

20

30

40

50

60

70

120

80

M
O

S

90
60

Audio Bitrate

30

104
Video Bitrate

987654321

Fig. 4. Plot of video bitrate, audio bitrate, and MOS against each other. The
bitrates have units of kbps. Each point corresponds to a single A/V sequence
from the database.

of 336 distorted videos was randomly and equally divided into
2 sessions. All subjects participated in both sessions, which
were separated by at least 24 hours. The order in which
the test videos were played was randomized and different
for each subject. After participating in both testing sessions,
the subjects were asked to answer a questionnaire regarding
their experience. Details of the questionnaire and the results
obtained from the study are given in Section II-C.

C. Subjective Data Processing and Analysis

1) MOS Calculation and Analysis: We follow the sugges-
tions given in [38] to conduct subject rejection. Only two of
the 35 subjects were detected as outliers and rejected. For the
remaining 33 valid subjects, we converted the raw ratings into
Z-scores, which were then linearly scaled to the range [0, 100]
and averaged over subjects to obtain the final mean opinion
scores (MOSs)

zij =
rij − µi
σi

, z′ij =
100(zij + 3)

6
, (1)

MOSj =
1

N

N∑
i=1

z′ij , (2)

where rij is the raw rating given by the ith subject to the
jth image, µi is the mean rating given by subject i, σi is
the standard deviation, and N is the total number of subjects.
Fig. 3 plots the histogram of MOSs over the entire database,
showing a wide range of perceptual quality scores. We also
plotted video bitrate, audio bitrate, and MOS against each
other in Fig. 4, where the bitrate values for both video
and audio were obtained during encoding. Piecewise linear
interpolation of the MOS was used to improve visibility of
the trends. It may be observed that MOS generally increased
with higher audio and video bitrates, but this was not always
true, and the MOS trend varied non-monotonically with the
combined audio-video bitrates. This further implies the need
for A/V quality measures that are able to accurately predict
human percepts of overall A/V quality.

2) Questionnaire Analysis: Post-test questionnaires can
help give a better understand of how the subjects felt about the
study, and how future studies might be improved. All of the
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Post-study Questionnaire 
 
Q1: What was the relative importance of the video/audio signals when evaluating the overall 
audio-visual quality? 
Please give a relative percentage score, e.g., 50% (Video)/ 50% (audio) if they are of equal 
importance. 
A1:  (Video)/  (Audio). 
 
Q2: How difficult was it to judge the video quality, audio quality, and overall audio-visual 
quality? 
Please give three percentage scores, from 0% (very difficult) to 100% (very easy). 
A2:  (Video),  (Audio),  (Overall). 
 
Q3: What was your strategy of rating the overall audio-visual quality? 
A. Sense/judge the quality of one modality after another, and then give an overall rating. 
B. Sense/judge the quality of both modalities at the same time. 
A3:  . 
 
Q4: How confident were you feeling about your given audio-visual quality scores? 
Please give a percentage score, e.g., 80%. 
A4:  . 
 
Q5: How well were you able to concentrate when you conduct this audio-visual quality 
assessment study? 
Please give a percentage score, e.g., 80%. 
A5:  . 
 
Q6: Was the duration of each video long enough for you to rate the overall audio-visual quality? 
Did you feel that you needed more time to rate the overall audio-visual quality as compared 
to only rating the video quality. 
Please give two Yes or No answers. 
A6:  ;      . 
 

Fig. 5. A list of the questions included in the post-test questionnaire.

questions that were asked are shown in Fig. 5, while statistical
results of the replies given by all 35 subjects are given in Fig.
6. Some general observations are given as follows.
• Q1: The majority of subjects thought that the viewed

video components were relatively more important to
their experiences than audio components when they were
rating A/V quality. The average relative importance of
video and audio signals was 57%:43%.

• Q2: As compared with video quality, subjects found it
harder to judge the audio quality, and even more difficult
to judge the overall A/V quality.

• Q3: Different subjects relied on different internal strate-
gies when rating overall A/V quality. A majority (60%) of
subjects thought that they judged the quality of one mode
first, then the other, and then gave an overall rating.

• Q4: Most subjects felt pretty confident about their ratings.
• Q5: Most subjects were able to concentrate during the

test.
• Q6: Almost all of the subjects felt that 8 seconds was

adequate time to be able to give an accurate overall rating.
The majority thought that they would not need more time
to rate the A/V quality as compared with only rating the
video quality.

Although the questionnaires only broadly describe the experi-
ences of the human subjects, they still provided some useful
insights regarding the efficacy of the study and strategies going
forward.

3) Subjective Audio-Visual Quality Model: Intuitively, per-
ceived overall A/V quality is a fusion of perceived video
quality and audio quality. If the A/V, video and audio qualities
are described by subjective quality scores, then a model that
fuses them is a subjective A/V quality model [26], [29], [30].
We use MOSav , MOSv and MOSa to denote the reported
subjective A/V quality, video quality and audio quality, respec-
tively. Of course, MOSav was obtained as the final MOS from
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Fig. 6. Results of the post-test questionnaire. The error bar denotes one
standard deviation.

TABLE I
SUBJECTIVE AV QUALITY MODELS. VALUE DENOTES THE FITTING

VALUE, WHILE BOUNDS DENOTE THE 95% CONFIDENCE BOUNDS

Model w1, w2 k1, k2
Value Bounds Value Bounds

Model 1 0.5762 (0.5458, 0.6065) -10.38 (-10.99, -9.761)
Model 2 0.5826 (0.5422, 0.6229) 0.8563 (0.8450, 0.8675)

the database. Since we did not collect single-mode ratings, we
instead derived the estimated MOS (eMOSv and eMOSa) as
follows: for a given A/V sequence (e.g. a video coded with
CRF 42 and associated audio coded with bitrate 32 kbps), let
eMOSv be the value of MOSav corresponding to the A/V
sequence having the same video distortion but the lowest
(highest quality) audio distortion setting (i.e., the video coded
with CRF 42 and associated audio coded with bitrate 128
kbps, which derive from the same original content). Likewise,
define eMOSa to be the value of MOSav corresponding to
the A/V sequence having the same audio distortion but the
lowest video distortion setting (CRF 16). We define eMOSv
and eMOSa in this way since we did not collect single-mode
ratings, and since the least compressed videos and highest
bitrate audios are close to pristine. Still, we recognize that
there remains uncertainty in these estimates, so we only use
them to generally validate our hypotheses.

We then designed two subjective A/V quality models:
• Model 1: weighted sum of single-mode estimated subjec-

tive qualities

MOSav = w1 · eMOSv + (1− w1) · eMOSa + k1. (3)

• Model 2: weighted product of single-mode estimated
subjective qualities

MOSav = k2 · eMOSw2
v · eMOS1−w2

a , (4)

where w1 and w2 denote linear and exponent weights, and k1
and k2 are biases to be fitted. We fit the above two models on
the LIVE-SJTU A/V-QA Database, with results listed in Table
I. It observed that the two models are in general agreement. In
both models, the weight on the video term is larger than that on
the audio term. Moreover, the relative weights are very close to
the relative importance values obtained by the questionnaire.
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Fig. 7. Frameworks of the proposed four families of A/V quality prediction models.

III. OBJECTIVE AUDIO-VISUAL QUALITY ASSESSMENT

When attempting to create models predictive of overall
perceived A/V quality, it is quite reasonable to assume that
a fusion of measurements on the visual and audio signals will
be required. While objective VQA and AQA models have been
studied for years, and many successful algorithms have been
proposed, objective A/V-QA measurement remains a relatively
unexplored problem. Here we attempt to better fill this gap by
advancing four families of A/V-QA models, that differ in their
complexities, methods of fusion, and requirements on training
(if any). We will refer to these families as Types 1, 2, 3, and
4. In this paper we mainly focus on full-reference A/V-QA.
The original source contents that were used to generate the
distorted A/V sequences were used as the reference signals
when testing the A/V-QA models, since they are of high
quality and free of compression and scaling distortions. The
frameworks of the four types of A/V quality models are
illustrated in Fig. 7. Details of each type are given as follows.

A. Type 1: Product of Video and Audio Quality Predictors

Since numerous single-mode visual and audio quality pre-
dictors have been proposed, it is reasonable to consider using
them to predict video and audio qualities first, then combining
the results into a single, united A/V quality predictor by fusing
them [26], [30]. The idea of such a posterior fusion strategy
finds some support from the post-test questionnaire, where a
majority of subjects stated that they first judged the video and
audio quality separately, and then subsequently fused them.
Perhaps the simplest form of bi-modal fusion is the product of
AQA and VQA model responses, if both are properly scaled.

As depicted at the top left of Fig. 7, we leveraged existing
knowledge by deploying top-performing quality predictors for
both modalities, as follows. The A/V quality prediction is

Qav = Qv ·Qa, (5)

where Qv and Qa denote the video and audio quality predic-
tions computed on the respective components of distorted test
signals. We used the following well-known video and audio
quality predictors:

• Video: VMAF [14], STRRED [13], SpEED [39], VQM
[40], SSIM [8], MS-SSIM [9], VIFP [10], FSIM [41],
GMSD [42];

• Audio: PEAQ [17], STOI [19], VISQOL [20], log-
likelihood ratio (LLR) [21], signal-to-noise ratio (SNR),
and segmental SNR (segSNR) [22].

Any video quality measure can, in principle, be combined
with any audio quality measure, if they are appropriately
scaled or normalized. However, since the ranges of the video
and audio predictors may differ, it is proper to normalize them
prior to forming the product

Qav = Q̂v · Q̂a, (6)

where either (to match a desired decreasing or increasing
trend)

Q̂a =
Qa −Qamin

Qamax −Qamin

, or Q̂a = 1− Qa −Qamin

Qamax −Qamin

, (7)

where Qamax and Qamin bound the known range of Qa,
which may need to be determined empirically. The normalized
video score Q̂v is also obtained using one of the forms in
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TABLE II
VIDEO AND AUDIO QUALITY MEASURES AND THE CORRESPONDING DECOMPOSED FEATURES USED IN TYPE 2 MODELS

Category Measure #Feature Decomposed features

Visual

VMAF [14] 6 4 scales of VIF, detail loss, motion
STRRED [13] 6 Full and single number versions of SRRED, TRRED, STREED
SpEED [39] 6 Full and single number versions of spatial, temporal, spatial-temporal SpEED
VQM [40] 7 4 spatial gradient features, 2 chrominance features, 1 contrast and motion feature
SSIM [8] 2 Luminance similarity, contrast and structural similarity

MS-SSIM [9] 6 Luminance similarity, 5 scales of contrast and structural similarity
VIFP [10] 4 4 scales of VIFP features
FSIM [41] 3 Phase congruency, gradient magnitude, and chrominance similarity

GMSD [42] 2 Mean and standard deviation of gradient magnitude similarity

Auditory

PEAQ [17] 11 11 model output variables before the neural Network
STOI [19] 1 The complete algorithm

VISQOL [20] 3 Narrowband, wideband, fullband versions of VISQOL
LLR [21] 1 The complete algorithm
SNR [21] 1 The complete algorithm

segSNR [22] 1 The complete algorithm

(7). Naturally, both Q̂a and Q̂v are defined with the same
sign of trend. After normalization, the overall product quality
score will monotonically increase (or decrease, as desired)
with ground-truth A/V quality.

Since the video and audio modalities have different impor-
tances, a weighted product

Qav = Q̂wv · Q̂1−w
a , (8)

may instead be employed, where 0 6 w 6 1. The optimal
weight depends on the particular unimodal quality predictors
used, as well as the particular application, which may be
characterized by more or less severe distortions, for example.
In any case, the (weighted) product has virtues of simplicity,
efficiency, and easy interpretability, and as we shall see, it
performs reasonably well. Of course, other simple fusion
schemes might also be considered such as linear regression,
linear regression plus product, harmonic mean, etc.

B. Type 2: Fusion of Video and Audio Quality Predictors by
SVR

We can also make use of available data to derive a trained
regressor to integrate quality predictions derived from single-
mode quality models. An efficient way is to deploy an SVR
[43] to learn the quality fusion

Qav = SVR(Qv, Qa), (9)

where Qv and Qa have the same definitions as in (5). In this
case, the SVR is trained on the predicted single-mode quality
scores and the subjective ground-truth A/V quality labels.

This may be improved further, by instead using quality-
aware feature vectors fv and fa which may be independently
derived, or may be components (features) of existing VQA
and AQA models. Then use these features to train the SVR

Qav = SVR(fv, fa). (10)

The video and audio quality quality-aware feature vectors
that we use here were drawn from top-performing AQA and
VQA models, and are summarized in Table II. Other basic
machine learning based regression techniques might also to
be considered, such as random forests.
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Fig. 8. Workflows of 2D VQA model (left) and redimensioned 1D AQA
model adapted for 1D audio quality measurement (right). Local fidelity/quality
is measured by extracting and comparing local features using local moving
windows in both 2D and 1D.

C. Type 3: A/V-QA Models Defined Using 1D and 2D Visual
Quality Predictors

Visual and audio quality assessment have both been widely
researched for decades, yet work in the two areas has been
largely mutually isolated. But the neurosensory apparatus of
the visual and audio modalities bear important similarities, and
it is reasonable to consider whether suitably redimensioned
VQA models might be adapted for audio quality prediction.
Moreover, VQA models have largely been designed on the
basis of perceptual concepts that are shared with audio per-
ception. For example, visual masking, including luminance
and contrast masking [44], [45], is implemented by the most
successful video quality models. Likewise, auditory masking
principles are well-understood, and simultaneous masking is
embodied by VQA models like SSIM and MS-SSIM [8], [9].
Intensity masking also holds for audio perception [46], [47].
Indeed, SSIM has already been shown to be quite effective for
audio quality prediction [48], [49]. Furthermore, most VQA
models utilize multi-scale modeling, which is fundamental
to both visual [9], [50] and audio signal processing [51].
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Fig. 9. Framework of DNN based A/V quality model. For the video component, randomly crop N patches whose sizes fit the input of the DNN from the
video frame, which are then fed into the pretrained DNN. Patch features are extracted from the final layers, then the the features from all N patches are
averaged to produce video frame features. For the audio component, the spectrogram is computed from each audio segment, then fed into the same DNN,
then audio features are extracted from the final layers. The extracted A/V features and their differences are then fused by the trained SVR. PCA is applied
before the fusion to reduce the feature dimension.

Some of the most successful VQA models rely on natural
scene statistics models to characterize quality, including VIF
[10], STRRED [13], VMAF [14], SpEED [39], etc. Similar
signal statistics have been observed to be fundamental to audio
signals with similar implications for audio perception [52],
[53]. This potentially includes the prediction of audio quality,
and which is a contribution we make here. It turns out that
natural statistics-based features make very good audio quality
predictors, for the same reasons as they do for pictures and
videos. Other of the employed VQA models, like GMSM and
GMSD, utilize image gradients [42], similar to the temporal
derivatives used in AQA [17]. These concepts greatly moti-
vated us to generalize 2D spatial visual quality models for
application to the 1D audio quality prediction. We accomplish
this by reducing all 2D processes in a given visual quality
model into 1D processes, then use the dimension-reduced
models to predict audio quality. These generalized measures
are then integrated with visual quality predictors using the
fusion methods employed in the Type 1 and Type 2 models.

Workflows of this kind of A/V quality prediction process are
illustrated in Fig. 8. Generally, data is captured and analyzed
along one dimension rather than two. For example, a 1D SSIM
is easily defined using 1D data windows on both the reference
and test signals. In this general manner, we generalized 1D
instances of the popular video frame/picture quality predictors
SSIM, MS-SSIM, VIFP, GMSM, and GMSD, which we
then apply to the audio signal components. Denote these
redimensioned 1D video frame quality models as SSIM1D,

MS-SSIM1D, VIFP1D, GMSM1D, and GMSD1D. Then define
the 1D-2D hybrid VQA type of A/V-QA model as

Qav = Qw
2D ·Q1−w

1D , (11)

where Q2D can be any of SSIM, MS-SSIM, VIFP, GMSM,
GMSD (at least), and Q1D is a redimensioned 1D version of
the same model, applied to the audio component.

Compared with the Type 1 and 2 models, the Type 3
models utilize the same methodology to predict the qualities
of the video and audio components, and thus are more con-
sistent. We specifically named these models as Audio-Visual
SSIM (AVSSIM), Audio-Visual MS-SSIM (AVMSSSIM),
Audio-Visual Information Fidelity in Pixel domain (AVIFP),
Audio-Visual GMSM (AVGMSM), and Audio-Visual GMSD
(AVGMSD). Of course, the redimensioned 1D VQA models
can be also combined with other models than their original
2D versions, using the methods of fusion in (8), (9) and
(10). Specifically, since VMAF (whose basis is VIF) utilizes
an SVR, we combine it with VIFP1D via the feature based
SVR fusion used in the Type 2 models, and refer to the
model as Audio and Video Multimethod Assessment Fusion
(AVMAF). In the experimental section, we will show that
AVSSIM, AVMSSSIM, AVIFP, AVGMSM, and AVGMSD all
performed pretty well, while AVMAF was excellent.

D. Type 4: Deep Neural Families of A/V Quality Predictors
All of the above families of A/V-QA models are based

on hand-crafted features. Given the successes of deep neural
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Fig. 10. 224 frequency points uniformly distributed in mel scale are sampled
and converted into hertz scale to calculate the spetrogram.

networks (DNNs) on wide swathes of visual problems, we
also employ them for A/V quality prediction. Our framework
for DNN based A/V quality prediction is illustrated Fig. 9.
Specifically, we use a DNN pretrained on ImageNet [54] as
a feature extractor, by extracting deep features from the final
layers of the DNN, then feeding them to an SVR trained to
predict the overall A/V quality. Since the resolution of video
frames is generally much larger than the input dimension of
available pretrained DNNs, we randomly cropped N patches
whose resolutions fit the input of the DNN from each video
frame. The frame patches were then fed into the DNN, to
extract patch features from its final layers. The patch features
of all N patches were then averaged to produce the video
frame features.

Each 1D audio signal was first transformed into a 2D
representation, by calculating the spectrum of each audio
segment. Similar to [55], [56], we developed the spectro-
gram, which only includes spectral magnitudes. The short-
time Fourier transform (STFT) was applied to calculate the
spectrogram, which was fed to the same pretrained DNN,
while audio features were extracted from the same layer of
the video DNN. For both reference and distorted signals,
the same procedures were followed, and the reference and
distorted video/audio features were extracted. The reference
and distorted video/audio features and their differences were
then fused using an SVR. Principal component analysis (PCA)
was applied to these features to reduce the feature dimension,
prior to feeding them to the DNN.

We used the pretrained ResNet-50 model [57] as an ex-
emplar DNN. We removed the last fully connected layer to
extract content-aware features, whose dimension is 2048. The
input dimension of ResNet-50 is 224×224, thus we cropped
image patches of this size, and the audio spectrogram was
also calculated as this size. To calculate spectrograms of this
size from the audio, 20 milliseconds windows having 75%
overlap at a step of 5 milliseconds were used to apply the
STFT to the 224×5=1120 milliseconds of the audio segment
nearest to the corresponding video frame. Then, 224 frequency
points uniformly distributed on the mel scale were sampled
and converted to the hertz scale. As illustrated in Fig. 10, the
224 sampled frequencies span the human audible frequency
range of 20 Hz to 20 kHz. The conversion function between

mel scale and hertz scale is

m = 2595 log10

(
1 +

f

700

)
, (12)

where m and f are mel scale and hertz scale frequencies.
A total of 6 groups (from the reference and distorted video

and audio sequences, and the feature differences between the
reference and distorted signals) of 2048-dimensional features
were extracted. To reduce the feature dimension, we applied
PCA to all 2048×6=12288 features before SVR feature
fusion. The feature dimension was reduced to 25, which is
a typical feature dimension for many SVR based quality
predictors. The method illustrated in Fig. 9 is a frame based
method, hence it is applied to the video frames and its
corresponding audio segments to predict the frame quality.
The overall video quality is calculated as the average of the
frame quality predictions. To reduce computation, a frame skip
of 10 is employed, meaning that one frame and its concurrent
audio segment are extracted every 10 frames to compute the
frame quality.

IV. EXPERIMENTAL RESULTS

We relied upon the LIVE-SJTU A/V-QA Database to test
and compare the 4 families of A/V quality predictors in the
preceding. These experiments also served to validate the utility
of the A/V-QA database.

A. Experimental Setting

The four families of A/V-QA models that were introduced
in Section III were tested. When applying image (frame)
quality algorithms to videos, the computed frame quality
predictions were averaged over all frames to produce the final
video quality predictions (viz., average pooling). The above
unimodal models will serve as component audio and video
quality predictors in the Type 1, 2, and 3 A/V-QA models to
be evaluated.

To evaluate the various quality predictors, we followed the
recommendations given in [58], and used a five-parameter
logistic function to fit the quality scores:

Q′ = β1

(
1

2
− 1

1 + eβ2(Q−β3)

)
+ β4Q+ β5, (13)

where Q and Q′ are the objective and best-fitting quality
scores, and the parameters {βi|i = 1, 2, ..., 5} were determined
via curve fitting during the evaluation. The consistency be-
tween the ground-truth subjective ratings and the fitted quality
scores is measured to evaluate the quality model. We used
the Spearman rank-order correlation coefficient (SRCC) to
measure the prediction monotonicity of the models and the
Pearson linear correlation coefficient (PLCC) to measure the
prediction linearity. For both SRCC and PLCC, larger values
denote better performance.

Exemplars from all four families of A/V quality models
described in Section III were evaluated. Among them, some
models involve training, while others do not. For fair compari-
son of all models, we randomly split the LIVE-SJTU A/V-QA
Database into a training set of 80% of the A/V sequences and
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TABLE III
PERFORMANCES OF TYPE 1 (TOP HALF) AND TYPE 2 (BOTTOM HALF) A/V QUALITY MODELS. THE TOP 3 MODELS OF EACH SUB-TYPE ARE IN BOLD

Criteria Video Product Weighted Product
Model PEAQ STOI VISQOL LLR SNR segSNR PEAQ STOI VISQOL LLR SNR segSNR

SRCC

VMAF 0.5920 0.9287 0.8450 0.7640 0.8164 0.8356 0.7536 0.9334 0.8436 0.7596 0.8871 0.9324
STRRED 0.3782 0.8396 0.7019 0.5962 0.6804 0.7050 0.7274 0.8981 0.8125 0.7526 0.8605 0.8859
SpEED 0.3628 0.8305 0.6881 0.5770 0.6691 0.6947 0.7303 0.8978 0.8134 0.7555 0.8657 0.8924
VQM 0.5949 0.9091 0.8145 0.7548 0.8224 0.8460 0.7287 0.9052 0.8183 0.7428 0.8644 0.9037
SSIM 0.2917 0.7937 0.6100 0.4898 0.6113 0.6399 0.7261 0.9192 0.8172 0.7546 0.8749 0.9117

MS-SSIM 0.2818 0.7799 0.5971 0.4698 0.6064 0.6362 0.7119 0.9092 0.8082 0.7480 0.8665 0.9039
VIFP 0.5791 0.9122 0.8275 0.7150 0.8138 0.8285 0.7405 0.9146 0.8276 0.7348 0.8800 0.9238
FSIM 0.2634 0.7486 0.5715 0.4199 0.5942 0.6272 0.7462 0.9429 0.8427 0.7718 0.8709 0.9016

GMSD 0.4882 0.8808 0.7975 0.6915 0.7441 0.7713 0.7165 0.8964 0.7985 0.7245 0.8470 0.8939

PLCC

VMAF 0.6639 0.9534 0.8646 0.7606 0.8392 0.8369 0.7581 0.9499 0.8606 0.7568 0.9112 0.9404
STRRED 0.5981 0.8425 0.7446 0.6136 0.6638 0.6596 0.7268 0.9302 0.8379 0.7520 0.8847 0.8991
SpEED 0.5987 0.8281 0.7349 0.6000 0.6491 0.6542 0.7289 0.9309 0.8389 0.7532 0.8912 0.9054
VQM 0.6593 0.9324 0.8383 0.7483 0.8472 0.8536 0.7309 0.9311 0.8395 0.7397 0.8951 0.9188
SSIM 0.5697 0.7952 0.7042 0.5385 0.5922 0.5890 0.7263 0.9471 0.8448 0.7555 0.8996 0.9204

M-SSSIM 0.5652 0.7764 0.6965 0.5215 0.5839 0.5775 0.7185 0.9394 0.8358 0.7485 0.8914 0.9124
VIFP 0.6390 0.9263 0.8312 0.7005 0.8390 0.8354 0.7176 0.9243 0.8385 0.7052 0.8924 0.9267
FSIM 0.5244 0.7393 0.6644 0.4743 0.5610 0.5589 0.7461 0.9596 0.8628 0.7707 0.8973 0.9121

GMSD 0.6446 0.9210 0.8299 0.7005 0.7694 0.7732 0.7205 0.9231 0.8249 0.7249 0.8786 0.9095

Criteria Video SVM (quality score) SVM (quality feature)
Model PEAQ STOI VISQOL LLR SNR segSNR PEAQ STOI VISQOL LLR SNR segSNR

SRCC

VMAF 0.8223 0.9471 0.8308 0.7626 0.9105 0.9273 0.9102 0.9507 0.9590 0.7319 0.9112 0.9317
STRRED 0.7924 0.9014 0.7854 0.7181 0.8645 0.8827 0.8805 0.9270 0.9369 0.7585 0.8810 0.9040
SpEED 0.7804 0.8935 0.7810 0.7108 0.8530 0.8726 0.8666 0.9271 0.9295 0.7558 0.8831 0.9038
VQM 0.7856 0.9230 0.8091 0.7451 0.8766 0.8953 0.8872 0.9442 0.9522 0.7571 0.9131 0.9325
SSIM 0.8163 0.9291 0.8064 0.7270 0.8876 0.9053 0.8517 0.9386 0.9464 0.7561 0.9051 0.9187

MS-SSIM 0.8007 0.9175 0.7994 0.7074 0.8822 0.8978 0.8620 0.9159 0.9200 0.7377 0.8972 0.9165
VIFP 0.8001 0.9287 0.8113 0.7103 0.9068 0.9165 0.8674 0.9552 0.9572 0.7683 0.9222 0.9415
FSIM 0.8358 0.9550 0.8352 0.7664 0.9191 0.9346 0.8670 0.9543 0.9574 0.7674 0.9261 0.9415

GMSD 0.7850 0.9092 0.7905 0.7161 0.8662 0.8834 0.8105 0.9015 0.9106 0.7055 0.8574 0.8774

PLCC

VMAF 0.8233 0.9629 0.8507 0.7564 0.9257 0.9374 0.9277 0.9664 0.9752 0.7368 0.9247 0.9384
STRRED 0.7955 0.9179 0.8078 0.7263 0.8802 0.8868 0.8994 0.9456 0.9555 0.7533 0.8988 0.9149
SpEED 0.7834 0.9084 0.7990 0.7185 0.8696 0.8774 0.8855 0.9446 0.9490 0.7488 0.9017 0.9153
VQM 0.7867 0.9455 0.8348 0.7394 0.9026 0.9137 0.9164 0.9624 0.9685 0.7577 0.9275 0.9389
SSIM 0.8208 0.9490 0.8349 0.7306 0.9053 0.9147 0.8670 0.9586 0.9641 0.7529 0.9212 0.9281

MS-SSIM 0.8070 0.9391 0.8272 0.7137 0.9000 0.9078 0.8748 0.9445 0.9456 0.7406 0.9196 0.9303
VIFP 0.7942 0.9446 0.8298 0.7044 0.9201 0.9251 0.8875 0.9679 0.9715 0.7613 0.9335 0.9463
FSIM 0.8352 0.9690 0.8574 0.7615 0.9324 0.9426 0.8759 0.9683 0.9713 0.7620 0.9365 0.9458

GMSD 0.7901 0.9327 0.8178 0.7129 0.8875 0.8985 0.8495 0.9282 0.9338 0.7086 0.8829 0.8949

a testing subset with the remaining 20% of the A/V sequences.
All of the distorted A/V sequences arising from a same
original content were placed into the same subset to ensure
a complete content separation between training and testing
data. The training based models were trained on the training
subset, and tested on the testing subset. Models that were
not trained were tested on the same (20%) test subset. This
process was repeated over 1,000 random train-test divisions
when evaluating the Type 1, 2, and 3 models, as shown in
Tables III and IV. For Type 4 models (Table V), only 100 of
the 1,000 random splits were used because of the implied large
computation. The tables report the mean SRCC and PLCC
achieved by each model on the LIVE-SJTU A/V-QA Database
over all train-test splits. For the weighted product models of
Types 1, 2, and 3, we varied the weight from 0 to 1 using a
step increment of 0.05, found the weight that generated the
highest SRCC on the training set, then tested the model with
the optimal weight on the test set.

B. Evaluation of Type 1 Models
1) Performance Evaluation: We tested two variants of Type

1: Type 1(a) (product) and Type 2(b) (weighted product) mod-

els. A total of 9 (video models) × 6 (audio models) × 2 (prod-
uct forms) = 108 models were tested. To normalize the com-
ponent quality models, the following empirically determined
normalization functions were used: Q′VMAF = QVMAF/100,
Q′VQM = 1 − QVQM/1.01, Q′STRRED = 1 − QSTRRED/1500,
Q′SpEED = 1 − QSpEED/4600, Q′GMSD = 1 − QGMSD/0.25,
Q′PEAQ = 1+QPEAQ/3.5, Q′LLR = 1−(QLLR−1.1)/(1.5−1.1),
Q′SNR = QSNR/35, Q′segSNR = (QsegSNR + 1)/(30 + 1). Since
SSIM, MS-SSIM, VIFP, FSIM, STOI and VISQOL are already
bounded on [0, 1], no further normalization was required. The
performances of the tested Type 1 models are summarized
in the top half of Table III. Among the simple product
based models, the models defined as products between VQA
algorithms VMAF, VQM, and VIFP and the AQA algorithms
STOI, VISQOL, SNR, and segSNR yielded relatively good
performances. Among the weighted product models, the A/V-
QA performance differences obtained using different VQA
components narrowed, while the choice of AQA component
had increased impact. More particularly, choosing STOI, SNR,
or segSNR was advantageous. Moreover, most Type 1(b)
models were better than the Type 1(a) models, hence, relatively
weighting the AQA and VQA components was advantageous.
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Fig. 11. Performances of VQA models on overall A/V quality prediction.
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Fig. 12. Performances of AQA models on overall A/V quality prediction.

2) Analysis of Single-Mode Quality Models: From the
above performance analysis, it may be observed that the effec-
tiveness of the fused A/V quality models depends heavily on
the performances of each of the single-mode component mod-
els. Thus it is interesting to analyze the individual effectiveness
of each of the single-mode quality prediction components.
Hence, we evaluated the component VQA models on all videos
having the same audio distortion condition, e.g. 128 kbps,
32 kbps or 8 kbps of audio compression. We also evaluated
their effectiveness on the entire database. We evaluated the
component AQA models in a similar way. The distortion
conditions include CRF16, CRF35, CRF42, CRF50, CRF16S,
CRF35S, CRF42S, CRF50S, or the overall database. Here the
suffix ‘S’ indicates compression plus scaling distortion. All of
these distortion conditions were described earlier, in Section
II-A.

The model performances are illustrated in Figs. 11 and
12, from which we make some useful observations. Most of
the VQA models performed at very similar levels, and all of
them were able to predict A/V quality effectively when the
audio distortion level was fixed. Among the AQA models,
STOI, VISQOL, SNR, and segSNR were more effective, but
their effectiveness for A/V quality prediction when the video
distortion level was fixed was worse than that of the video
models just described. When testing on the entire database
(nothing held fixed), none of the single-mode measures were
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Fig. 13. Performance improvements introduced by replacing the weighted
product with a SVR (by comparing the performances of Type 1(b) and Type
2(a) models), and decomposing quality models into features during SVR
fusion (by comparing the performances of Type 2(a) and Type 2(b) models).

effective enough, but the video models were still better at
predicting A/V quality than the audio models (SRCC of about
0.7 vs. 0.5). This is likely true in part because the video
modality tend to dominate perceived A/V quality. Further,
current VQA models may be more well-developed than AQA
models.

C. Evaluation of Type 2 Models

1) Performance Evaluation: Two sub-types of this family
of models were tested: Type 2(a) quality score driven, Type
2(b) quality feature driven SVR fusion. A total of 9 (video
models) × 6 (audio models) × 2 (SVR forms) = 108
models were tested. For the Type 2 models, the normalization
process was left to the SVR. The performances of the Type
2 models are summarized in the bottom half of Table III.
The performances of the Type 2(a) models showed some
similarities to the Type 1(b) models: STOI, SNR, and segSNR
yielded advantageous performances, while the differences in
performance allowed by the different VQA models was small.
For Type 2(b) models, the performance differences between
different VQA models were also not large, but all of the AQA
models (except for LLR) were able to predict A/V quality
effectively when combined with VQA models.

2) Influences of SVR and Feature Decomposition: It is
also interesting to study whether replacing the weighted prod-
uct with SVR fusion is more effective, and also whether
decomposing the constituent AQA and/or VQA model into
quality-aware features during SVR fusion can contribute to
A/V quality prediction. The first and second questions can
be answered by comparing the performances of the Type
1(b) models against Type 2(a) models, and Type 2(a) models
against Type 2(b) models, respectively. We first calculated the
performance improvement (in percentage) afforded by each
combination model, then averaged it over all models of each
modality and over all evaluation criteria, finally arriving at
a measurement of the performance improvement obtained by
each single-mode quality model. The amount of improvement
obtained by each unimodal model is illustrated in Fig. 13.
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TABLE IV
PERFORMANCES OF TYPE 3 A/V QUALITY MODELS. THE TOP 3 MODELS OF EACH SUB-TYPE ARE IN BOLD

Criteria
Video Weighted Product SVM (quality score) SVM (quality feature)
Model SSIM1D MS-SSIM1D VIFP1D GMSM1D GMSD1D SSIM1D MS-SSIM1D VIFP1D GMSM1D GMSD1D SSIM1D MS-SSIM1D VIFP1D GMSM1D

SRCC

VMAF 0.9239 0.9285 0.9059 0.9439 0.9463 0.9408 0.9459 0.9447 0.9463 0.9483 0.9496 0.9555 0.9603 0.9482
STRRED 0.8815 0.8928 0.8810 0.9035 0.9048 0.8955 0.8985 0.8954 0.9029 0.9050 0.9275 0.9287 0.9284 0.9268
SpEED 0.8860 0.8881 0.8819 0.9033 0.9098 0.8869 0.8905 0.8882 0.8952 0.8980 0.9311 0.9292 0.9269 0.9355
VQM 0.9006 0.9052 0.8906 0.9160 0.9166 0.9119 0.9191 0.9173 0.9159 0.9203 0.9450 0.9481 0.9446 0.9507
SSIM 0.9077 0.8983 0.9002 0.9244 0.9301 0.9218 0.9252 0.9257 0.9318 0.9359 0.9371 0.9361 0.9367 0.9414

MS-SSIM 0.9030 0.8925 0.8943 0.9204 0.9228 0.9138 0.9168 0.9158 0.9247 0.9301 0.9210 0.9216 0.9199 0.9232
VIFP 0.9103 0.9096 0.8822 0.9386 0.9384 0.9262 0.9282 0.9265 0.9382 0.9427 0.9589 0.9608 0.9519 0.9589
FSIM 0.9196 0.9306 0.9102 0.9465 0.9541 0.9467 0.9511 0.9497 0.9530 0.9552 0.9555 0.9596 0.9540 0.9567

GMSD 0.8858 0.8895 0.8756 0.9109 0.9151 0.9012 0.9072 0.9061 0.9124 0.9183 0.8987 0.8911 0.9014 0.9065

PLCC

VMAF 0.9464 0.9528 0.9372 0.9534 0.9558 0.9566 0.9623 0.9600 0.9588 0.9594 0.9636 0.9678 0.9722 0.9593
STRRED 0.9110 0.9203 0.9133 0.9247 0.9205 0.9155 0.9162 0.9116 0.9177 0.9198 0.9439 0.9490 0.9473 0.9407
SpEED 0.9122 0.9173 0.9125 0.9251 0.9294 0.9079 0.9082 0.9046 0.9089 0.9118 0.9451 0.9469 0.9433 0.9461
VQM 0.9289 0.9348 0.9252 0.9308 0.9315 0.9374 0.9441 0.9401 0.9372 0.9392 0.9595 0.9645 0.9617 0.9613
SSIM 0.9353 0.9296 0.9311 0.9429 0.9430 0.9419 0.9453 0.9443 0.9459 0.9487 0.9547 0.9578 0.9563 0.9565

MS-SSIM 0.9306 0.9211 0.9275 0.9382 0.9360 0.9351 0.9375 0.9353 0.9389 0.9421 0.9438 0.9475 0.9442 0.9443
VIFP 0.9258 0.9266 0.9010 0.9458 0.9424 0.9409 0.9421 0.9396 0.9488 0.9507 0.9673 0.9707 0.9645 0.9665
FSIM 0.9485 0.9597 0.9487 0.9626 0.9662 0.9609 0.9661 0.9636 0.9645 0.9660 0.9652 0.9711 0.9673 0.9659

GMSD 0.9141 0.9186 0.9114 0.9275 0.9300 0.9263 0.9315 0.9282 0.9313 0.9334 0.9264 0.9241 0.9286 0.9259

The performance improvement gained by all models by
replacing the weighted product with an SVR was limited,
except for PEAQ, which suggests that the weighted prod-
uct is generally an effective fusion device. To make use
of the power of the learner, it may be more efficient to
decompose the component VQA and AQA models into their
constituent features, as appropriate. The efficacy of such a
feature decomposition is made evident by comparing the Type
2(a) and Type 2(b) models. A degree of improvement was
obtained in almost all cases. Among models which are not
easy to be decomposed, e.g. STOI, LLR, SNR, and segSNR,
the improvement was smaller. For models like PEAQ and
VISQOL, the improvements were larger.

D. Evaluation of Type 3 Models

1) Performance Evaluation: Type 3 models replace the
component AQA models with redimensioned and repurposed
VQA models. Here three fusion variants were tested: Type
3(a) weighted product, Type 3(b) quality score/SVR based,
and Type 3(c) quality feature/SVR based. A total of 9 (video
models) × (5+5+4) (audio models and fusion forms) =
126 models were tested. In the Type 3(c) models, GMSD1D
was taken as a feature of GMSM1D. Normalization for all
VQA models was conducted in the same way as for Type
1 models. Among the redimensioned VQA models being
used as AQA models, only GMSD1D requires normalization:
Q′GMSD1D

= 1 − QGMSD1D/0.4. The performances of the Type
3 models are summarized in Table IV. Most of these models
achieved SRCC or PLCC performances better than 0.9, while
the remaining models obtained performances very close to 0.9.
The performance differences of using different VQA models
were not large, though several models yielded slightly better
performances. For example, VMAF, FSIM, or VIFP fused
with MS-SSIM1D, GMSM1D, GMSD1D all performed better.
Among the fusion functions, Type 3(c) was better than Type

SR
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Fig. 14. Performances of the redimensioned VQA models repurposed as
AQA models on overall A/V quality prediction.

3(b), while Type 3(b) was better than Type 3(a), although the
performance differences were not large. Specifically, AVSSIM,
AVMSSSIM, AVIFP, AVGMSM, and AVGMSD were able to
achieve state-of-the-art performances, while AVMAF is one of
the best-performing models overall.

2) Comparison of Redimensioned and Repurposed 1D VQA
Models Against True AQA Models: The models in Tables
III and IV were evaluated under the same settings, thus the
performances in these two tables are directly comparable.
Comparing the Type 3(a), Type 3(b), and Type 3(c) models
against the Type 1(b), Type 2(a), and Type 2(b) models re-
spectively, highlights the successes of the Type 3 models. The
average performances of the Type 3 models were noticeably
better than those of Type 2 and Type 1 models. Among the
best performing models of each sub-type, the best-performing
Type 3 models were slightly better. Similar to Section IV-B2
and Fig. 12, we also evaluated the redimensioned single-
mode AQA models by fixing the video distortion conditions.
The resulting performance values are shown in Fig. 14. By
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TABLE V
PERFORMANCES OF TYPE 4 A/V QUALITY MODELS HAVING DIFFERENT

SETTINGS. THE BEST ONE IS IN BOLD

Final PCA 2×2048 features 4×2048 features 6×2048 features
Dimension SRCC PLCC SRCC PLCC SRCC PLCC

5 0.9186 0.9334 0.5710 0.6188 0.6179 0.6452
25 0.9490 0.9636 0.9345 0.9472 0.9536 0.9627

125 0.9298 0.9518 0.9156 0.9262 0.9334 0.9481

comparing Fig. 14 with Fig. 12, it may be observed that all
of the redimensioned 1D VQA models that were repurposed
as AQA models performed at a level comparable to the best
existing AQA models. This result is both remarkable and
provocative, given the relative simplicity and easy availability
of the VQA models used.

E. Evaluation of Type 4 Models

1) Performance Evaluation: The family of Type 4 models
are all frame based, meaning that feature extraction and fusion
are conducted at a frame level. During SVR training, we
labeled each frame with the MOS of the corresponding A/V
sequence, and used each frame as a training instance to enrich
the training data. During testing, we used the model to predict
single frame qualities, which were then averaged to predict the
video quality. Performances of the Type 4 models are listed
in Table V, where the best performance (in bold) denotes the
model using the final settings. We used only the first 100 of
the same 1,000 random splits that were used for the Type 1, 2,
and 3 models when training and testing the Type 4 models. By
comparing Table V with Tables III and IV, it may be observed
that the Type 4 model was comparable to the best-performing
Type 1, 2, and 3 models. Note that we only used the pretrained
DNN to extract content-aware quality features. The DNN was
not fine-tuned or retrained. Given significantly more subjective
data, it may be worthwhile to embark upon a larger scale study
using end-to-end or retrained DNNs.

2) Influences of PCA Dimension and Feature Settings: The
key settings of the Type 4 model include the PCA dimension
and the feature setting. The first one controls how many
dimensions of features are used following PCA dimension
reduction. We tested it three settings: 5, 25, and 125. The
feature setting dictates how many groups of features are input
to the PCA module. As described in Section III-D, four
groups of 2048-dimensional features were extracted from the
reference and distorted video and audio sequences by the
DNN. Two groups of features were derived by calculating
feature differences between the reference and distorted signals.
These six groups of features are all used by the Type 4 model.

We also test the Type 4 model under the two additional
settings: first, using the two groups of features that include
only feature differences, and second, using the four groups
of features that include only the raw DNN features extracted
from the reference and distorted signals. The performances of
the Type 4 models under all settings are summarized in Table
V, from which it may be observed that a moderately large
feature dimension is helpful to the model, as is preprocessing
of the raw features.

V. RECOMMENDATIONS ON PRACTICAL A/V-QA MODEL
USAGE AND DEPLOYMENT

From the evaluation results given above, we may observe
that regardless of which family of models is used, some of
the member A/V-QA models achieved accurate performances
(SRCC of 0.9+). This suggests that predicting overall A/V
quality is a problem that may be successfully addressed,
provided that accurate predictions of the corresponding video
and audio components can be obtained. It should be possible
to augment existing video quality prediction models that are
deployed in practical systems, by adding suitable audio quality
prediction models and multimodal quality fusion modules.

When deploying the proposed AV-QA models in practice,
one may need to choose the component AQA/VQA models
and the fusion schemes, that is, choosing one from all of
the proposed 4 families and hundreds of A/V-QA models.
For the component AQA models, we suggest using one of
the redimensioned VQA models which are repurposed as
AQA models, since any of the SSIM1D, MS-SSIM1D, VIFP1D,
GMSM1D, and GMSD1D can be efficiently combined with
the current VQA models and achieve the state-of-the-art
performances. With regards to the component VQA models,
from the experimental results we can observe that all of the
tested VQA models are pretty effective, and the performance
differences of using different VQA models are not large.

Among the fusion methods, product fusion has the advan-
tages of simplicity and easy interpretability, and it performed
well. A weight for the product improves performance, and the
final A/V-QA model is generally stable within certain ranges of
the weight. To achieve the best performance, it can be tuned
to a use case. Among the weighted product based models,
AVSSIM, AVMSSSIM, AVIFP, AVGMSM, and AVGMSD
are recommended, since the qualities of both modalities are
estimated using the same methodology. If performance is a
critical criterion, then quality feature based SVR fusion is
advisable. Specifically, AVMAF is a good choice, since VMAF
is a top VQA model, and they perform well together. AVMAF
is one of the best-performing A/V-QA models. The DNN
based A/V-QA approach is worth further study, although the
current model is somewhat heavy and does not yet give a
performance advantage. Likely, larger A/V subjective datasets
are needed.

VI. CONCLUSION

We conducted an in-depth exploration of the problem of
assessing the quality of A/V signals. Specifically, we con-
structed a sizable and unique resource: the LIVE-SJTU A/V-
QA Database, which includes several hundred A/V sequences
processed by distortions representative of those encountered
in the streaming space. A subjective A/V-QA study was then
conducted to obtain ground-truth quality ratings of all of
the distorted A/V sequences included in the database. The
collected subjective rating data suggest that while the video
modality is generally more important in forming subjective
impressions than the audio modality, audio quality is an
important contributor to overall QoE.
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We also designed four families of objective A/V quality
prediction models which fuse single-mode quality predictors
or quality-aware features. All four families of proposed A/V-
QA models delivered promising results on the LIVE-SJTU
A/V-QA Database. The fact that we were able to obtain good
prediction performances using fusion models ranging from
very simple to somewhat sophisticated, suggests that existing
video quality prediction systems for streaming control might
be easily and effectively augmented by fusion with audio
quality modules.
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