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ABSTRACT
Banding artifact, or false contouring, is a common video com-
pression impairment that tends to appear on large flat regions
in encoded videos. These staircase-shaped color bands can be
very noticeable in high-definition videos. Here we study this
artifact, and propose a new distortion-specific no-reference
video quality model for predicting banding artifacts, called
the Blind BANding Detector (BBAND index). BBAND is
inspired by human visual models. The proposed detector
can generate a pixel-wise banding visibility map and output
a banding severity score at both the frame and video levels.
Experimental results show that our proposed method out-
performs state-of-the-art banding detection algorithms and
delivers better consistency with subjective evaluations.

Index Terms— Video quality predictor, compression ar-
tifact, banding artifact, false contour, human visual model

1. INTRODUCTION

Banding/false contour remains one of the dominant artifacts
that plague the quality of high-definition (HD) videos, es-
pecially when viewed on high-resolution or Retina displays.
Yet, while significant research effort has been devoted to ana-
lyzing various specific compression related artifacts [1], such
as noise [2], blockiness [3], ringing [4], and blur [5], less
attention has been paid to analyzing banding/false contours.
Given the rapidly growing demand for HD/Ultra-HD videos,
the need to assess and mitigate banding artifacts is receiving
increased attention in both academia and industry.

Banding appears in large, smooth regions with small
gradients and presents as discrete, often staircased bands of
brightness or color as a result of quantization in video com-
pression. All popular video encoders, including H.264/AVC
[6], VP9 [7], and H.265/HEVC [8] can introduce these arti-
facts at lower or medium bitrate when coding contents con-
taining smooth areas. Fig. 1 shows an example of banding
artifacts exacerbated by transcoding. Traditional quality pre-
diction algorithms such as PSNR, SSIM [9], and VMAF [10],
however, do not align well with human perception of band-
ing [11]. The development of a highly reliable banding
detector for both original user-generated content (UGC) and
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(a) Original UGC (b) Transcoded/Re-encoded

Fig. 1: Banding artifacts exacerbated by transcoding/re-
encoding. (a) shows a frame sampled from an original UGC
video with less noticeable “noisy” banding edges, while VP9-
encoding exhibits more visible “clean” banding edges, as
shown in (b). The lower figures show contrast-enhanced
banding regions for better visualization.

transcoded/re-encoded videos, would, therefore, greatly as-
sist streaming platforms in developing measures to avoid
banding artifacts in streaming videos.

Related Work. There exists some prior study relating to
banding/false contour detection. Some methods [12–14] take
advantage of local features such as the gradient, contrast or
entropy to measure potential banding edge statistics. How-
ever, methods like these generally do not perform very well
when applied to assess the severity of banding edges in video
content. Another approach to banding detection is based on
pixel segmentation [11,15,16], where a bottom-up connected
component analysis is used to first detect uniform segments,
usually followed by a process of banding edge separation.
These methods are often sensitive to edge noise, though. We
do not include block-based processing, as in [17, 18], since it
is hard to classify blocks where banding and textures coexist.
If post-filtering is applied to these blocks, textures near the
banding may become over-smoothed.

Our objective is to design an adaptive blind processor
which can detect or enhance both “noisy” banding artifacts
that arise in original UGC videos, as well as “clean” band-
ing edges in transcoded videos. In this regard, it could be
utilized as a basis for the development of pre-processing and
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Fig. 2: Schematic overview of the first portion (Section 2.1-2.3) of the proposed BBAND model. The first row shows the
processing flow, while the second row depicts exemplar responses of each processing block.

post-processing debanding algorithms. More recent band-
ing detectors like the False Contour Detection and Removal
(FCDR) [14] and Wang’s method [11] are not designed for
this practical purpose, and hence it is essential to devote more
research to developing other adaptive banding predictors
applicable to pre- or post-debanding implementations.

In this paper we propose a new, “completely blind” [19]
banding model, dubbed the Blind BANding Artifact Detector
(BBAND index), by leveraging edge detection and a human
visual model. The proposed method operates on individual
frames to obtain a pixel-wise banding visibility map. It can
also produce no-reference perceptual quality predictions of
videos with banding artifacts. Details of our proposed band-
ing detector are given in Section 2, while evaluation results
are given in Section 3. Finally, Section 4 concludes the paper.

2. PROPOSED BANDING DETECTOR

A block diagram of the first portion of the proposed model,
which generates a pixel-wise banding visibility map (BVM),
is illustrated in Fig. 2. Based on our observation that banding
artifact appears as weak edges with small gradient (whether
“clean” or “noisy”), we build our banding detector (BBAND),
by exploiting existing edge detection techniques as well as
certain visual properties. A spatio-temporal visual impor-
tance pooling is then applied to the BVM, as shown in Fig.
3, yielding “completely blind” banding scores for both indi-
vidual frames and the entire video.

2.1. Pre-processing

We have observed that re-encoding videos at bitrates opti-
mized for streaming often exacerbates banding in videos that
already exhibit slight banding artifacts that may be barely vis-
ible, as shown in Fig. 1§. We thereby deployed self-guided fil-
tering [20], which is an effective edge-preserving smoothing
process, to enhance banding edges. We deemed the guided

§The exemplary frames used in this paper are from Music2Brain
(YouTube channel). Website: https://bigweb24.de. Used with permission.

to be a better choice than the bilateral filter [21], since it bet-
ter preserves gradient profile, which is a vital local feature
used in our proposed framework. Image gradients are then
calculated by applying a Sobel operator after pre-smoothing,
yielding a gradient feature map.

2.2. Banding Edge Extraction

Inspired by the efficacy of using the Canny edge detector [22]
to improve ringing region detection [23], we performed a sim-
ilar procedure to extract banding edges. After pre-filtering,
the pixels are classified into three classes depending on their
Sobel gradient profiles: pixels having Sobel gradient mag-
nitudes less than T1 are labeled as flat pixels; pixels with
gradient magnitudes exceeding T2 are marked as textures.
The remaining pixels are regarded as candidate banding pixels
(CBP), on which the following steps are implemented to cre-
ate a banding edge map (BEM). (We used (T1, T2) = (2, 12)).
1. Uniformity Check: Only the CBPs whose neighbors are ei-

ther flat pixels or CBPs are retained for further processing.
2. Edge Thinning: Non-maxima suppression [22] is applied

to each remaining CBP along its Sobel gradient orientation
to better localize the potential bands.

3. Gap Filling: If two candidate pixels are disjoint, but able
to be overlapped by a binary circular blob, the gap between
the two points is filled by a proper banding edge.

4. Edge Linking: All connected CBPs are linked together in
lists of sequential edge points. Each edge is either a curved
line or a loop.

5. Noise Removal: Linked edges shorter than a certain thresh-
old are discarded as visually insignificant.

6. Edge Labeling: The resulting connected banding edges are
labeled separately, defining the ultimate BEM.
The colored edge map in Fig. 2 shows a BEM extracted

from an input frame. The banding edges are well localized.

2.3. Banding Visibility Estimation

Staircase-like banding artifacts appear similar to Mach Bands
(Chevreul illusion), where perceived edge contrast is ex-
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Fig. 3: Flowchart of the second portion (Section 2.4) of the
proposed BBAND model, which produces banding scores on
both frames and whole videos.

aggerated by edge enhancement by the early visual sys-
tem [24]. Explanations of the illusion usually involve the
center-surround excitatory-inhibitory pooling responses of
retinal receptive fields [25]. Inspired by the psychovisual
findings in [26], we developed a local banding visibility esti-
mator based on edge contrast and perceptual masking effects.
The estimator processes the BEM and yields an element-wise
banding visibility map (BVM).

2.3.1. Basic Edge Feature

Banding artifact presents as visible edges. As described ear-
lier, we use the Sobel gradient magnitude as an edge visibility
feature. Since edge visibility is also affected by content, we
also model visual masking as it may affect the subjective per-
ception of banding.

2.3.2. Visual Masking

Visual masking is a phenomenon whereby the visibility of a
visual stimulus (target) is reduced by the presence of another
stimulus, called a mask. Well-known masking effects include
luminance and texture masking [23, 27]. Here we deploy a
simple but effective quantitative model of the effect of mask-
ing on banding edge visibility.
Local Statistics: At each detected banding pixel in the BEM,
compute local Gaussian-weighted mean and standard devia-
tion (“sigma field”) on the original un-preprocessed frame:

µ(i, j) =

K∑
k=−K

L∑
`=−L

wk,`I(i− k, j − `) (1)

σ(i, j) =

√√√√ K∑
k=−K

L∑
`=−L

wk,`[I(i−k, j−`)− µ(i, j)]2, (2)

where (i, j) are spatial indices at detected pixels in the BEM
with corresponding original pixel intensity I(i, j), and w =
{wk,`|k = −K, ...,K, ` = −L, ..., L} is a 2D isotropic Gaus-
sian weighting function. We use the µ(·) and σ(·) feature
maps to estimate the local background luminance and com-
plexity. The window size in our experiments was set as 9×9.

Luminance Masking: We define a luminance visibility trans-
fer function (VTF`) to express luminance masking as a func-
tion of the local background intensity. We have observed that
banding artifacts remain visible even in very dark areas, so
we only model the masking at very bright pixels. A final lu-
minance masking weight is computed at each pixel as

w`(i, j) =

{
1 µ(i, j) ≤ µ0

1− α(µ(i, j)− µ0)
β µ(i, j) > µ0,

(3)

where µ(i, j) is calculated using (1). (α, β) is a pair of con-
stants chosen to adjust the shape of the transfer function. We
used (α, β, µ0) = (1.6×10−5, 2, 81) in our implementations.
Texture Masking: We also define a texture visibility trans-
fer function (VTFt) to capture the effects of texture mask-
ing. The VTFt is defined to be inversely proportional to local
image activity [23] when an activity measure (mean “sigma
field”) rises above threshold λ0. The overall weighting func-
tion is formulated as

wt(i, j) =

{
1 λ(i, j) ≤ λ0
1/[1 + (λ(i, j)− λ0)]γ λ(i, j) > λ0,

(4)

and

λ(i, j) =
1

(2K+1)(2L+1)

K∑
k=−K

L∑
`=−L

σ(i− k, j − `), (5)

where σ(i, j) is given by Eq. (2), and γ is a parameter that
is used to tune the nonlinearity of VTFt. The values of
(γ, λ0) = (5, 0.32) were adopted after careful inspection.
Cardinality Masking: The authors of [11] have shown that
edge length is another useful banding visibility feature in a
subjective study. We accordingly define the following transfer
function which weights banding visibility by edge cardinality:

wc(i, j) =

{
0 |E(i, j)| ≤ c0
(|E(i, j)|/

√
MN)η |E(i, j)| > c0,

(6)

where E(i, j) = {E ∈ BEM|(i, j) ∈ E} is the set of banding
edges passing through location (i, j), and c0 is a threshold on
minimal noticeable edge length, above which banding edge
visibility is positively correlated to normalized edge length.
M and N denote the image height and width, respectively.
We used parameters (c0, η) = (16, 0.5) in our experiments.

2.3.3. Visibility Integration

The overall visibility of an artifact depends on the visual re-
sponse to it modulated by a concurrency of masking effects.
Here we use a simple but effective product model of fea-
ture integration at each computed banding pixel to obtain the
banding visibility map:

BVM(i, j) = w`(i, j) · wt(i, j) · wc(i, j) · |G(i, j)|, (7)

where w(·)’s are the responsive weighting parameters that
scale the measured edge strength (Sobel gradient magnitude)
|G(i, j)| at location (i, j).

2714

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 08,2020 at 04:46:54 UTC from IEEE Xplore.  Restrictions apply. 



(a) Baugh [16] (b) Wang [11]

90
+ Videos in subjective test— Fitted logistic curve f { x )

f ( x ) db 2(7

80

70

60
cn
O 50
§

40
+

+30
+

20

10
1 2 3 4 5 6 7

BBAD

(c) BBAND (proposed)

Fig. 4: Scatter plots and regression curves of (a) Baugh [16], (b) Wang [11], (c) BBAND, versus MOS on banding dataset [11].

Table 1: Performance comparison of blind banding models.

Metric SRCC KRCC PLCC RMSE
Baugh [16] 0.7739 0.6304 0.8037 9.7671
Wang [11] 0.8689 0.6788 0.8770 7.8863
BBAND 0.9330 0.8116 0.9578 4.7173

2.4. Making a Banding Metric

Previous authors [27–30] have studied the benefits of integrat-
ing visual importance pooling into objective quality model,
generally aligning with the idea that the overall perceived
quality of a video is dominated by those regions having the
poorest quality. In our model, we apply the worst p% per-
centile pooling to obtain an average banding score from the
extracted BVM, where p = 80 is employed in experiments.

Banding usually occurs in non-salient regions (e.g., back-
ground) while salient objects catch more of the viewer’s at-
tention. We thereby use the well-known spatial information
(SI) and temporal information (TI) to indicate possible spa-
tial and temporal distractors against banding visibility. SI is
computed as the standard deviation of the pixel-wise gradient
magnitude, while TI as the standard deviation of the absolute
frame differences on each frame [31]. These are then mapped
by an exponential transfer function to obtain weights:

wi(x) = exp (−aixbi), i ∈ {SI,TI}. (8)

Finally, we construct the frame-level BBAND index by
applying visual percentile pooling and SI weights to BVM:

QBBANDI (I) = wSI(SI)·
1

|Kp%|
∑

(i,j)∈Kp%

BVMI(i, j), (9)

where Kp% is the index set of the largest pth percentile non-
zero pixel-wise visibility values contained in the BVM of
frame I. We also obtain the video-level BBAND metric by
averaging all frame-level banding scores, weighted by per-
frame TI, respectively:

QBBANDV (V) =
1

N

∑N

n=1
wTI(TIn) ·QBBANDI (In). (10)

Fig. 3 shows the entire workflow of the BBAND indices.

3. SUBJECTIVE EVALUATION

Other implemented parameters in our proposed BBAND
model are (aSI, bSI, aTI, bTI) = (10−6, 3, 2.5 × 10−3, 2), re-
spectively, after empirical calibration, and we’ve found these
selected parameters generally perform well in most cases. We
evaluated the BBAND model against two recent banding met-
rics, Wang [11] and Baugh [16], on the only existing banding
dataset, created by Wang et al. [11]. It consists of six clips
of 720p@30fps videos with different levels of quantization
using VP9. The Spearman rank-order correlation coeffi-
cient (SRCC) and Kendall rank-order correlation coefficient
(KRCC) between predicted scores and mean opinion scores
(MOS) of subjects are directly reported for the evaluated
methods. We also calculated the Pearson linear correlation
coefficient (PLCC) and the corresponding root mean squared
error (RMSE) after fitting a logistic function between MOS
and predicted values [32]. Table 1 summarizes the experi-
mental results, and Fig. 4 plots the fitted logistic curves of
MOS versus the evaluated banding models. These results
have shown that the proposed BBAND metric yields highly
promising performance regarding subjective consistency.

4. CONCLUSION AND FUTURE WORK

We have presented a new no-reference video quality model
called the BBAND for assessing perceived banding artifacts
in high-quality or high-definition videos. The algorithm
involves robust detection of banding edges, a perception-
inspired estimator of banding visibility, and a model of
spatial-temporal visual importance pooling. Subjective eval-
uation shows that our proposed method correlates favorably
with human perception as compared to several existing band-
ing metrics. As a “completely blind” (opinion-unaware)
distortion-specific quality indicator, BBAND can be incorpo-
rated with other video quality measures as a tool to optimize
user-generated video processing pipelines for media stream-
ing platforms. Future work will include further improvements
of BBAND by integrating with more temporal cues, and its
applications to address such banding artifacts via debanding
pre-processing or post-filtering.
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ing,” in ACM Proc. 11th Eur. Conf. Visual Media Prod., 2014,
p. 7.

[17] X. Jin, S. Goto, and K. N. Ngan, “Composite model-based
dc dithering for suppressing contour artifacts in decompressed
video,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2110–
2121, 2011.

[18] Y. Wang, C. Abhayaratne, R. Weerakkody, and M. Mrak,
“Multi-scale dithering for contouring artefacts removal in com-
pressed uhd video sequences,” in Proc. IEEE Global Conf. Sig-
nal Inf. Process. (GlobalSIP), 2014, pp. 1014–1018.

[19] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a com-
pletely blind image quality analyzer,” IEEE Signal Process.
Lett., vol. 20, no. 3, pp. 209–212, 2012.

[20] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–
1409, 2012.

[21] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images.” in Proc. IEEE Int. Conf. on Computer Vision
(ICCV), vol. 98, no. 1, 1998, p. 2.

[22] J. Canny, “A computational approach to edge detection,” IEEE
Trans. Pattern Anal. Mach. Intell., no. 6, pp. 679–698, 1986.

[23] H. Liu, N. Klomp, and I. Heynderickx, “A perceptually rele-
vant approach to ringing region detection,” IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1414–1426, 2010.

[24] “Mach bands — Wikipedia, the free encyclopedia,” [Accessed
5-October-2019]. [Online]. Available: https://en.wikipedia.
org/wiki/Mach bands

[25] F. Ratliff, Mach bands: quantitative studies on neural net-
works. Holden-Day, San Francisco London Amsterdam,
1965, vol. 2.

[26] J. Ross, M. C. Morrone, and D. C. Burr, “The conditions under
which mach bands are visible,” Vision Research, vol. 29, no. 6,
pp. 699–715, 1989.

[27] C. Chen, M. Izadi, and A. Kokaram, “A perceptual quality met-
ric for videos distorted by spatially correlated noise,” in ACM
Multimedia Conf., 2016, pp. 1277–1285.

[28] D. Ghadiyaram, C. Chen, S. Inguva, and A. Kokaram, “A no-
reference video quality predictor for compression and scal-
ing artifacts,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
2017, pp. 3445–3449.

[29] A. K. Moorthy and A. C. Bovik, “Visual importance pooling
for image quality assessment,” IEEE J. Sel. Topics Signal Pro-
cess., vol. 3, no. 2, pp. 193–201, 2009.

[30] J. Park, K. Seshadrinathan, S. Lee, and A. C. Bovik, “Video
quality pooling adaptive to perceptual distortion severity,”
IEEE Trans. Image Process., vol. 22, no. 2, pp. 610–620, 2012.

[31] P. ITU-T RECOMMENDATION, “Subjective video quality as-
sessment methods for multimedia applications,” Int. Telecom.
Union, 1999.

[32] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical eval-
uation of recent full reference image quality assessment algo-
rithms,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 3440–
3451, 2006.

2716

Authorized licensed use limited to: University of Texas at Austin. Downloaded on December 08,2020 at 04:46:54 UTC from IEEE Xplore.  Restrictions apply. 


