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Abstract— Delivering voluminous amounts of video data 
through limited bandwidth channels is a challenge affecting 
billions of viewers. Accordingly, it is becoming more important to 
understand the perceptual effects that arise from various 
dimension reduction methodologies. Towards this direction, we 
propose a new video quality model that predicts the perceptual 
quality of videos undergoing varying levels of spatio-temporal 
subsampling and compression. The new model is established upon 
the natural statistics principle of videos, which leverage the fact 
that pristine videos obey statistical regularities that are disturbed 
by distortions. We found that there exist space-time paths between 
video frames that best preserve the statistical regularity inherent 
in the spatial structure of the video frames. The distribution 
features extracted from frame differences displaced in the 
direction of these paths correlate more highly with human 
subjective quality opinions than those from non-displaced frame 
differences. Given that non-displaced frame differences are widely 
utilized in video quality models, the improved efficiency of 
spatially and/or temporally displaced (possibly by more than one 
frame) frame differences, is an important finding that may 
significantly elevate the success of studies on temporal features 
and video quality.  

Keywords— Video quality, spatio-temporal resolution, video 
compression, natural video statistics, statistical regularity, displaced 
frame difference 

I. INTRODUCTION 

The media industry continuously progresses towards 
providing more realistic and immersive experiences by 
delivering contents having higher spatial resolution and frame 
rates. However, these expansions in video dimensions also 
dramatically increases the data volume. Consequently, the 
methods used to effectively compress and deliver video data 
through limited bandwidth channels are becoming more 
important. A common practice by content providers is to down-
sample and encode videos prior to transmission. However, these 
operations may degrade the perceptual quality of the delivered 
contents, hence it is therefore important to understand the trade-
off between data reduction amount and the perceptual effects of 
downscaling and compression.  

Relating to this issue, in [1-3] the authors conducted human 
studies on the mutual effects of spatial down-sampling and 

compression on the perceptual quality of videos. However, these 
studies did not incorporate the effects of temporal down-
sampling, which is a topic of recent interest. In [4-5], the authors 
focused on temporal resolution adaptation methods that reduce 
the frame rate if the contents do not perceptually benefit from a 
higher frame rate. However, these studies did not investigate 
into the combined effects of temporal down-sampling and 
compression. In [6], a spatio-temporal resolution adaptation 
method for video compression is proposed, but quality 
prediction and consequent decisions to down-sample are 
conducted separately on spatial and temporal resolution. These 
prior studies have helped us understand how each of spatial and 
temporal parameters affect the perceptual quality of videos. 
However, less work has been directed towards predicting the 
quality of videos when both spatial and temporal down-
sampling is applied in conjunction with compression.  

Here we propose a new video quality model that correlates 
highly with human subjective data collected on videos on which 
varying levels of spatio-temporal down-sampling and 
compression have been applied. The remainder of the paper is 
organized as follows. Recent findings on the natural statistics of 
space-time displaced frame differences are provided in Section 
2. The details of our proposed video quality model are provided 
in Section 3. The experimental results are provided in Section 4. 
Finally, conclusions are drawn in Section 5.  

 

II. ON THE SPACE-TIME STATISTICS OF VIDEOS 

Various studies have investigated the relationships that exist 
between the statistical properties of natural images and front-end 
processing in the visual system [7-12]. Modifications of these 
natural scene statistics models have been used with great success 
for image and video quality prediction [13-19]. The most widely 
accepted models involve bandpass decomposition similar to  
decorrelating processes that occur in the retina and area V1, 
followed by divisive normalization, which accounts for 
nonlinear gain control in retino-cortical neurons. These 
processes shape the distributions of the responses to be 
statistically regular. Image quality prediction models assume a 
statistical regular distribution on the pristine image, that can be 
used to discriminate them from a distorted image. Moreover, 
they can be effectively used to predict the quality of distorted 
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images by measuring statistical deviations of the distorted image 
with respect to the pristine model. These statistical models have 
evolved to include videos principally, exploiting the statistical 
regularity of simple frame differences [18, 19]. 

Here we broaden and deepen modeling of frame difference 
statistics by introducing the use of both spatial and temporal 
(possibly more than one frame) displacements between frames 
before differencing them. This is similar, of course, to the 
concept of motion compensation, but with a different aim of 
finding space-time paths having optimal statistical regularity. 
We show that displaced frame differences can be used to create 
video quality prediction models that correlate more highly 
against human subjective data. This concept also relates to 
recent perceptual theories of very small eye movements, called 
microsaccades. When viewing a scene, the eyes do not remain 
still, but instead engage in movements such as smooth pursuit, 
saccades, and microsaccades [20, 21]. It is theorized that 
microsaccades may enhance the process of achieving efficient 
visual encoding in the brain. Moreover, visual signals received 
from the retina in visual cortex are subjected to processes of 
temporal lag filtering [22], which equates to smoothed temporal 
differencing which contributes to reduced information 
redundancy and improved encoding of visual signals. Likewise, 
differencing of frames that are relatively spatially and/or 
temporally displaced can achieve similar goals of space-time 
redundancy reduction.  

Fig. 1 shows plots of the distribution of frame differences 
displaced along various space-time displacement trajectories as 
compared to spatially band-passed coefficients. We used videos 
from HD1K optical flow database [23], which provides ground-
truth optical flow vectors. We first collected the frame patches 
along motion, non-displaced, and random trajectories. Then we 
applied spatial bandpass and divisive normalization by 
computing mean-subtracted contrast normalized (MSCN) [16] 
coefficients on the collected patch volume. The distribution 
plots of these divisively normalized spatial band-passed signals 
are depicted as blue curves in Figs. 1(a)-1(c). As the natural 
image statistics model suggests, the distributions of spatial 
bandpass coefficients form statistically regular distributions 
over all trajectories, when divisively normalized. We then 
investigated the distributions of displaced frame differences by 
first collecting frame-differenced patches along motion, non-
displaced, and random trajectories. We applied divisive 
normalization on the collected frame difference patch volumes, 
similar to the spatial bandpass case. The distribution plots of 
these divisively normalized displaced frame differences are 
depicted as red curves in Figs. 1(a)-1(c). As shown in the figure, 
applying different space-time displacement paths reveals that 
there are inherent statistical regularities in frame difference 
signals that are aligned along motion directions [26]. Also, we 
see that the distribution of frame difference displaced along 
motion direction yield the lowest values of the Kullback Leibler 
Divergence (KLD) with respect to the statistically regular, 
spatially band-passed coefficients. 

 Motivated by these observations, we devised a method to 
determine appropriate displacement paths that capture the 
inherent statistical regularity of spatially displaced and 
temporally displaced (possibly more than one frame) videos. We 
used displaced frame differences to extract distribution features 

from both pristine and distorted videos, and utilized them to 
construct a full reference (FR) video quality model. As the 
space-time path of maximum regularity is also related to the 
motion of the video, we expect these features to capture richer 
information descriptive of losses of regularity, and hence, 
changes in perceived video quality.  

 

III. PROPOSED VIDEO QUALITY METRIC 

An overall flowchart of our new video quality model is  
shown in Fig. 2. The proposed method first analyzes the initial 
portion of the reference video, then determines the proper  
displacement vector to be applied in the frame differencing 
procedure. The displacement vector refers to the local space-
time displacement path that best preserves statistical regularity. 
We have demonstrated that such a path is strongly predictive of 
the motion direction. These displacement vectors are re-
computed every second by analyzing the initial portion 
(200msec) of each segment. Once the displacement vector is 
decided, then the resulting vector, along with the frames from 
the reference and distorted videos, are delivered to the next 
processing modules, where displaced frame difference are 
computed followed by divisive normalization. Then, the 
statistical feature extraction module analyzes the processed 
frame difference signals to measure statistical discrepancies 
between the reference and distorted videos, ultimately extracting 

 

Fig. 1. Comparison of distributions between spatially band-passed 
coefficients and spatially displaced frame differences displaced along 
various space-time trajectories (motion, non-displaced, and random), which 
have been subjected to divisive normalization. 

35

2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 06,2021 at 23:58:03 UTC from IEEE Xplore.  Restrictions apply. 



multiple quality-predictive features that are combined using 
support vector regression. 

A. Space-Time Displaced Frame Difference  

Unlike older Video Quality Assessment (VQA) models that 
compute optical flow [24, 25] our model does not compute 
motion vectors, but instead finds space-time paths of maximal 
statistical regularity. The first step forwards determining the best 
spatial and/or temporal  displacement between frames is to 
quantify the degree of resulting statistical regularity. This is 
accomplished by analyzing the distributions of coefficients 
obtained by taking between-frame differences of pristine video 
frames that are relatively displaced followed by a divisive 
normalization operation. Fig. 3 depicts the processes of 
constructing a statistical regularity map that is used to determine 
the optimal displacement vector. As we have stated already, the 
statistically regular displacement path is the one that yields the 
lowest KLD with respect to the distribution of divisively 
normalized, spatially band-passed signals. We use this to 
construct a statistical regularity map that contains information 
regarding how well the displaced frame differences preserve the 
statistical regularity inherent in spatial structures for diverse 
displacements. The left side of Fig. 3 depicts an example of a 
statistical regularity map, where the dark blue regions indicate 
locations where the KLD value is low. The optimal 
displacement path that best preserves statistical regularity is 
determined by taking the average of those displacement vectors 
yielding KLD values less than 95% (the lowest 5th percentile) of 
the values in the map. The displacement vector is then used to 
compute displaced frame differences from the reference and the 
distorted video.    

B. Statistical Features  

The displaced frame difference computed from the reference 
and distorted videos are subject to a divisive normalization 
procedure motivated by the well-known Gaussian Scale Mixture 
(GSM) image model as follows [18, 19]. Partition the plane of 
coefficients into non-overlapping patches indexed by � ∈

{1,2, … , ��}. Then the coefficients ��� of the �th patch in sub-
band � can be modeled as 

 
��� = ������, (1) 

where ��� is a random scalar variable that is independent of the 
random field ���, which is distributed as ���~�(0, ��), with 
covariance matrix ��. Estimate the scalar  ��� = �̂�� for each 
patch using the Maximum Likelihood (ML) procedure: 

�̂�� = argmax���
�(���|���) = �

���
� ��

�����

�
, (2) 

where � is the number of coefficients within each patch, and 
normalize the frame difference coefficients of each patch by the 

respective estimates �̂��, whence N�� =
���

�̂��
~�(0, ��). The 

aggregated divisively normalized coefficients N��  over all 
patches is expected to follow a statistically regular distribution 
for pristine videos. We quantify how much the distribution of 
the pristine video is affected by distortion using two kinds of 
statistical features.  

 The first is an entropic difference feature. The feature 
measures distortions by computing the information difference 
between the divisive normalization factors of the reference and 
distorted videos. The entropic difference (ED) is formulated as,  

�� = � |���ℎ(���
� |��� = �̂��) − ���ℎ(���

� |��� = �̂��)|,

�

���

(3) 

where  �
�

= log(1 + ��
2) , and ℎ(��

� |�� = ��) ~ 
�

�
log ((2��)�|��

���|) . 
The subscripts � = �� and � = �� refer to the �th patch of the 
reference and distorted videos, respectively. We interpret the 
entropic difference as a feature that compares the information 
content inherent in the divisive normalization factors.  

The second is the shape parameter of the Generalized 
Gaussian Distribution (GGD). The divisively normalized 

 

Fig. 2. Flowchart of the proposed video quality model. 
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bandpass frame difference coefficients are modeled using the 
GGD as  

�(�; �, ��) =
�

2�Γ �
1
�

�
exp �− �

|�|

�
�

�

� , (4) 

where � = ��
�(

�

�
)

��
�

�
�
, Γ(�) = ∫ ���������

�

�
,  � > 0 is the gamma 

function, � is the shape parameter, and �� is the variance. The 
shape parameters of the reference (��) and the distorted (��) 
videos are compared by taking the absolute difference  

�� = |�� − ��|. (5) 

We interpret the meaning of the GGD shape difference as a 
feature that captures the differences in shape of the regular 
distributions generated by the aforementioned divisive 
normalization factors. 

C. Final set of features 

The statistical feature extraction module outputs the 
aforementioned two features (ED and SD) from a set (reference 
and distorted) of input planes. We have a total of four sets of 
input planes denoted 

 ��: The ��� spatial frame, 

 �(��, �����
, �) : Frame difference with temporal 

separation ��, and displacement vector �, 

 �(��, �����
, �) : Frame difference with temporal 

separation ��, and displacement vector �, 

 �(��, �����
, �) : Frame difference with temporal 

separation ��, and displacement vector �, 

where �  refers to the spatial vector determined from the 
displacement determination module. The indices �, ��, and �� 
refer to frame difference separations of one or more frames, 
chosen to correspond to micro-saccadic eye movements of  
durations less than 200ms [20, 21]. In addition, we also consider 

the aforementioned input planes at half resolution as well, to 
allow for the multiscale computations. Therefore, we have a 
total of 8 sets of input planes, and consequently, a total of 16 
features which are combined by the support vector regression 
(SVR). 

The nomenclature used for the final set of features follows 
the form of (Plane type)_(Feature type)_(Resolution type), 
where 

 Plane type: spatial frame (S), or frame difference plane 
with varying temporal separation (T1, T2, and T3), 

 Feature type: Entropic difference (ED) or GGD shape 
parameter difference (SD), 

 Resolution type: Full resolution (band1) or half 
resolution (band2). 

 

IV. EXPERIMENT RESULT 

To evaluate the prediction performance of our features and 
the final video quality model, we constructed a large scale video 
database that contains the human subjective quality scores on 
videos subjected to various levels of spatio-temporal distortions 
and compressions. The database was constructed from 15 source 
contents of 4K 10 bit format, of which five contents were 120Hz 
and ten contents were 60Hz. The distortion types that are applied 
to the videos are: 

 Spatial down-sampling: 4K(orig)  1080p/720p/540p 

 Temporal down-sampling: Full (120/60 Hz)  Half 
(60/30Hz) 

 Compression: HEVC (x265) compression, 3~4 QP 
points so that the spatio-temporal subsampled video falls 
into one of several bitrate categories, visually chosen to 
be generally perceptually distinguishable  

 The aforementioned distortion types were jointly applied to 
the source videos. As a result we generated a total of 437 
distorted videos, of which 227 are full frame rate with spatial 

 

Fig. 3. Processing flow when constructing a statistical regularity map, which we use to determine the displacement vector. 
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down-sampling and compression applied, and 210 videos are 
half frame rate videos with spatio-temporal down-sampling and 
compression applied. The ACR-HR (ACR with Hidden 
Reference removal) method was used as the subjective protocol, 
and total of 34 participants rated the videos. We will be making 
this video database and the detailed reports public soon. 

Table 1 shows the prediction performances of the temporal 
models/features that utilize simple, non-displaced and displaced  
frame differences. T-RRED [18] and T-SpEED [19] compute 
entropic differences on non-displaced frame difference, while 
our proposed temporal features compute entropic differences on 
spatio-temporally displaced frame difference. As may be seen 
from the results, the prediction performance of the proposed 
model increased as compared to T-RRED and T-SpEED. This 
indicates that the statistical information contained within the 
frame differences displaced in the motion direction better 
predicts perceptual quality than do simple non-displaced frame 
differences. 

Table 2 and Fig. 4 present comprehensive performance 
comparisons of our proposed model against other high-
performing models such as VIF [13], spatio-temporal RRED 
[18], SpEED [19], and VMAF [27]. Our proposed video quality 
model uses just 16 features, which were used to train a SVR with 
radial basis function (RBF). The SVR-RBF parameters were 
determined using cross validation within the trainset, as 
presented in [28]. Our database consists of videos afflicted by 
various type of distortions applied on the same source content. 
Therefore, special care must be taken to separate the train/test 
sets ‘content-wise.’ This means that the train/test sets do not 
share videos having the same source contents. For performance 
evaluation, we used 5-fold cross validation. Since our database 
consists of 15 source contents, this means that the SVR model 
was trained using videos from 12 source contents and tested on 

the videos from the other 3 source contents. We ran 1000 
train/test iterations, where the train/test sets were randomly split 
over each iteration while abiding by the content-wise separation.  

The results in Table 2 show the medians and standard 
deviations of prediction performance across the 1000 train/test 
splits. For fair comparison, we also measured the performances 
of the other models on the same splits. As seen in the results, our 
proposed model was able to out-perform the other ones in most 
cases.  

A tendency we see is that, for most models, the full frame 
rate results are higher than the half frame rate results. The full 

TABLE Ⅰ.  PREDICTION PERFORMANCE OF TEMPORAL MODELS/FEATURES BASED ON ENTROPIC DIFFERENCE COMPUTATION. 

 Model/Feature 
Full frame rate Half frame rate 

Overall  
(full + half frame rate) 

SRCC PLCC SRCC PLCC SRCC PLCC 

Utilizing non-displaced 
frame differences 

T-RRED 0.697 0.672 0.213 0.128 0.393 0.229 

T-SpEED 0.773 0.715 0.201 0.102 0.397 0.175 
Proposed, 

utilizing space-time 
displaced frame 

differences  

T1_ED_band1 0.868 0.854 0.336 0.323 0.515 0.441 

T2_ED_band1 0.874 0.860 0.337 0.325 0.523 0.446 

T3_ED_band1 0.877 0.860 0.331 0.320 0.524 0.445 
 

TABLE Ⅱ. PREDICTION PERFORMANCE RESULTS FOR 5-FOLD CROSS VALIDATION ON 1000 ITERATIONS.  

 
Full frame rate Half frame rate Overall (full + half frame rate) 

SRCC PLCC SRCC PLCC SRCC PLCC 
PSNR 0.67±0.15 0.64±0.15 0.50±0.18 0.38±0.21 0.51±0.13 0.46±0.15 

MSSSIM 0.75±0.14 0.70±0.14 0.47±0.18 0.31±0.21 0.53±0.13 0.38±0.19 
S-RRED 0.85±0.08 0.84±0.10 0.54±0.20 0.42±0.24 0.63±0.14 0.55±0.18 
T-RRED 0.80±0.13 0.77±0.14 0.40±0.18 0.20±0.16 0.47±0.11 0.28±0.14 

ST-RRED 0.83±0.11 0.73±0.15 0.49±0.19 0.26±0.22 0.53±0.14 0.27±0.20 
S-SpEED 0.89±0.07 0.89±0.07 0.52±0.18 0.41±0.22 0.58±0.13 0.50±0.16 
T-SpEED 0.84±0.09 0.81±0.12 0.40±0.18 0.17±0.15 0.43±0.11 0.21±0.13 
SpEED 0.87±0.08 0.77±0.14 0.43±0.18 0.25±0.19 0.49±0.12 0.21±0.17 

VIF 0.76±0.12 0.73±0.13 0.53±0.18 0.44±0.24 0.60±0.13 0.53±0.17 
VMAF 0.78±0.16 0.76±0.15 0.62±0.20 0.59±0.23 0.67±0.16 0.66±0.17 

Proposed 0.87±0.08 0.88±0.08 0.65±0.16 0.64±0.17 0.75±0.11 0.73±0.10 
 

 

Fig. 4. Box plots of SRCC and PLCC for all videos over 1000 iterations of 
random train-test splits. For each box, the center line indicates the median, 
the edges of the box represent the 25th and 75th percentiles, and outliers are 
indicated by red circles. 

38

2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS)

Authorized licensed use limited to: University of Texas at Austin. Downloaded on February 06,2021 at 23:58:03 UTC from IEEE Xplore.  Restrictions apply. 



frame rate results are computed from the subset of the database 
containing only compression and spatial down-sampling 
distortions. Most of the models can cope with mixtures of the 
two distortions. S-SpEED delivered very high performance 
when only considering the full frame rate case, where it slightly 
outperformed the proposed method. However, we see that the 
performances of most of the models fall considerably when 
temporal down-sampling is introduced as a distortion type. Most 
of the models either consider distortions at a frame level or 
utilize simple frame differences, but apparently, these features 
are inadequate to capture the perceptual losses of temporal 
down-sampling. Among the various models, VMAF achieved 
relatively high performance overall and on the half frame rate 
case, but its performance was not very high on the full frame rate 
case. Our proposed model, which utilizes the statistical 
information derived from spatially and temporally displaced 
frame differences (optimized to maximize space-time statistical 
regularity), yielded the best prediction performance overall, by 
a wide margin. 

V. CONCLUSION 

We have presented our findings on the usefulness of the 
space-time natural statistics of videos for quality prediction. By 
finding space-time displacement paths between frames that best 
preserve statistical regularities inherent in videos, we derive 
features from the optimally displaced frame differences which 
better correlate with human percepts of quality. We used these 
features to create a new video quality model that can account for 
the joint perceptual effects of spatio-temporal subsampling and 
compression. The findings from this study may be fruitfully 
utilized to assist optimal space-time resolution adaptation 
strategies for perceptual video coding. 
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