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Predicting the Quality of Images Compressed after
Distortion in Two Steps

Xiangxu Yu, Christos G. Bampis, Praful Gupta and Alan C. Bovik

Abstract—In a typical communication pipeline, images
undergo a series of processing steps that can cause visual
distortions before being viewed. Given a high quality reference
image, a reference (R) image quality assessment (IQA) algorithm
can be applied after compression or transmission. However, the
assumption of a high quality reference image is often not fulfilled
in practice, thus contributing to less accurate quality predictions
when using stand-alone R IQA models. This is particularly
common on social media, where hundreds of billions of user-
generated photos and videos containing diverse, mixed distortions
are uploaded, compressed, and shared annually on sites like
Facebook, YouTube, and Snapchat. The qualities of the pictures
that are uploaded to these sites vary over a very wide range.
While this is an extremely common situation, the problem of
assessing the qualities of compressed images against their pre-
compressed, but often severely distorted (reference) pictures
has been little studied. Towards ameliorating this problem, we
propose a novel two-step image quality prediction concept that
combines NR with R quality measurements. Applying a first
stage of NR IQA to determine the possibly degraded quality
of the source image yields information that can be used to
quality-modulate the R prediction to improve its accuracy. We
devise a simple and efficient weighted product model of R and
NR stages, which combines a pre-compression NR measurement
with a post-compression R measurement. This first-of-a-kind
two-step approach produces more reliable objective prediction
scores. We also constructed a new, first-of-a-kind dedicated
database specialized for the design and testing of two-step
IQA models. Using this new resource, we show that two-
step approaches yield outstanding performance when applied
to compressed images whose original, pre-compression quality
covers a wide range of realistic distortion types and severities.
The two-step concept is versatile as it can use any desired
R and NR components. We are making the source code of
a particularly efficient model that we call 2stepQA publicly
available at https://github.com/xiangxuyu/2stepQA . We are also
providing the dedicated new two-step database free of charge at
http://live.ece.utexas.edu/research/twostep/index.html .

Index Terms—Image quality assessment, two-step, reference-
no-reference, low quality reference image

I. INTRODUCTION

GLOBAL mobile data traffic grew 63 percent in 2016,
while mobile data traffic has grown 18-fold over the past

5 years [1]. Mobile image and video traffic comprises most
of the overall mobile data that is transmitted. Online service
providers like Facebook, Instagram, Netflix and YouTube
generate, store, and transmit enormous quantities of visual
content every day. At the same time, users increasingly expect
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higher quality visual data, which poses significant challenges
to providers seeking to optimize the visual quality of their
content under increasingly difficult bandwidth conditions.

The digital pictures captured by inexpert consumers are
particularly prone to a wide variety of distortions during the
capture process, before they are compressed. This makes it
much more difficult to predict the perceptual quality of the
pictures following compression. The innovation we make here
is to devise ways of assessing the quality of the ultimately
compressed pictures, while also accounting for their innate,
pre-compressed state of imperfect perceptual quality.

Generally speaking, objective image quality assessment
(IQA) algorithms can be classified into three broad categories,
according to whether a reference image is available. Full-
reference IQA algorithms require access to a complete
reference image, while reduced-reference IQA algorithms
require less information derived from a reference image. Since
we will use them in the same way, here we will collectively
refer to both of these simply as reference (R) models. If no
reference image is available, then no-reference (NR) or ‘blind’
IQA algorithms must be used.

Given high quality reference data, R IQA models are
available that yield excellent predictions of human quality
judgments. Successful R models include SSIM [2], MS-SSIM
[3], VIF [4], FSIM [5], VSI [6] and RRED [7]. However, high
quality reference data is often not available. Indeed, a highly
practical area of inquiry that has remained little studied is
the design of R IQA models that account for the possibly
inferior quality of a reference image to produce better quality
predictions.

There are many common types of distortions that can
occur before compression, such as film grain, blur, over/under-
exposure and up-scaling, which can combine to degrade the
quality of a captured image. These kinds of authentic, ‘in-
capture’ artifacts are often a problem for inexpert, amateur
photographers who may have unsteady hands or utilize
improper lighting. These inferior quality images are then
compressed, introducing further distortion. This scenario is
very common, as for example on the hundreds of billions
of social media images, often of imperfect quality, that are
annually uploaded onto social media and subsequentially
compressed (or re-compressed). These processes could greatly
benefit by the introduction of perceptual compression control
mechanisms that account for the intrinsic quality of each image
before it is compressed.

Our problem here is different from the previously-studied
multi-distortion R IQA problem, where a high quality
reference image is perceptually compared against a multiply-
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distorted version of it. Generally, when predicting, and often
adjusting the quality of images to be compressed, an R
IQA model is often applied, but it may not deliver accurate
compressed quality predictions because of the imperfect
reference. While an NR IQA algorithm could be applied
directly on the distorted image, NR models remain limited in
their efficacy, and there is still value in making the reference
comparison.

Alternately, we may attempt to combine R and NR models
to improve prediction performance. Our concept involves two
steps. First, a NR model is applied to ascertain the innate
degree of distortion of the source image. To assess or guide
the overall quality following compression, an R model is then
applied as a second step to measure the deviation between
the source image and the compressed image, while also
accounting for the NR quality measurement. In this way, the
collective commingled effects of both compression and in-
capture artifacts may be predicted, leading to more accurate
and robust results.

Current public image quality databases, such as LIVE
[8], TID2013 [9], and CSIQ [10], only contain high quality
reference images. Therefore, to be able to develop and
test two-step models, we have also created a new database
containing source images distorted by a wide variety of
mixtures of authentic distortions of diverse quality levels,
along with various compressed versions of each.

The rest of the paper is organized as follows. Section II
briefly discusses relevant progress on the IQA problem and
work related to the two-step concept. Section III describes the
new two-step IQA approach in detail. Section IV describes the
new subjective image database, while Section V discusses the
experiments conducted on it. Section VI concludes the paper
with ideas for future work.

II. RELATED WORK

A wide variety of generally effective R IQA models are
available.

These include SSIM, VIF, MAD [11], FSIM, VSI and many
others [12]–[14]. SSIM is a benchmark among modern R IQA
models, and has many variations, including MS-SSIM and IW-
SSIM [15]. VIF measures information extracted from both a
reference image and a distorted image, a concept also used in
the suite of RRED models.

MAD is based on the argument that multiple strategies
should be used to assess image quality. FSIM modifies SSIM
using two features, local phase congruency and gradient
magnitude. The authors of [16] show that a combination of
different R models can lead to improved performance, but
this approach does not in any way address the problem of
an imperfect reference image.

Most early NR IQA models assumed images to be distorted
by a particular type of distortion. However, we are more
interested in more powerful generalized models, which usually
rely on natural image statistic (NSS) models [17] that
are sensitive to diverse distortions, since broad application
scenarios (such as social media sharing) involve pictures
afflicted by diverse, complex, and commingled impairments
prior to compression. General-purpose NR IQA models

include DIIVINE [18], BLIINDS-II [19], BRISQUE [20],
among others [21]–[24]. Among these, NIQE [25] is a
‘completely blind’, unsupervised IQA model that is also based
on NSS but does not require any training process. In [26]–
[28], the authors propose a new concept of a ‘pseudo reference
image (PRI)’, and develop a PRI-based blind IQA framework.
CORNIA [29] is a data-driven method which constructs a
codebook via K-means clustering to generate features, then
uses a Support Vector Regression to estimate quality. There are
also a variety of NR IQA algorithms based on deep learning,
such as PQR [30], DLIQA [31], RankIQA [32] and methods
described in [33]–[35].

There is prior work related to, but different from the two-
step concept. For example, some authors have proposed using
both R and NR models within a same system, although not
in direct combination. The authors of [36] apply both R and
NR video quality assessment models to predict the quality of
encoded videos after transmission. An R method is employed
to measure the transmission loss, while an NR model is used
to capture degradation from encoding at a reference node.
However, the compared source video is still assumed to be
of undistorted high quality.

Our proposed models are the first attempt to apply a
two-step NR-then-R IQA approach to address the problem
of predicting the quality compressed images when only an
imperfect reference is available. This concept is of great
consequence in social media (and digital camera) applications,
where it is desirable to be able to accurately control the
perceptual quality of the encodes that are generated before
sharing. Thus far, there has been very little attention directed
forwards this different problem. The two-step approach that
we take here utilizes a simple product combination of R and
NR IQA models. However, it delivers performance that is not
exceeded by using more complicated NR-R combinations, and
which significantly exceeds the performance of stand-alone R
models.

In [37], the authors consider images undergoing multiple
distortion stages, and point out that in such cases IQA
performance on a current stage could be improved by
propagating quality levels from previous stages. While they
note that distorted images may be used as references, they
do not propose an NR-R combination to handle them. The
authors of [38] note the problems associated with a ‘corrupted
reference,’ and take the different approach of modifying full-
reference algorithms like SSIM and VIF to deal with imperfect
references.

Regarding related subjective databases, the authors of [37]
also introduced two new databases including a large number
of images afflicted by multiple stages of distortions. However,
they did not conduct a human study to obtain subjective
scores, relying instead on MS-SSIM scores as proxies. The
LIVE Multiply Distorted Database [39] contains images with
two distortion stages and subjective scores, but the reference
images are of high quality. Because of the lack of any
subjective database containing low quality reference, we took
the effort of developing one for public use, as described in
Section IV.
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III. TWO-STEP IQA MODEL

Reference IQA models assume of the availability of a
reference image of high quality, and operate by predicting
the quality of a distorted image by making a perceptual
comparison of it with a reference image. Thus, a reference
IQA model is actually a perceptual fidelity measure [4]. In
other words, R IQA models only provide relative image quality
scores.

Given a pristine image of high quality, such as the image in
Figure 1(a), a reference IQA model (e.g., MS-SSIM) can be
used to assess the quality of a JPEG compressed version of
it (Figure 1(b)) by measuring perceptual fidelity deviations
between the images in Figures 1(a) and 1(b). But if the
quality of the reference is degraded, as in Figure 1(c), then
reference IQA models become unreliable. We illustrate such
a scenario in the following. The ‘reference’ images in Figures
1(a) and 1(c) are displayed with their associated subjective
Mean Opinion Scores (MOS), which are available since these
images were drawn from the LIVE In the Wild Challenge IQA
database [40]. Figures 1(b) and Figure 1(d) are compressed
versions of these same respective reference images with
both associated MOS and Difference Mean Opinion Scores
(DMOS), as well as MS-SSIM scores. These images are part of
the new subjective database described in Section IV, and have
both types of subjective annotations. In Figure 1, the MS-SSIM
values are in monotonic agreement with DMOS (increasing
MS-SSIM corresponding to decreasing DMOS), indicating
that the image in Figure 1(d) is of superior quality to the one
in Figure 1(b). However, the MS-SSIM score and MOS have
a reverse relationship (increasing MS-SSIM corresponding to
decreasing MOS). Indeed, the MOS values strongly indicate
that the perceptual quality of the image in Figure 1(d) is worse
than that of the image in Figure 1(b). In this case, DMOS does
not accurately indicate the level of subjective quality, which is
indicative of situations where reference IQA models may fail
to accurately predict the quality of compressed images.

While one might consider simply using an NR IQA model
to directly predict the absolute quality of the distorted-
then-compressed images, this is currently not an acceptable
alternative. While much progress has been made on NR IQA
model design, even the best algorithms cannot yet deliver
the performance needed in demanding consumer applications
[34], [35], [40]. Rather than setting aside the valuable
information contained in an imperfect reference image, it is
a far better option to attempt to account for the a priori
quality of the reference, and how it impacts the reference
measurement. Towards this end, we introduce a combined two-
step NR-then-R approach, whereby no-reference and reference
quality measurements are applied in sequence, before and
after compression, respectively, and are then combined in a
principled way.

As is illustrated in Figure 2, given an input image I and
its compressed version Ic, an NR component first predicts the
perceptual quality QNR of I. Once the image is compressed,
an R IQA score is generated to account for the perceptual
quality difference QR between Ic and I. The two-step process
is then completed by combining QNR with QR. This may be

viewed as a process of conditioning QR on QNR, where the
predicted source image quality serves as "prior" knowledge,
converting the relative quality result obtained by the reference
IQA model into an absolute score, which better fits with
subjective opinions.

The main advantage of the two-step model is visually
illustrated in Figure 3, by considering a hypothetical image
quality axis spanning the entire quality range from low quality
to high quality. The true perceptual quality of an image is
represented by its distance from the space of undistorted,
natural images. A reference module can only measure the
distance between a pristine image I and its compressed version
Ic: When I is of high quality, it will be close to the natural
image space, and the reference module score may be regarded
as an accurate prediction of the quality of Ic. However, if I is
of degraded quality, i.e. at a distance from the natural image
space, then the no-reference module predicts this perceptual
distance, which can then be used to augment the reference
IQA result, thereby yielding a better prediction of the overall
perceptual distance from Ic to the natural image space. While
the method of combining the NR and R stages may be
conceived broadly, in two-step they may also be integrated
as a simple product of suitably adjusted R and NR prediction
scores QR and QNR, yielding a final two-step score Q2step.

A. Reference IQA Module

A reference IQA module aims to capture perceptual quality
differences between a distorted image and a reference image.
Naturally, a robust, high-performance R IQA should be used
in the design of a two-step model, since the system should
perform well at gauging the perceptual effects of compression
when the source image is not distorted. As mentioned earlier,
there is now a rich variety of effective reference image
quality models. From among these, we will use MS-SSIM
as an exemplar R module for comparing I with Ic. MS-
SSIM has found considerable commercial success thanks to
its simplicity and high performance. MS-SSIM compares
luminance, contrast and structural quality information in a
multi-scale fashion. MS-SSIM delivers quality scores that fall
in the range [0, 1], where larger values correspond to better
quality.

B. No-Reference IQA Module

As discussed in Section II, the majority of NR IQA models
are data-driven, and depending on a process of training on
one or more database(s) of distorted images labelled by
human subjective opinion scores. There are also unsupervised
‘opinion-unaware’ NR algorithms like NIQE, and IL-NIQE
[41], which are constructed using NSS.

In the two-step model, the aim of the NR module is to
provide prior information about the innate perceptual quality
of the source image and use it to improve the R IQA result
when the source is distorted. As an effective and flexible
exemplar, we will use the NIQE index, which is a completely
blind IQA model, as the NR part of a simple and very
effective two-step model. The empirical distributions of mean-
subtracted and divisively normalized luminance coefficients of
high quality images which drive NIQE are known to reliably
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(a) MOS: 79 (b) MOS: 51
DMOS: 52
MS-SSIM: 0.9346

(c) MOS: 45 (d) MOS: 36
DMOS: 32
MS-SSIM: 0.9674

Fig. 1. (a) A high quality reference image. (b) JPEG compressed version of (a). (c) A low quality reference image. (d) JPEG compressed version of (c).

Original Image I
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Compressed 

Image Ic
Compression

No-Reference
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Combine

Reference

QRQNR
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Fig. 2. Overview of two-step model. The original image I is compressed to
obtain Ic. A reference module is then applied to I and Ic resulting a predicted
quality score QR. I is also processed by a no-reference module to generate
a predicted score QNR. QNR and QR are then together fed into the two-step
model outputting a final predicted quality score Q2step.

follow a Gaussian distribution, while they tend to stray from
gaussianity in the presence of distortions. NIQE measures
these statistical deviations using a simple Mahalanobis-like
measure of the distance between the NSS feature distribution
of a test image, and of a pristine model. Unlike many trained
IQA models, NIQE is very general, while delivering good
prediction performance.

C. Two-Step Model

The goal of a two-step IQA model is to combine NR and R
IQA modules to improve the accuracy of systems that predict
the quality of compressed images that may have been degraded
before compression. Generally, such a two-step model should
fulfill three important properties:

1) If compression does not occur, or has an imperceptible
effect on quality, then the two-step model should report
the innate source (reference) image quality.

2) If the source is pristine, then the two-step model should
accurately predict the effect of compression on perceived

quality.
3) If the source is already distorted and then compressed

with perceptual loss, then the two-step model should yield
a better prediction than either the R and NR components
applied on the compression image.

While there are different ways to achieve the basic two-step
concept, a straightforward, simple, and effective method is to
define a two-step model as a product of suitably re-mapped
versions of the constituent NR and R components:

Q2step = QR ·QNR, (1)

where QR is the reference IQA score that perceptually
compares a compressed image with its reference, and QNR is
NR prediction of the reference image quality. The remapping
process, which will be discussed in detail, accounts for the
different ranges of the NR and R outputs.

As a simple canonical example, let the NR and R
components be NIQE and MS-SSIM respectively, which,
following rescaling, yields a particularly simple and effective
two-step model that we call 2stepQA:

Q2stepQA = MS-SSIM · (1− NIQE
α

), (2)

where QR = MS-SSIM and QNR = 1 − NIQE
α , and α is a

scaling constant. If the MS-SSIM scores fall within [0, 1],
where MS-SSIM = 1 indicates perfect quality (the usual
assumption), then the raw NIQE scores should be rescaled to
the same interval prior to taking the product (1). Since NIQE
scores increase with worsening picture quality on a scale of
about [0,100] on known databases, we simply fix α = 100.

Of course, for a variety of possible reasons it may be
desired to use NR and/or R IQA models other than NIQE
or MS-SSIM. This may arise because of known, specific
distortions or a desire to use more sophisticated models. These
components can also be integrated using the two-step concept
to obtain better performance. However, the constituent NR
and R models must be remapped before combining them
via (1). Next, we describe a generalized way of remapping
the R and NR elements so that they can be combined by
multiplication. This lends a high degree of versatility to two-
step IQA modeling, as it provides a general design framework.
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Fig. 3. Visual illustration of the two-step IQA concept. The quality axis spans low to high quality, with five exemplar distorted images shown below each
Likert mark. Above the axis, image I is an imperfect reference image having a fair quality level, while Ic is its compressed version, which has a much worse
quality. The reference module measures the deviation of Ic from I, while the no-reference module evaluates the distance between I and the undistorted natural
image space.

D. Logistic Remapping

To properly develop a multiplicative combination of NR
and R models, it is beneficial to map them to the same range
and trend. The ranges of quality scores generated by different
IQA algorithms varies significantly. Many R IQA models, such
as SSIM, MS-SSIM, and FSIM deliver output quality scores
on [0, 1], whereas many NR IQA models, which are trained
on human subjective scores are mapped to MOS/DMOS on
[0, 100]. Thus, in our basic two-step model the R and NR
scores to be combined are mapped to the same range to avoid
influencing their relationship to perceptual quality. To preserve
monotonicity, allow for generalizability, and to scale the scores
to either [0, 1] or the MOS range, we deploy a simple logistic
mapping of the reference and no-reference IQA scores.

Specifically, we use a four-parameter, monotonic logistic
function to fit each predicted NR or R quality score Q to [0,
100]:

Q′ = β2 +
β1 − β2

1 + e−(Q−β3/|β4|)
, (3)

where Q′ is the rescaled score after finding the least-squares
best-fitting logistic function over the four parameters {βi; i =
1, .., 4}.

The parameters β can be effectively determined by using
the subjective data from one or more IQA databases. For
example, one could find the optimal βs for a number of
IQA models by minimizing the squared error between the
remapped objective scores and the MOS values from the LIVE
IQA Database. Since a degraded image may be used as the
reference image, the entire LIVE Database distorted image
corpus could be used to fit the logistic function to obtain
the parameters βNRi, i = 1, .., 4 for each NR model. Since
in our design the possibly distorted image is then subjected to
compression, then the JPEG subset of the LIVE IQA database
could be used to determine the parameters βR1 − βR4 for any
R model.

Given a compressed image and its possibly distorted

reference version, the NR module is applied on the reference
image to generate an NR quality score QNR, while the R
component is conducted on both the distorted and the reference
images to obtain an R quality score QR. The rescaled scores
Q′NR and Q′R can then be computed using (3) using {βNRi; i =
1, .., 4} and {βRi; i = 1, .., 4}.

In this way, the scores predicted by the R and NR models are
remapped to the same range as MOS (or by similar process,
to [0, 1] if desired) without loss of information or accuracy.
Of course, if a model is trained on MOS, it does not need
remapping, since it already has the same score range as MOS.

We introduce an additional fitting exponential parameter γ
to control the relative weighting of the NR and R modules.
Thus the remapped scores Q′NR and Q′R, which have the same
MOS range, are combined as follows:

QG = (Q′NR)γ · (Q′R)1−γ , (4)

where γ ∈ [0, 1] adjusts the relative contributions of the R
and NR components. As discussed in Section V-C, the value
of γ can depend on such factors as the relative accuracy of
the R or NR IQA models. We find that the performances of
R and NR models can be significantly improved using this
generalized model.

IV. A NEW DISTORTED-THEN-COMPRESSED IMAGE
DATABASE

Current mainstream image quality databases, such as LIVE
IQA, TID2013, and CSIQ, are widely used in IQA research.
The LIVE IQA Database, which contains 29 reference images
and 779 distorted images of five distortion types, was the first
large public-domain IQA database. TID2013, which extends
TID2008, contains 3000 images with 24 different kinds of
distortions. CSIQ contains 30 original images, each distorted
by one of six different types of distortions. These major
databases have largely support the development of modern
IQA algorithms over the past 15 years. However, since they all
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Fig. 4. (a) MOS distribution of the entire LIVE In the Wild Challenge IQA
Database. (b) MOS distribution of the 80 selected reference images in the
new LIVE Wild Compressed Database.

make use of high quality pristine images as reference images,
these databases are not useful tools for studying the influence
of distorted reference images on reference quality prediction
performance.

A recently published database, called the LIVE In the
Wild Challenge IQA Database, contains more than 1100
authentically distorted images captured by a wide variety of
mobile devices. The distortions in it are representative of
those encountered in practical consumer applications, where
the images produced by uncertain amateur hands are often of
reduced quality. Towards the development of algorithms that
can assess the overall quality of these kinds of image after
they are also compressed, we have created a new database
which we introduce here, and call the LIVE Wild Compressed
Picture Quality Database, which uses real-world, authentically
degraded images as reference images. In the following, we
detail the new database.

A. Content

A total of 80 images were chosen from [40] to serve
as references in the new LIVE Wild Compressed Picture
Quality Database. These were selected to span a wide range of
content and quality levels. Figure 4 shows that the 80 selected
images have a similar MOS distribution as the entire parent
database [40]. The MOS of the 80 images nearly span the
entire image quality range. These authentic reference images
contain numerous types and complex combinations of in-
capture distortions such as blur, over/under-exposure, lighting
etc.

The reference images were then JPEG compressed using the
Matlab JPEG tool into four different, broadly distinguishable
severity levels. Following the design procedure used in the
creation of other leading IQA databases [8], [9], [42], the
four levels of image compression were designed to create
a wide range of perceptually separable impaired pictures.
Only four levels were used, since as in [8], [9], [42] this
number was deemed adequate to cover the distortion space,
and importantly, was necessary to limit the size of the human
study. For each content, there are four compressed versions,
yielding 320 compressed images. Some examples of both
pristine and compressed versions of images in the database
are shown in Figure 5.

B. Human study

We conducted a human study in the LIVE subjective study
lab. Most of the subjects participated in the study were

UT-Austin students inexperienced in understanding image
quality assessment, or compression impairments. Each subject
participated in two ~30 minute sessions at least 24 hours apart.
The database was divided equally and randomly into two parts
in each session, each containing 40 contents, including 40
pristine images and their respective four different compressed
images, hence each subject viewed 200 images per session.
The images were displayed in random order with each image
shown only once during each session. Presentations of each
unique content were separated by at least 5 images. For each
subject, two sessions were generated and assigned in random
order. The total number of subjects taking part in the study
was 29, and all of them successfully finished both sessions.
Most subjects completed each session within 20 minutes.

All of the subjects participated in a visual acuity test,
and were asked whether they had any uncorrected visual
deficiency. A viewing distance of 2 feet was measured and
approximately maintained during testing. Before starting the
experiment, each subject was required to read and sign a
consent form including general information about the human
study, then the procedure and requirements of the test were
explained. A short training session was presented before the
first test session using a different set of images than the
test experiment. Given each image, the subject was asked
to provide an opinion score of picture quality by dragging
a slider along a continuous rating bar. As shown in Figure
6, the possible quality range was labelled from low to high
with five adjectives: Bad, Poor, Fair, Good, and Excellent.
The subjective scores obtained from the subjects were sampled
onto numerical quality scores in [1, 100]. A screenshot of the
subjective study interface is shown in Figure 7. The interface
was developed on a Windows PC using PsychoPy software
[43].

The subjective MOS were then computed according to
the procedures described in [42]. The raw scores were first
converted into Z-scores. Let sijk denote the score assigned by
the i-th subject on the j-th image in session k = {1, 2}. The
raw scores were converted into Z-scores per session:

zijk =
sijk − s̄ik

σik
, (5)

where s̄ik is the mean of the raw scores over all images
assessed by subject i in session k, and σik is the standard
deviation.

The subject rejection procedure described in ITU-R BT
500.13 [44] was then conducted to remove outliers. After
performing the rejection procedure, 6 of the 29 subjects were
rejected. The Z-scores of the remaining 23 subjects were then
linearly rescaled to [0, 100]. Finally, the MOS of each image
was obtained by computing the mean of the rescaled Z-scores.
The overall MOS distribution of the LIVE Wild Compressed
Picture Quality Database is plotted in Figure 8 for several
different compression levels.

C. Analysis

To examine subject consistency, we split the subjective
scores obtained on each image into two disjoint equal groups,
and compared the MOS on every image, one from each group.
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(a) MOS: 83 (b) MOS: 60 (c) MOS: 55 (d) MOS: 40 (e) MOS: 35

(f) MOS: 58 (g) MOS: 51 (h) MOS: 46 (i) MOS: 41 (j) MOS: 32

Fig. 5. (a) High quality reference image. (b)-(e) four JPEG compressed versions of (a) using compression parameter (distortion level) 18, 12, 6 and 3 (from
left to right). (f) Low quality reference image. (g)-(j) four JPEG compressed versions of (f) using compression parameter (distortion level) 18, 12, 6 and 3
(from left to right).

Fig. 6. The rating bar.

Fig. 7. Screenshot of the subjective study interface showing the test image
shown to the subject.

The random splits were repeated 25 times and the median
Spearman’s rank ordered correlation coefficient (SROCC)
between the two groups was found to be 0.9805.

Figure 9 shows a box plot of MOS from the LIVE
Wild Compressed Picture Quality Database for different
compression levels. The MOS decreases, with reducing
variance, as the compression is increased. Figure 10 shows
the MOS across all contents with each color coded curve
at a different compression level. While the curves are nicely
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Fig. 8. (a) MOS distribution across the entire LIVE Wild Compressed
Picture Quality Database. (b) MOS distribution of reference images. (c)
MOS distribution of compressed images at distortion level 18. (d) MOS
distribution of compressed images at distortion level 12. (e) MOS distribution
of compressed images at distortion level 6. (f) MOS distribution of compressed
images at distortion level 3.
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Fig. 9. Box plot of MOS of images in the LIVE Wild Compressed Picture
Quality Database for different compression levels. The central red mark
represents the median, while the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted
individually using the ’+’ symbol.
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Fig. 10. MOS of all contents for five different compression (distortion) levels,
coded by color.

separated by content, it is important to observe the mixing of
MOS across contents, caused by the reference distortions.

V. PERFORMANCE EVALUATION

We used the new LIVE Wild Compressed Picture Quality
Database to compare the performance of various two-step
IQA models, including the 2stepQA algorithms (2) against
each other and against other R and NR IQA measures. Most
available R IQA databases contain pristine image as references
against which to evaluate the fidelity of distorted images.
In such scenarios, DMOS is typically used to reduce any
biases arising from image content. However, if the reference
image is affected by distortion, as in the aforementioned
database, DMOS is less likely to reflect subjective opinions
correctly. Thus, we only compute and correlate objective
quality predictions against MOS, which represents absolute
subjective quality.

We evaluated the performance between predicted quality

scores and subjective MOS using SROCC and the Pearson’s
(linear) correlation coefficient (LCC). The predicted IQA
scores were passed through a logistic non-linearity (following
usual practice) before computing the LCC measure [8]. Larger
values of both SROCC and LCC indicate better performance.

Although the 2stepQA model and some of the other
compared IQA algorithms (both one-step and two-step) do not
require training processes, we divided the database into non-
overlapping 80% training sets and 20% test sets by content,
to ensure fair comparisons against other learning-based IQA
algorithms. Such random train-test splits were repeated for
1000 iterations to avoid unbiased results.

We utilized a number of prominent R IQA algorithms
including PSNR, MS-SSIM, FSIM and VSI. Among
perceptually-relevant NR IQA algorithms, we tested NIQE,
BRISQUE, CORNIA, and PQR implemented using a shallow
convolutional neural network (S_CNN) model. Since PQR
(S_CNN) is a learned model, we pretrained it on the LIVE
IQA Database, then tested the model on the LIVE Wild
Compressed Picture Quality Database. These popular IQA
algorithms are well established in the IQA literature and have
been shown to correlate well against subjective opinions of
image quality.

A. Comparisons Against Mainstream IQA Methods

We first conducted a performance comparison between the
2stepQA model (2) and several one-step R and NR IQA
algorithms, and report the results in Table I. As expected
PSNR, which is not a perceptually-relevant measure of image
quality, performed poorly as compared with the other R and
NR IQA algorithms, which all correlated at least reasonably
well against subjective judgments of quality. However, the
2stepQA index (2) significantly outperformed all of the
compared one-step IQA algorithms.

To determine whether the differences in correlations
reported in Table I were statistically significant, we conducted
a statistical significance test. We utilized the distribution of the
obtained SROCC scores computed over 1000 random train-
test iterations. The nonparametric Wilcoxon Rank Sum Test
[45], which exclusively compares the rank of two sets of
observations, was used to conduct hypothesis testing. The
null hypothesis was that the median for the (row) algorithm
was equal to the median of the (column) algorithm at the
95% significance level. The alternate hypothesis was that the
median of the row was different from the median of the
column. A value of ‘1’ in the table represents that the row
algorithm was statically superior to the column algorithm,
while a value of ‘-1’ means the counter result. A value of ‘0’
indicates that the row and column algorithms were statistically
indistinguishable (or equivalent). The statistical significance
results comparing the performances of the compared IQA
algorithms are tabulated in Table II.

To illustrate how the distributions of the SROCC and LCC
scores varied by algorithm, Figures 11 and 12 show box-
plots of the correlations computed over 1000 iterations for
each of the compared algorithms. A lower standard deviation
with a higher median SROCC indicates better performance.
As may be inferred from the Tables and Figures, the 2stepQA
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TABLE I
PERFORMANCES OF THE 2STEPQA MODEL (2) AGAINST VARIOUS ONE-STEP REFERENCE AND NO-REFERENCE IQA MODELS ON THE LIVE

WILD COMPRESSED PICTURE QUALITY DATABASE. THE BEST PERFORMING ALGORITHM IS HIGHLIGHTED IN BOLD FONT. ITALICS
INDICATE NO-REFERENCE ALGORITHMS.

PSNR MS-SSIM FSIM VSI NIQE BRISQUE CORNIA PQR (S_CNN) 2stepQA
SROCC 0.4227 0.8930 0.9101 0.7953 0.8457 0.9091 0.9005 0.8944 0.9311

LCC 0.4299 0.8923 0.9134 0.8153 0.8407 0.8966 0.8955 0.8939 0.9305

TABLE II
RESULTS OF ONE-SIDED WILCOXON RANK SUM TEST PERFORMED BETWEEN SROCC VALUES OF THE IQA ALGORITHMS COMPARED IN TABLE I. A
VALUE OF "1" INDICATES THAT THE ROW ALGORITHM WAS STATISTICALLY SUPERIOR TO THE COLUMN ALGORITHM; " − 1" INDICATES THAT THE

ROW WAS WORSE THAN THE COLUMN; A VALUE OF "0" INDICATES THAT THE TWO ALGORITHMS WERE STATISTICALLY INDISTINGUISHABLE.
ITALICS INDICATE NO-REFERENCE ALGORITHMS.

PSNR MS-SSIM FSIM VSI NIQE BRISQUE CORNIA PQR (S_CNN) 2stepQA
PSNR 0 -1 -1 -1 -1 -1 -1 -1 -1

MS-SSIM 1 0 -1 1 1 -1 -1 0 -1
FSIM 1 1 0 1 1 1 1 1 -1
VSI 1 -1 -1 0 -1 -1 -1 -1 -1

NIQE 1 -1 -1 1 0 -1 -1 -1 -1
BRISQUE 1 1 -1 1 1 0 1 1 -1
CORNIA 1 1 -1 1 1 -1 0 1 -1

PQR (S_CNN) 1 0 -1 1 1 -1 -1 0 -1
2stepQA 1 1 1 1 1 1 1 1 0

PSNR MS-SSIM FSIM VSI NIQE BRISQUE CORNIA PQR (S_CNN) 2stepQA
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Fig. 11. Box plot of SROCC distributions of the compared algorithms in Table
I over 1000 trials on the LIVE Wild Compressed Picture Quality Database.
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Fig. 12. Box plot of LCC distributions of the compared algorithms in Table
I over 1000 trials on the LIVE Wild Compressed Picture Quality Database.

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED 2STEPQA AGAINST
MS-SSIM ON TWO EQUALLY DIVIDED SUBSETS OF THE LIVE WILD
COMPRESSED PICTURE QUALITY DATABASE. SUBSET 1 CONTAINED

COMPRESSED IMAGES HAVING BETTER QUALITY REFERENCE IMAGES
(OR LOWER NIQE SCORES), WHILE SUBSET 2 CONTAINED

COMPRESSED IMAGES HAVING WORSE QUALITY REFERENCE IMAGES.

Subset 1 Subset 2
MS-SSIM 2stepQA MS-SSIM 2stepQA

SROCC 0.9395 0.9434 0.8546 0.8991
LCC 0.9419 0.9458 0.8551 0.8980

model (2) exhibited significantly higher and more reliable
correlations against subjective quality than all of the compared
one-step R and NR IQA algorithms.

Since the design of 2stepQA involves MS-SSIM as its
integral component, it is of interest to explore why 2stepQA is
able to improve on MS-SSIM on the LIVE Wild Compressed
Picture Quality Database. To do this, we divided the database
into two equal-sized subsets based on the quality of the
reference images. The no-reference NIQE engine was used to
evaluate the quality of the reference images and to divide the
references into two quality classes. The first class comprised
of 160 compressed images derived from 40 high quality
references, while the second class used the remaining 160
images with lower quality references. As may be seen in
Table III, both MS-SSIM and 2stepQA correlated similarly
with subjectivity on the subset of high quality reference images
(Subset 1). However, 2stepQA significantly outperformed MS-
SSIM on the subset of poor quality reference images (Subset
2) because of the contribution of the NR component, indicating
that 2stepQA can significantly improve on the performance of
stand-alone R IQA models operating on low-quality reference
images.



........................ 10

0 0.5 1 1.5 2 2.5 3 3.5 4

log
10

( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

R
O

C
C

Fig. 13. Performance of the 2stepQA index (2) as the parameter α is varied,
showing a peak at α = 100.

B. Selection of 2stepQA Parameter (α)

The 2stepQA index involves a free parameter α which
affects the mapping to MOS. Figure 13 shows the SROCC
values of the 2stepQA model (2) for a wide range of values
of α. The model attains its best performance at α ≈ 100.
However, the performance of 2stepQA is robust over a wide
range of the values of α ∈ [50, 150].

C. More General Two-Step Models

The general two-step model outlined earlier lends a more
flexible approach towards combining different R and NR
components. Table IV and V plot the performance of general
two-step models incorporate several combinations of R and
NR IQA components.

We considered four R IQA algorithms: PSNR, MS-
SSIM, FSIM and VSI, and four NR IQA algorithms:
NIQE, BRISQUE, CORNIA and PQR (S_CNN). The logistic
function parameters (βs) used in (3) were optimized on
the LIVE Image Quality Database. Learning-based NR IQA
models, such as BRISQUE, CORNIA and PQR (S_CNN),
were then trained on the subset of LIVE Wild Challenge
Database that excludes the 80 reference images of the LIVE
Wild Compressed Picture Quality Database.

To highlight the importance of using accurate NR
algorithms, we also included experimental results by replacing
the NR scores with the actual MOS of the reference images.
This serves as an idealized basis of comparison of NR
algorithms evaluated on the same reference images. The
median SROCC and LCC of the various two-step models over
1000 iterations of randomly chosen disjoint 80% training and
20% test subsets are reported in Tables IV and V, respectively.
The optimal exponents γ in (4) are reported along with the
correlation scores.

As one would expect, a high-performing R algorithm is
assigned larger weights (1− γ) in the general two-step model
(4) when the NR component is fixed, as reflected by the γ
values reported in Tables IV and V. When tested on the LIVE
Wild Compressed Picture Quality Database, FSIM and MS-
SSIM outperform other one-step algorithms, including VSI

and PSNR (Table I), and for these models, the optimal γ
values were smaller. When the low-performing PSNR was
combined with any of the four NR models, γ took much
larger values (≥ 0.5) than for other R models, implying that
NR models dominate the two-step product when combined
with low-performing R models like PSNR. However, when a
high-performing R model is used, such as FSIM or MS-SSIM,
the corresponding optimal values of γ are smaller (< 0.5),
emphasizing the value of having a high-performing R model
in the product.

Similarly, an effective NR module is essential to achieving
better performance of two-step models. The contributions of
different NR algorithms in the general two-step model are
shown in Table VI. Although the performance of the two-
step model (4) is not influenced as much by the choice of NR
algorithm as by R algorithm, it is clear that higher-performing
NR algorithms result in better overall performance.

Tables VII and VIII plot the performances of general two-
step models but fixing γ = 0.5. As compared with the results
in Tables IV and V, where optimal γ values were used, the
generalized models still achieved nearly optimal performance
when γ = 0.5 for most combinations of R and NR IQA
modules.

In the general two-step model, the parameter γ reflects
the weight or importance of the NR component relative to
the R component. If in a given compression application it
is determined that the pre-compressed reference images are
of high-quality, then the relative contribution of the NR
component may be reduced or even eliminated (γ=0), while
the importance of the R component is increased. If the
reference images are known to present with a wide range
of perceptual qualities, then γ may be increased to better
reflect the importance of the NR component in the final
quality evaluation of the compressed image. Different training
sets may result in different values of γ. For example, since
the reference images in the LIVE Challenge Compressed
Database take on a wide range of perceptual qualities, the
NR component may be assigned a larger weight (larger γ).
Conversely, when training models on the LIVE IQA Database,
where the reference images are of exceptionally high-quality,
then the NR component becomes much less important, and
the value of γ may be reduced. Overall, γ depends on the
application scenario.

D. Weighted 2stepQA

The general two-step model allows the choice of parameter
γ to adjust the relative weights assigned to the NR and R IQA
components. Small values of γ correspond to less emphasis
on the NR score, and conversely, larger values of γ increase
the importance of the NR contribution. Figure 14 plots the
performance of the general two-step model (4) against γ using
NIQE and MS-SSIM as the combination components, i.e.,
"weighted 2stepQA." The best SROCC result was attained for
γ = 0.47, as shown in Figure IV. The performance of the
generalized model was robust over the range γ ∈ [0.4, 0.55],
indicating that the NR and R components of 2stepQA are of
roughly equal importance.
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TABLE IV
SROCC PERFORMANCES OF TWO-STEP COMBINATIONS OF REFERENCE AND NO-REFERENCE IQA MODELS ON THE LIVE WILD COMPRESSED

PICTURE QUALITY DATABASE. THE PARAMETER γ IS GIVEN IN PARENTHESES. RESULTS USING MOS AS THE ‘IDEAL’ NR MODULE SCORE IS SHOWN
FOR COMPARISON.

PSNR MS-SSIM FSIM VSI
NIQE 0.6609(0.63) 0.9283(0.47) 0.9263(0.37) 0.8775(0.54)

BRISQUE 0.6833(0.62) 0.9333(0.46) 0.9357(0.41) 0.8980(0.53)
CORNIA 0.6807(0.51) 0.9356(0.39) 0.9375(0.36) 0.8992(0.46)

PQR (S_CNN) 0.6769(0.60) 0.9382(0.41) 0.9367(0.36) 0.8970(0.49)
MOS 0.6156(0.71) 0.9401(0.61) 0.9474(0.56) 0.8946(0.64)

TABLE V
LCC PERFORMANCES OF TWO-STEP COMBINATIONS OF REFERENCE AND NO-REFERENCE IQA MODELS ON THE LIVE WILD COMPRESSED PICTURE

QUALITY DATABASE. THE PARAMETER γ IS GIVEN IN PARENTHESES. RESULTS USING MOS AS THE ‘IDEAL’ NR MODULE SCORE IS SHOWN FOR
COMPARISON.

PSNR MS-SSIM FSIM VSI
NIQE 0.6830(0.63) 0.9268(0.47) 0.9278(0.37) 0.8839(0.54)

BRISQUE 0.6743(0.62) 0.9309(0.46) 0.9355(0.41) 0.8988(0.53)
CORNIA 0.6747(0.51) 0.9353(0.39) 0.9394(0.36) 0.9026(0.46)

PQR (S_CNN) 0.6662(0.60) 0.9378(0.41) 0.9392(0.36) 0.8976(0.49)
MOS 0.6064(0.71) 0.9403(0.61) 0.9499(0.56) 0.8981(0.64)

TABLE VI
PERFORMANCES OF NO-REFERENCE IQA MODULES ON 80 REFERENCE

IMAGES ON THE LIVE WILD COMPRESSED PICTURE QUALITY
DATABASE.

SROCC LCC
NIQE 0.5350 0.6742

BRISQUE 0.7217 0.7282
CORNIA 0.6772 0.7523

PQR (S_CNN) 0.7451 0.7175

TABLE VII
SROCC OF GENERAL TWO-STEP MODELS USING DIFFERENT

COMBINATIONS OF REFERENCE AND NO-REFERENCE IQA MODELS ON
THE LIVE WILD COMPRESSED PICTURE QUALITY DATABASE, FOR
γ = 0.5. MOS AS AN IDEAL NR ALGORITHM IS INCLUDED FOR

COMPARISON

PSNR MS-SSIM FSIM VSI
NIQE 0.6423 0.9312 0.9254 0.8805

BRISQUE 0.6711 0.9339 0.9327 0.8982
CORNIA 0.6863 0.9331 0.9287 0.9022

PQR (S_CNN) 0.6745 0.9367 0.9325 0.8993
MOS 0.5692 0.9384 0.9473 0.8832

TABLE VIII
LCC OF GENERAL TWO-STEP MODELS USING DIFFERENT

COMBINATIONS OF REFERENCE AND NO-REFERENCE IQA MODELS ON
THE LIVE WILD COMPRESSED PICTURE QUALITY DATABASE, FOR
γ = 0.5. MOS AS AN IDEAL NR ALGORITHM IS INCLUDED FOR

COMPARISON.

PSNR MS-SSIM FSIM VSI
NIQE 0.6578 0.9302 0.9269 0.8871

BRISQUE 0.6626 0.9312 0.9310 0.9004
CORNIA 0.6799 0.9314 0.9286 0.9036

PQR (S_CNN) 0.6663 0.9377 0.9330 0.9005
MOS 0.5572 0.9381 0.9489 0.8858
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Fig. 14. Performance of the 2stepQA (MS-SSIM + NIQE) model with
exponent γ allowed to vary.

TABLE IX
PERFORMANCE OF 2STEPQA ON THE JPEG SUBSET OF THE LIVE IMAGE

QUALITY DATABASE AS COMPARED WITH MS-SSIM AND NIQE.

MS-SSIM NIQE 2stepQA
SROCC 0.9787 0.9355 0.9632

LCC 0.9819 0.9483 0.9744

E. Performance When the Reference Images are of High
Quality

Table IX illustrates the performance of the 2stepQA model
on the JPEG subset of LIVE Image Database, where the
reference images are of extremely good quality. In this case,
as would be expected, 2stepQA does not outperform MS-
SSIM, but neither does it significantly underperform MS-
SSIM, since the NR component does not contribute much
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TABLE X
PERFORMANCE OF DIFFERENT COMBINATION METHODS OTHER THAN

MULTIPLICATION ON THE LIVE WILD COMPRESSED PICTURE QUALITY
DATABASE

SROCC
Linear Regression 0.9289
Polynomial Regression (degree 2) 0.9154
Polynomial Regression (degree 3) 0.9253
Polynomial Regression (degree 4) 0.9195
2stepQA 0.9311

to the overall product (see also Table III. However, 2stepQA
is statistically superior to MS-SSIM and the other compared
R IQA models, when applied to imperfect reference settings,
which is a very large and important application space (e.g.,
social media pictures).

F. Simplicity of the 2StepQA Model

The general two-step concept, and in particular 2stepQA,
are simple and very easy to implement, yet are able to
significantly outperform other mainstream, stand-alone IQA
algorithms. Since in the two-step product concept both the R
and NR components are scaled to the same range (e.g., [0,
1]), where 1 = best quality, then the score will be lowered if
either the reference image is distorted, or if the compression
distorts, or both. The output quality prediction will only be
high (approach 1) if the reference is of high quality, and the
process of compression does not lower the quality.

It is important to mention that we also devised and tested a
variety of other ways to combine the R and NR components.
Linear regression only obtained comparable performance as
the product model, as shown in Table X. Furthermore,
polynomial regression of degrees 2, 3 and 4 also did not
improve performance over the simple product model.

Of course, this does not mean that the two-step concept
cannot be improved on. For example, given that the problem
may be viewed as predicting R quality after compression,
given an NR quality measurement before compression, we
have been working on a conditional (Bayesian) framework,
but this will require vastly more data collection (a much
larger crowdsourced database than currently exists) to be able
to learn accurate predictive models. The 2stepQA model is
an intuitive and successful choice that delivers statistically
superior performance as compared against state-of-art NR and
R algorithms.

VI. CONCLUSION

We described a new two-step framework for the design of
algorithms that can predict the quality of distorted pictures
(e.g., during capture) after they are subjected to additional
compression. The general approach is to combine NR (before
compression) with R (after compression) algorithms in a
simple exponentially weighted product formulation. In order
to facilitate the development, testing, and benchmarking
of two-step models for this application, we constructed
a new subjective quality resource called the LIVE Wild
Compressed Picture Quality Database. This new dedicated
resource contains compressed versions of real-world reference

images that have already been subjected to complex mixtures
of authentic distortions (typically occurring during capture),
spanning wide ranges of original quality levels. The two-
step framework is general enough to encompass the design
of any potential combination of suitable R and NR
algorithms. We also highlight a simple exemplar two-step
model called 2stepQA, which combines two highly efficient
commercial algorithms (MS-SSIM and NIQE), achieving
standout efficiency without any need for training. We show
that the 2stepQA model outperforms other leading R and NR
IQA models applied in isolation (one-step). Adding a training
process produces even better results, but at the possible
loss of generality, and increased effort and complexity. The
standout performance is particularly significant for low quality
reference images. The proposed two-step IQA concept is a
simple yet efficient way to address the low quality reference
IQA problem.
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