
Praful Gupta,1 Jack L. Glover,2 Nicholas G. Paulter, Jr.,2 and Alan C. Bovik3

Studying the Statistics of Natural X-ray Pictures

Reference
Gupta, P., Glover, J. L., Paulter, N. G., Jr., and Bovik, A. C., “Studying the Statistics of Natural X-ray Pictures,”

Journal of Testing and Evaluation, Vol. 46, No. 4, 2018, pp. 1478–1488, https://doi.org/10.1520/JTE20170345.

ISSN 0090-3973

ABSTRACT

In this article, we have studied and analyzed the statistics of both pristine and distorted

bandpass X-ray images. In the past, we have shown that the statistics of natural, bandpass-filtered

visible light (VL) pictures, commonly expressed by natural scene statistic (NSS) models, can be

used to create remarkably powerful, perceptually relevant predictors of perceptual picture quality.

We find that similar models can be developed that apply quite well to X-ray image data. We

have also studied the potential of applying these statistical X-ray NSS models to the design

of algorithms for automatic image quality prediction of X-ray images, such as might occur in

security, medicine, and material inspection applications. As a demonstration of the discrimination

power of these models, we devised an application of NSS models to an image modality

classification task, whereby VL, X-ray, infrared, and millimeter-wave images can be effectively

and automatically distinguished. Our study is conducted on a dataset of X-ray images made

available by the National Institute of Standards and Technology.
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Introduction

X-ray images are widely used in industrial nondestructive material testing [1], archeological photography

[2], food inspection [3], medical imaging [4,5], security screening [6], and many other fields. In particular,

X-ray security systems are extensively used for airport security screening where they are implemented for

object or material recognition and inspection in a variety of modes, including single- or dual-energy sys-

tems, single- or dual-view systems, scattering systems, tomographic systems, and stereo matching dual-view

systems (for 3-D) [6]. The technology of X-ray Computed Tomography (CT) that is extensively used in

medical imaging has also become an important component of aviation security screening systems, which are

used to conduct efficient and nondestructive inspection of baggage and other objects [6–8]. Other multi-

sensor X-ray systems that use data fusion techniques of combining different modes also exist [7].

There are a number of image-quality measurements that are used to characterize the performance

of portable X-ray imagers and which define standard Image Quality Indicators (IQIs). These include

spatial resolution, useful penetration, organic material detection, dynamic range, measured noise, flatness
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of field, image extent, and subjective quality (using human

judgment) [9,10]. The development of these methods and quality

standards reflect the significant efforts that have been made to-

ward developing numerical performance metrics for X-ray imag-

ing systems. Chen, Pan, and Han developed a No-Reference X-ray

Image Quality Evaluation method that controls the dose of X-ray

radiation based on the weighted entropy of the grayscale distri-

bution of an image [11]. Bolfing, Halbherr, and Schwaninger

applied statistical approaches to examine various image-based

factors, such as view difficulty, superposition, and bag complexity,

that can significantly affect threat detection performance in avi-

ation X-ray security screening systems [12]. Although X-ray im-

ages have been extensively studied, little work has been done to

solve the important problem of perceptual assessment of X-ray

imager quality, or analyzing existing standard IQIs in light of per-

ceptual principles that could help explain how images produced

by X-ray imagers impact human and automatic image interpre-

tation tasks in many applications, including security and medical

imaging.

The main goal of this work is to develop Natural Scene

Statistic (NSS) models of X-ray images and to explore their pos-

sible efficacy as tools for assessing X-ray image quality and its

effect on visual task performance. NSS models have been demon-

strated to successfully capture the statistical consistencies of natu-

ral images both in the spatial [13] and wavelet domains [14].

Here, a natural image is one formed by sensing radiation pro-

jected from interactions with the real world, including both

man-made and naturally occurring objects, but excluding

computer-generated images. Examples of NSS models include

the 1/f model of the amplitude spectrum of visible light (VL)

images, sparse coding characteristics of cortical-like filters [15],

and the underlying gaussianity of perceptually processed band-

pass images [16]. Because cortical processing in mammalian vis-

ual systems has adapted to natural visual stimuli, the statistical

properties of the real-world environment are quite relevant to

the design of visual interpretation algorithms [17,18].

Given the remarkable success of NSS models of photographic

VL images and of perceptual quality models based on them

[13,14,19,20], it is of interest to also model the statistics of natural

images from other modalities. Long-wave infrared (LWIR) im-

ages, such as those captured by thermal cameras, possess a similar

degree of statistical consistency as VL images [21]. NSS models of

LWIR images have proven quite useful for a variety of visual tasks,

such as IR image quality prediction, VL and IR image discrimi-

nation, analysis of IR-specific distortions (such as the halo effect),

and thermal nonuniformities. More recently, the statistics of

fused LWIR and VL images were analyzed, and a NSS-based al-

gorithm for fused image quality assessment (IQA) was developed

[22]. With this motivation, we seek to understand and model

the NSS of X-ray images toward improving the solutions to many

X-ray imaging problems.

Since the image modality provides important information

about the visual characteristics of an image, distinguishing images

based on modality is a fundamental preprocessing step in various

image retrieval processes. In medical image retrieval, text-based

approaches relying on annotation or caption identification and

content-based image retrieval systems are commonly used to dis-

tinguish images from different medical domains, including radio-

graphs, brain magnetic resonance images, mammograms, and

lung CTs [23,24]. In this article, we study the scene statistics

of undistorted and distorted X-ray pictures, demonstrating the

effectiveness of perceptually powerful NSS descriptors in dis-

criminating images from various modalities.

DISTORTION MODELS

We applied two levels of distortion each of blur and noise to a set

of randomly selected pristine images from the National Institute

of Standards and Technology (NIST) and GDXray [25] databases.

A few examples of these X-ray images are shown in Fig. 1. Here we

describe the generative noise models that we used to distort the

X-ray images. It is well established that photon-counting noise in

X-ray images is realistically modeled as a Poisson process, where

FIG. 1 (a) and (b) are examples of X-ray images from GDXray, and (c) and (d) are images from the National Institute of Standards and Technology
databases. The GDXray database contains 8-bit grayscale X-ray images, while the NIST images are 16-bit.
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the probability distribution of the number of incident photons

[26], N, is given by the following:

PrðN = kÞ = e−λðλÞk
k!

(1)

where λ is the expected number of photons measured by the sen-

sor. Thus, varying the number of incident photons4 can be effec-

tively utilized to introduce a desired level of noise in the images.

In order to simulate the appropriate number of incident photons,

it is essential to have a mechanism to relate image grayscale units

to detected photon counts. Ideally, the relationship between the

number of detected photons, n , and the image grayscale value, i,

at the pixel of interest is linear [27], as shown in the following

equation:

i = α · n (2)

where α is the gain of the imaging device. Since the detected photon

count follows Poisson statistics, the pixel variance, VarðiÞ, in-
creases linearly with the pixel mean i that is given as follows [28]:

VarðiÞ
i

=
α2 · VarðnÞ

α · n
= α (3)

The gain α is computed using 25 % of the total pixels that have the

least variance to mean ratio (VMR), to avoid variance contribution

from the object being imaged. Fig. 2 depicts the linear relationship

between the local variance and local mean of an X-ray image, in-

dicating the effective point-to-point modeling of photon-counting

noise by Poisson statistics.

Having computed the gain, α, the effective number of de-

tected photons for each pixel is computed using Eq 2. To apply

different levels of noise to the image, a multiplicative factor, k, is

used to simulate the effect of the reduced number of detected pho-

tons, nef f = n=k. For most practical purposes, photon noise can be

approximately modeled by a Gaussian distribution whose mean

and variance depends on the detected photon count [29,30] as

given by the following:

nnoisy =N ðnef f , nef f + ηÞ, (4)

where η = 1 is the variance of noise that is due to other factors,

including sensor-based sources of noise, e.g., read noise. Finally, a

noisy grayscale image is computed from the noisy photon field,

nnoisy , at each location on the image plane using Eq 2.

Two levels of blur were also generated using a Gaussian blur

kernel with scale parameter σb = f16, 32g pixels. Sample images

from each distortion category (most severe distortion level) are

illustrated in Fig. 3.

NSS of X-ray Images

In a highly groundbreaking study of the statistics of VL images,

Ruderman observed that preprocessing natural images by a local

linear bandpass operation followed by a divisive nonlinearity (en-

ergy normalization) has a decorrelating and Gaussianizing effect

[16]. This property of natural images has been used to capture the

severity of perceptual image distortion in a number of highly suc-

cessful Image Quality Assessment (IQA) models and algorithms

[13,20,31,32]. Here, we study this process when applied to X-ray

images. Given an input intensity image, I, define:

Îði, jÞ = Iði, jÞ − μði, jÞ
σði, jÞ + c

(5)

where i ∈ f1, 2, : : :Mg, j ∈ f1, 2, : : : ,Ng are spatial indexes, M

and N are the image height and width, respectively, and c= 1 is

a constant that stabilizes computation when the denominator is

small. The resulting values Î are usually referred to as Mean

Subtracted Contrast Normalized (MSCN) coefficients. Assuming

that the MSCN coefficients follow a Gaussian distribution, the

weighted sample estimates of the local image mean μ and standard

deviation σ are given by the following equations:

μði, jÞ =
XK
k=−K

XL
l=−L

wk, lIk, lði, jÞ (6)

σði, jÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k=−K

XL
l=−L

wk, lðIk, lði, jÞ − μði, jÞÞ2
vuut (7)

FIG. 2 Plot between the local variance and local mean of X-ray image
pixels that correspond to the lowest 25 % of VMR regions.
A good linear fit to the image data suggests that photon
counting noise can be well modeled by Poisson statistics.

4We assume the efficiency of the detector of imaging system to be 1 so that the

number of incident photons is equal to the number of detected photons.
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where w = fwk, ljk = −K , : : : ,K and l = −L, : : : , Lg is a 2-D

circularly symmetric Gaussian weighting function normalized to

have unit volume. We use K = L = 7.

As shown in Fig. 4a, the histograms of MSCN coefficients of

natural X-ray images exhibit a Gaussian-like appearance very

similar to those of VL images. The scale invariant behavior of

MSCN coefficients suggests that X-ray images, like VL images,

are naturally multiscale, i.e., they show statistically consistent

behavior across multiple scales. This demonstrates that undis-

torted X-ray images also possess a characteristic statistical regu-

larity regardless of contents when free of noticeable distortions.

We introduced two levels of distortion of blur and noise on

the X-ray images. These distortions perturb the statistics of

MSCN coefficients in a characteristic manner, as shown in

Fig. 4b. Blur introduces a higher degree of correlation between

neighboring pixels, resulting in thinner MSCN histograms (more

Laplacian-like), while added noise produces random variations in

the image, producing wider histograms. As demonstrated in

Fig. 4b and c, these changes become more prominent in higher

levels of distortion. Since these distortions modify the histogram

in a characteristic manner, it becomes possible to predict the type

and severity of distortion afflicting an image.

We use a parametrized zero-mean Generalized Gaussian

Distribution (GGD) to model the MSCN coefficients of both pris-

tine and distorted X-ray images. We estimate two parameters

(α, σ2ggd) from each image, which are obtained from the GGD

fit to the MSCN coefficients, where α is the shape parameter, while

σ2ggd determines the variance of the distribution. A formal defini-

tion of the GGD, along with a detailed explanation of the moment

matching approach [33] used to estimate its parameters, is given in

Appendix A. The feature tuple, (α, σ2ggd), is denoted by f in Table 1.

The statistics of products of spatially adjacent bandpass and

divisively normalized perceptually processed pixels is highly regu-

lar. As in the BRISQUE model [13], paired product coefficients

are also extracted at each coordinate by multiplying neighboring

MSCN coefficients along four directions: horizontal (H), vertical

(V), main-diagonal (D1), and secondary-diagonal (D2). These

coefficients capture the directional correlation behavior of images,

which is also perturbed by the presence of distortions. These co-

efficients are calculated as follows:

Hði, jÞ = Îði, jÞÎði, j + 1Þ
Vði, jÞ = Îði, jÞÎði + 1, jÞ
D1ði, jÞ = Îði, jÞÎði + 1, j + 1Þ
D2ði, jÞ = Îði, jÞÎði + 1, j − 1Þ

where i ∈ f1, 2, 3, : : :Mg and j ∈ f1, 2, 3, : : :Ng are spatial

indexes.

Histograms of the paired product coefficients show trends

similar to those of the MSCN coefficients; wider histograms for

noisy images and thinner histograms for blurred images, as

depicted in Fig. 5. As in the BRISQUE, Asymmetric Generalized

Gaussian Distribution (AGGD) is used to model the distributions

of the paired product coefficients. The parameters ðγ, βl , βrÞ of the
AGGD, where γ is the shape parameter and βl and βr are the left-

and right-half scale parameters, are estimated using a different

moment-matching technique [34] that is described in Appendix B.

The mean of the model distribution is also extracted as a feature:

η = ðβl − βrÞ
Γ
�
2
γ

�
Γ
�
1
γ

� (8)

Thus, fitting the AGGD model to each set of paired product co-

efficients yields four features (η, γ, βl , βr), which are denoted by pp

(acronym for paired products) in Table 1. The parameters from the

GGD and AGGD fit are obtained at two different scales, although

more scales could be used.

The sigma field σði, jÞ of a grayscale image given by Eq 7 has

also been shown to exhibit a regular structure that is perturbed by

the presence of distortion [20]. As in the Feature Maps–Based

Referenceless Image Quality Evaluation Engine [20], we extracted

three sample statistics (kurtosis, skewness, and arithmetic mean)

of the sigma field at three scales to capture the statistical

FIG. 3

(a) Gaussian blur applied to the original pristine
image, and the X-ray images in (b) and (c) depict
severe distortion levels of multiplicative noise.
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FIG. 4 Plots of the histograms of MSCN coefficients of pristine and distorted X-ray images. The plot in (a) illustrates the scale-invariant behavior of the
MSCN coefficients of undistorted images. Three histograms on the plots in (b) and (c) correspond to the pristine, noisy, and blurred X-ray pictures
shown in Fig. 3. The terms org, noise, and blur denote original pristine image, noisy image, and image with blur distortion, respectively.

(a)

(b)

(c)
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FIG. 5 Plots of the histograms of MSCN diagonal (a), (b) and (c) and horizontal (d), (e) and (f) paired product coefficients of pristine and distorted X-ray
images. The plots in (a) and (d) illustrate the scale-invariant behavior of the MSCN paired product coefficients of undistorted image.

(a)

(b)

(c)

(d)

(e)

(f)
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regularities (or lack thereof) of natural X-ray images. These fea-

tures are denoted by sf in Table 1.

Modality Classifier

In this section, we demonstrate a practical application of the NSS

features described above to distinguish different modes of images.

Specifically, we developed a Multi-Modality Image Classifier

(MMIC) that effectively classifies an image into one of four given

modalities: VL, millimeter-wave (MMW), infrared, and X-ray im-

ages. For this test, we use undistorted images from each modality.

The reason multiple modalities were selected was to demonstrate

the ability of the perceptually relevant NSS descriptors to accu-

rately model the statistics of natural images arising from different

imaging modalities. Importantly, while NSS models apply quite

well to each of the compared modalities, the models are slightly

TABLE 1 Feature summary for MSCN(f), pairwise products (pp), and Sigma field (sf) features for the first scale.

Feature ID Feature Description Computation Procedure

f 1 − f 2 Shape and Variance Fit GGD to MSCN coefficients

pp1 − pp4 Shape, mean, left variance, and right variance Fit AGGD to H pairwise products

pp5 − pp8 Shape, mean, left variance, and right variance Fit AGGD to V pairwise products

pp9 − pp12 Shape, mean, left variance, and right variance Fit AGGD to D1 pairwise products

pp13 − pp16 Shape, mean, left variance, and right variance Fit AGGD to D2 pairwise products

sf 1 − sf 3 Kurtosis, Skewness, and Mean Sample statistics of Sigma Field

Note: AGGD =Assymetric GGD.

FIG. 6

Example image from each modality.

TABLE 2 Median classification accuracy (with standard deviations) of MMIC across 100 train-test trials for different feature groups.

NSS Feature Set IR MMW VL X ray All

MSCN (f) 0.922 ± 0.028 1.000 ± 0.001 0.887 ± 0.048 0.884 ± 0.031 0.913 ± 0.014

Paired products (pp) 0.981 ± 0.014 1.000 ± 0.001 0.952 ± 0.026 0.969 ± 0.016 0.978 ± 0.007

Sigma field (sf) 0.781 ± 0.038 0.940 ± 0.024 0.682 ± 0.050 0.763 ± 0.044 0.780 ± 0.018

f + pp 0.981 ± 0.012 1.000 ± 0.001 0.960 ± 0.022 0.973 ± 0.014 0.981 ± 0.006

All combined 0.989 ± 0.012 1.000 ± 0.001 0.971 ± 0.019 0.990 ± 0.010 0.987 ± 0.005
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different. Indeed, these differences can be used to efficiently dis-

tinguish them.

A total of 2,000 images were obtained from different sources:

387 pristine VL images from the BSD [35] and LIVE [36] data-

bases; 505 IR images from the MORRIS [37], KASER [38], and

NIST [39] databases by random selection; 531 MMW frames ex-

tracted from 13 videos provided by NIST; and 577 X-ray images

obtained from the GDXray [25] and NIST databases by random

selection. An example image from each modality is shown in

Fig.6. Since the images were obtained from highly diverse sources,

there was considerable intraclass variation in the size, quality, res-

olution, and dynamic range of the images. After extracting NSS

features as described earlier, a supervised classifier was taught on

the training data. We trained a Support Vector Classifier with the

radial basis function (RBF) kernel against the ground truth label

of each image in the training set. To test the performance of the

MMIC, we computed results over 100 iterations of randomly

sampled train and test sets and reported median results. At each

iteration, we randomly split the image data into two disjoint 80 %

train and 20 % test sets. Median accuracies from 100 train/test

splits for various feature sets are reported in Table 2.

It may be observed from Table 2 that BRISQUE features

(f and pp) delivered higher classification accuracy than the sigma

field features over all modalities. In particular, paired product (pp)

features were significantly more discriminative than the other fea-

ture sets, since VL, IR, MMW, and X-ray images all have different

degrees of spatial correlation induced by resolution limitations

and also contain different degrees of detail, which is efficiently

captured by the statistics of products of neighboring pixels.

There was a slight improvement in accuracy by combining fea-

tures from both NSS models. In order to visualize which modal-

ities are easily confused, we plotted the confusion matrix for each

modality in Fig. 7. It is worth noting that a small percentage of VL

images were misclassified as X-ray images. These cases mainly

FIG. 7 Confusion matrix with rows as true class and columns as
predicted class show the mean classification accuracy of the
MMIC classifier.

0.991

0.000

0.000

0.009

0.000

1.000

0.000

0.000

0.009

0.000

0.958

0.000

0.000

0.000

0.042

0.991

IR MMW VL X-ray

IR

MMW

VL

X-ray

FIG. 8 An example of a pristine VL image with an out-of-focus
background misclassified as an X-ray image by the MMIC
classifier, along with a comparison of the histogram of their
MSCN coefficients.
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correspond to VL images that have a shallow depth of field re-

sulting in an out-of-focus background, making them exhibit sta-

tistically similar properties as X-ray images (as shown in Fig. 8),

which generally possess fewer high-frequency components. The

classification results reported in Table 2 show that NSS models

can be used to efficiently discriminate between different modes

of images. Since MMIC follows a modular approach in the num-

ber of different modalities it can handle, it should be possible to

test it on an even larger set of unique modality types, depending

on the ones used for training.

Conclusions

We found that NSS models apply quite well to X-ray images. They

capture the statistical consistencies of X-ray images as effectively

as they do with VL images. Furthermore, the NSS of X-ray images

can be used to automatically distinguish them from images from

other modalities. We believe that these perceptually powerful NSS

features will prove to be very useful for describing and measuring

the loss of statistical consistency of distorted images. Going for-

ward, we plan to apply our NSS image-modeling paradigm to the

important problem of perceptual assessment of X-ray image qual-

ity and to develop training-free X-ray image-quality predictors

that can accurately predict the perceptual quality of X-ray images

and, in particular, their effect of distortion on the human visual

task performance.
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Appendix A

The GGD [33] is given by the following equation:

f ðx; α, σ2ggdÞ =
α

2βΓð1=αÞ exp
�
−
�jxj
β

�
α
�

(A1)

where

β = σggd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=αÞ
Γð3=αÞ

s
(A2)

and Γð:Þ is the gamma function:

ΓðaÞ =
Z

∞

0
ta−1e−tdt a > 0: (A3)

the above expression, α is the shape parameter while σ2ggd deter-

mines the variance of the distribution. Now we describe the mo-

ment-matching technique used in Ref. [33] to estimate the GGD

parameters.

(1) The sample variance of the zero-mean MSCN coefficients
is first estimated as σ̂2ggd =

1
N

P
N
i=1 x

2
i .

(2) Next, the ratio ρ = σ̂2ggd=Ê
2½jXj� is computed, where

Ê½jXj� = 1
N

P
N
i=1 jxij.

(3) A lookup table for generalized Gaussian ratio function,

rðαÞ, is designed for 0 < α < 2, where rðαÞ = Γð1=αÞ·Γð1=αÞ
Γ2ð2=αÞ .

(4) Finally, the shape parameter is estimated by finding a sol-
ution to α̂ = r−1ðρÞ via a lookup table.
ðα̂, σ̂ggdÞ are the final estimated shape parameters of the
GGD distribution obtained using a simple but effective
moment-matching approach.

Appendix B

The AGGD [34] is given by the following:

f ðx; γ, βl , βrÞ =

8><
>:

γ

ðβl + βrÞΓ
�
1
γ

� exp�−�−x
βl

�
γ
�

x < 0

γ

ðβl + βrÞΓ
�
1
γ

� exp�−� x
βr

�
γ
�

x ≥ 0
(A4)

where βl and βr are given by Eq A5:

βl = σl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=γÞ
Γð3=γÞ

s
, βr = σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð1=γÞ
Γð3=γÞ

s
(A5)

In the above expression, γ is the shape parameter while βl and βr
are the left- and right-half scale parameters of the distribution.

The parameters ðγ, βl , βrÞ of the AGGD are estimated using a

moment-matching technique described in Ref. [34].

(1) The ratio R̂ = r̂ ðη̂3+1Þðη̂+1Þ
ðη̂2+1Þ2 is computed, where an unbiased

estimate of r is r̂ =

�P
jxkj

�
2

P
x2k

, and η is η̂ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nl

PNl
k=1, xk<0 x

2
k

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nr

P
Nr
k=1, xk≥0

x2k

q .

(2) A lookup table for inverse generalized Gaussian ratio
function, ρðηÞ, is designed for 0 < η < 2, where

ρðηÞ = Γ2ð2=ηÞ
Γð1=ηÞ·Γð1=ηÞ .

(3) The shape parameter is estimated by finding a solution to

γ̂ = ρ−1ðR̂Þ via a lookup table.
(4) Finally, the scale parameters, βl and βr , are estimated from

Eq A5 using the sample estimates of left and right varian-
ces, and γ̂ from Step 3.
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