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Abstract— Over-the-top adaptive video streaming services are
frequently impacted by fluctuating network conditions that can
lead to rebuffering events (stalling events) and sudden bitrate
changes. These events visually impact video consumers’ quality of
experience (QoE) and can lead to consumer churn. The develop-
ment of models that can accurately predict viewers’ instantaneous
subjective QoE under such volatile network conditions could
potentially enable the more efficient design of quality-control
protocols for media-driven services, such as YouTube, Amazon,
Netflix, and so on. However, most existing models only predict a
single overall QoE score on a given video and are based on
simple global video features, without accounting for relevant
aspects of human perception and behavior. We have created
a QoE evaluator, called the time-varying QoE Indexer, that
accounts for interactions between stalling events, analyzes the
spatial and temporal content of a video, predicts the perceptual
video quality, models the state of the client-side data buffer, and
consequently predicts continuous-time quality scores that agree
quite well with human opinion scores. The new QoE predictor
also embeds the impact of relevant human cognitive factors, such
as memory and recency, and their complex interactions with the
video content being viewed. We evaluated the proposed model
on three different video databases and attained standout QoE
prediction performance.

Index Terms— Quality of Experience, subjective video qual-
ity assessment, continuous-time QoE, stalling events, network
impairments, mobile video quality.

I. INTRODUCTION

CAPTURING, storing, sharing, and streaming of dig-
ital visual media continues to experience explo-

sive growth in online applications of social media,
entertainment, medicine, geoscience, transportation security,
and e-commerce. An increasing number of video entertain-
ment services are being offered by such major video content
providers as YouTube, Netflix, HBO, and Amazon Video.
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On social media, video-centric mobile applications such as
Facebook LIVE, Snapchat, Periscope, Google Hangouts, and
Instagram LIVE are also becoming increasingly popular.
Given the ubiquitous availability of portable mobile devices
for video capture and access, there has been a dramatic shift
towards over-the-top (OTT) video streaming and sharing of
videos via social media websites and mobile applications. This
growing consumption of visual media is fueling the demand
for high quality video streaming on different viewing platforms
having varied bandwidth capabilities and display resolutions.

As a way to account for the performance of these media-
centric applications, finding ways to measure and maximize an
end user’s quality of experience (QoE) [2] is gaining attention
among content and mobile providers. QoE in this context
refers to a consumer’s holistic perception and satisfaction with
a given content or communication network service. Media
streaming services typically employ cloud video transcoding
systems, leveraging HTTP-based adaptive streaming protocols
such as Dynamic Adaptive Streaming over HTTP (DASH) [3]
and HTTP Live Streaming (HLS) [4] to make video delivery
scalable and adaptable to the available network bandwidth.
Under such protocols, videos are typically divided into seg-
ments (of fixed duration), where each video segment is
encoded at multiple bitrates and resolutions (also called video
levels). A stream-switching controller designed at either the
server side [5] or the client side [6]–[9] adaptively predicts
(and then requests) an “optimal” video level depending on
such factors as the requester’s device, the client-side data
buffer occupancy, and the current network conditions. Under
volatile network conditions, the controller may request video
segments of varied bitrates interspersed with stalling events,
thus potentially causing viewer annoyance. Some examples of
video frames afflicted with combinations of compression and
stalling artifacts are shown in Fig. 1.

There has been some progress made on the design of
intelligent controllers that aim to reduce the number of stalls
and bitrate switches; however, none of these measure an
end user’s continuous time-varying or overall perceived QoE.
While aiming to reduce the number of stalls and bitrate
switches is a reasonable approach to reduce viewer annoyance,
it does not account for a viewer’s time-varying QoE. A user’s
perceived QoE at any given instant is greatly influenced by the
complex interplay of video content, the number and frequency
of rebuffering events, rebuffering lengths, rebuffering locations
within a video, and fluctuating bitrates, as well as by cognitive
factors such as memory and recency. Being able to quickly and
accurately predict the instantaneous viewing experience of an
end user objectively by consolidating all of the aforementioned
factors could supply crucial feedback to stream-switching
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Fig. 1. Sample stalled frames from videos in the LIVE Mobile Stall Video Database-II [1] encoded at different bitrates.

algorithms (at either the client or the server side). Such
objective QoE predictors could also serve as an enabling step
towards the design of stream-switching algorithms that can
efficiently balance the tradeoffs between network operational
costs and delivering videos with the highest possible quality
to customers.

A. Motivation for a Continuous-Time Quality Predictor

Most existing objective models extract global stall-
informative features, such as cumulative stall length and
number of stalls, to train an overall QoE predictor [10]–[12].
However, the natural temporal information of video contents
and stalling events, which have a crucial effect on user
QoE, are not effectively captured by such global statistics.
Furthermore, perceived quality also depends on a behavioral
hysteresis or recency “aftereffect,” whereby a user’s QoE at
a particular moment also depends on their viewing expe-
riences preceding that moment [13]. For example, in the
context of QoE, the memory of an early unpleasant viewing
experience caused by a stalling event may negatively impact
future QoE and, thus, may also negatively impact the overall
QoE. A long initial delay (of length L, for example) at
the beginning of a video sequence may more likely to lead
to viewer abandonment, than when viewing the same video
content containing multiple stalls whose total length equals L.
Additionally, a stalling event occurring towards the end of a
video sequence could have a more negative impact on the
final overall perception of video quality, than a stall of the
same length occurring at an earlier position in the same video.
This dependency on previous viewing experiences is generally
nonlinear and can be crucial in determining both the overall
as well as the instantaneous QoE of viewers [13], but this
information is not currently being exploited by contemporary
QoE prediction models.

To study these effects, we have developed an objective,
no-reference, continuous-time QoE predictor that we call the
Time-Varying QoE (TV-QoE) Indexer for processing stream-
ing videos afflicted by stalling events and quality variations.
To tackle this difficult problem, we sought to solve several
sub-problems simultaneously, including how factors such as
stalling event properties, the data buffer state, and video
content impact an end user’s QoE. Driven by these factors,
we define and extract several useful distortion-informative
features, and model them as continuous-time inputs. These
are used to design an ensemble of Hammerstein-Wiener (HW)
models [14] that serves as an integral component of our QoE
model. Towards effectively modeling the joint impact of the

aforementioned factors on QoE, we strategically combine this
ensemble of models and accurately predict the continuous-time
QoE scores of streaming videos.

B. Contributions

To thoroughly understand and model the effect of several
video quality-influencing factors on QoE, we summarize our
contributions below:

1) First, we describe the comprehensive set of continuous-
time, stall-informative, video content-informative, and
perceptual quality-informative inputs that we derive
from distorted videos. These inputs contain useful evi-
dence descriptive of the effects of stalls and quality
degradations on the time-varying QoE of a streaming
video (Sec. IV-A).

2) We mathematically model the dynamics of a client-
side data buffer that takes into account the variations
in the bitrates at which the streaming video segments
are encoded, as well as the instantaneous network
throughput. This dynamic model serves as a valuable
indicator of the fluctuations in perceived QoE due to
stalling events (Sec. IV-B).

3) We employ a Hammerstein-Wiener model that effec-
tively captures the hysteresis effects that contribute to
QoE using a linear filter. Further, it also accounts for the
nonlinearity of human behavioral responses using non-
linear functions at the input of the linear filter (Fig. 8).
Each distortion-informative input is independently used
to train a HW model with memory, resulting in an
ensemble of HW models (Sec. V).

4) We fuse the predictions of these individual HW models
by employing and comparing two different strategies:
(a) a multi-stage approach, in which the Hammerstein-
Wiener models are concatenated, such that the predic-
tions from the learners at one stage are supplied as
inputs to another HW Model at a subsequent stage and
(b) a multi-learner approach, in which the predictions
of the individual HW models are used to train a dif-
ferent learner, called the meta-learner [15] (Sec. V).
These two predictors are independently trained to predict
continuous-time QoE scores.

5) To address the side problem of predicting the overall
perception of the quality of experience after viewing
a video, we derive useful global statistics from our
comprehensive set of continuous-time inputs, and we
also design a global overall QoE predictor (Sec. VI).
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6) We evaluate our QoE predictors (multi-stage, multi-
learner, and global) on three different video QoE
databases, and analyze the performances of the proposed
models when different amounts and types of information
about the test video are available.

Our experiments show that the proposed global and
continuous-time QoE predictors effectively capture the con-
tributions of several QoE-influencing features and subjective
effects such as memory and recency.

II. RELATED WORK

A. VQA Databases Modeling Stalling Events

Subjective and objective video quality assessment is a very
active area of research, and a number of popular public-
domain subjective video quality databases [16]–[20] have
been designed in the past decade. The videos in these data
collections model different post-capture and in-capture spatial
and temporal distortions, such as compression, transmission
errors, frame freezes, artifacts due to exposure and lens
limitations, focus distortions, and color aberrations. However,
these databases do not model network-induced distortions,
such as start-up delays and stalling events, or combinations of
stalling events and compression effects. A few video quality
studies have been conducted in the recent past to analyze
the effects of network streaming quality on QoE. The only
openly available databases are the LIVE Mobile Stall Video
Database-I [21], [22] and the Waterloo Quality-of-Experience
Database [23], which contain a wide-variety of video contents
(174 and 200 respectively) and network-induced impairments.
However, these databases only capture a single overall QoE
score for each video. The newly designed LIVE Mobile
Stall Video Database-II [1], on the other hand, contains per-
frame mean QoE scores, in addition to overall QoE scores
obtained via a subjective study using all 174 publicly avail-
able videos. The database presented in [24] also models
network-induced impairments and captures continuous-time
QoE scores; however, only 24 out of the 112 video contents
are publicly available.

B. Automatic QoE Predictors

Top-performing global and continuous-time video qual-
ity predictors [25]–[31] that have been developed in
the past decade deal with post-processing distortions but
not network-induced impairments, and they cannot cap-
ture the impact of stalling events interspersed with bitrate
variations. A number of objective QoE predictors have been
designed [10]–[12], [32]–[37]. Some of these methods derive
global video statistics and are also based on the total stall
length and on the number of random video stalls. However,
these models only make global measurements, and therefore
do not capture the time-varying levels of satisfaction experi-
enced when viewing streaming videos.

The DQS model [38] also considers global stall statistics
and a linear model to predict a continuous-time QoE score.
Specifically, this model defines three events: start-up delay,
first rebuffering, and multiple rebuffering (explicitly) based on
empirical observations on the final QoE scores of the LIVE

Mobile Stall Video Database-I [22]. The underlying assump-
tion of the DQS model is that an end user’s QoE is driven
by these predefined events, and different model parameters
are chosen to determine the contribution of each event to the
model’s quality prediction. Thus, the generalizability of the
DQS model to more diverse stall patterns is questionable.

The recently proposed SQI model [23] combines perceptual
video presentation quality and simple stalling event-based fea-
tures to predict QoE. In a preliminary model detailed in [39],
we modeled four inputs based purely on stalling events,
using them to train a single Hammerstein-Wiener model to
predict continuous-time perceptual quality. As we describe
next, we have greatly expanded the suite of QoE-sensitive
inputs to the model. We derived a total of 6 stall-based inputs
based on our insights from collecting continuous-time QoE
scores [1]. These include the output of a model of the client-
side data buffer state, measurements of spatial and temporal
video complexity, and predictions delivered by a perceptual
video quality algorithm. We use these to create two separate
continuous-time QoE predictors and one global QoE predictor,
which we evaluate on all existing video QoE databases.

III. LIVE MOBILE STALL VIDEO DATABASE-II

We briefly describe the key characteristics of the LIVE
Mobile Stall Video Database-II [1] that is used in this work.
As mentioned earlier, this new database contains 174 test
video sequences modeling 26 diverse stall patterns. There
are 24 reference videos of varied spatial and temporal com-
plexities, with mobile-focused video resolutions, which were
used to construct the test sequences in the dataset (Figure 1).
We conducted a subjective study in a calibrated study setting
gathering per-frame subjective opinion scores from about
27 unique viewers per test video. This rich data proved to
be a valuable resource that allowed us to analyze and better
understand various aspects of the effects of rebuffering events
on end users’ QoE, such as their lengths, their frequency of
occurrence, and their location within videos. We refer the
reader to [1] for more details regarding our comprehensive
analysis of subjective behavior that occurs when viewing
videos impaired by stalling events.

IV. MODELING CONTINUOUS-TIME INPUTS

FOR QOE PREDICTION

With a goal to model the effects of stalls as well as video
content, distortion, and other factors on QoE, we designed
a number of stall-informative and content-informative input
channels that we describe next. We list the set of measurements
that our model relies on, along with some brief descriptive
comments of each, in Table I.

A. Video Stall-Driven Inputs

1) Stall Length: One of our inputs (u1[t]) is designed to
capture the impact of stall lengths on QoE. Given a video,
if s1[t] denotes the length of a stall at a discrete time instance t ,
then let

u1[t] = eα1s1[t ] − 1, (1)
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TABLE I

DESCRIPTION OF THE PROPOSED DYNAMIC INPUTS

Fig. 2. An example video sequence with 6 stalling events from the LIVE
Mobile Stall Video Database-II [1], where the stall waveform (in red) is
overlaid on the average of the temporal subjective QoE scores from each
subject (in blue). For the purpose of illustration, a value of 0 in the stall
waveform indicates normal video playback, while a value of 50 in the stall
waveform indicates a stalling event.

where α1 is a scalar chosen via cross-validation (Sec. VII).
The choice of a nonlinear exponential function to express
the influence of stall lengths on predicted QoE is motivated
by the basic observation that viewer annoyance increases
with rebuffering length [1]. Using a parameterized exponential
makes it possible for TV-QoE to learn the steepness of the
stall-length / annoyance relationship.

2) Total Number of Stalls: We also found from our analysis
of the subjective data in [1] that, as the number of stalls
increases, user annoyance increases monotonically, irrespec-
tive of the video content or duration. Further, as may be
observed in the example in Fig. 2, perceived QoE tends to
decrease with every stall occurrence. To capture the impact of
the number of stalls on QoE, we defined another dynamic input

u2[t] = eα2s2[t ] − 1, (2)

where s2[t] is the total number of stalls up to a discrete
time instance t . Again, using an exponential model makes it
possible to capture a viewer’s annoyance against the number
of stalls. The parameter α2 is also a scalar chosen via
cross-validation (Sec. VII).

3) Time Since the Previous Stall: The next continuous-
time input targets recency. Viewers generally react sharply
to a stall occurrence, and as the period of time following
the end of a stall increases, the viewer’s perceived QoE may
reflect improved satisfaction with the streaming video quality.

However, immediately (and for some period of time) following
a stall, the viewer’s perceived QoE generally reflects height-
ened annoyance with the streaming quality. We found clear
evidence for this behavior in the continuous-time subjective
data obtained on the LIVE Mobile Stall Video Database-II [1].
Figure 2 also illustrates this behavior.

Thus, the third input to our model is the time since the pre-
ceding rebuffering event at every discrete instant t , with values
of zero representing times during stalls. If [Ti,end , Ti+1,begin ]
denotes the discrete time interval between the stall event (si )
ending at time Ti,end and the next stall event (si+1) starting at
time Ti+1,begin ,1 then

u3[t] =
{

t − Ti,end i f [Ti,end ≤ t < Ti+1,begin ]
0 i f [Ti,begin ≤ t < Ti,end ]. (3)

4) Frequency of Stalling Events: Next, we sought to define
a model input that excludes the effects of stall lengths, instead
capturing the interplay between the number of stalling events
and the length of video playback time up to a given time
instant (p[t]). Therefore, our next input captures the effects of
the density of the stalls on QoE relative to the current moment.
The frequency of stalling events (u5[t]) at a given time t is
given by

u4[t] = p[t]
s2[t] , (4)

where s2[t] is the total number of stalls up to time t .
5) Rebuffering Rate: While the frequency of stalling events

captures important interactions between video length, playback
time, and the number of stalls, our next input focuses exclu-
sively on the interplay between stall lengths and the length of
playback up to a given time instant (p[t]). To motivate the
construction of this input, consider a single, very long stalling
event in a video of length 90 seconds. This event may impact
QoE differently than would a relatively short stalling event in
a 20-second video. To effectively account for this hypothesis,

1If there does not exist a stall event si+1, then Ti+1,begin denotes the end
of the video.
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Fig. 3. (Top row) A sample test video impaired by intermittent stalling events. (Bottom two rows) Stall-descriptive continuous input waveforms computed
from a video sequence as described in Sec. IV-A. The vertical axis labels the type of input. Best viewed in color.

Fig. 4. Illustration of a possible client-side data buffer state.

we define the rate of rebuffering events as:

u5[t] = r [t]
r [t] + p[t] , (5)

where r [t] is the total sum of stall lengths up to time t , and
p[t] is the playback time up to time instant t .

We illustrate the aforementioned inputs for a sample stall
pattern in Fig. 3.

B. Modeling the Dynamics of the Client-Side Data Buffer

As previously mentioned, OTT services employ adaptive
bitrate streaming algorithms, wherein the end-to-end network
conditions are constantly monitored, and the bitrates of future
video segments are chosen based on the current data buffer
status of the client’s media player, with a goal to mini-
mize the occurrences of stalling events. In OTT streaming

under constrained network conditions, the state of the data
buffer varies dynamically, and a stream-switching controller
constantly chooses either to request a lower bitrate video
segment or to risk the possibility of stall occurrence. Thus,
the dynamics of a data buffer have a direct impact on streaming
video quality but are not being modeled in any existing QoE
models [23], [38], [39].

Existing publicly available databases do not provide
dynamic data buffer capacity information to accompany their
spatially- or temporally-distorted videos, because the videos
were constructed by manually inserting stalls. Hence we
designed and used a simple model of a client-side data buffer,
which we describe next. Note that, in the event that a media-
streaming service or a QoE database can make available the
actual buffer capacity trace, then it could be directly plugged
into our QoE learner without needing to explicitly model the
client’s data buffer as we do below.

Assumptions and Notation: We make the following assump-
tions about the client-side data buffer, which are reflected in
our mathematical model. A possible client-side data buffer is
illustrated in Fig. 4.

• That a client-side data buffer is of a fixed size with a capac-
ity measured in seconds. BU F F_M AX_C AP AC I T Y is
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Fig. 5. Possible states of the client-side data buffer model.

defined as the maximum amount of video content that can
be stored in a buffer.

• Without loss of generality, that each video segment that
is being adaptively transmitted from the media server
is 1 second long.

• That the buffer occupancy builds and depletes exponen-
tially. However, a different function can be easily applied
in place of the exponential function.

• That BU F F_M I N_C AP AC I T Y = 1, which is the
minimum amount of video (in seconds) that should be
present in the data buffer for it to be able to handle input
bitrate variations. This quantity can also be understood as
requiring the data buffer to contain at least one second’s
worth of video content in order to continue playback on the
client’s media player. If the buffer state does not satisfy this
minimum requirement, the result on the client side would
be the occurrence of a rebuffering event.

• O[t] is the rate at which the video content leaves the buffer
at time t . It can take one of the two possible values

O[t] =
{

1, during playback

0, during stall
(6)

i.e., one second of video content leaves the data buffer
during each second of playback, and no video content
leaves during a playback interruption.

• Let B[t] be the amount of buffer that is occupied with
video content and �B[t] be the rate of change of the buffer
occupancy at a given discrete time instant t .

• Let L[t] denote the bitrate at which the incoming video
segment is encoded, and I [t] be the network throughput at
time t .

At a given discrete time instant t , the rate of change of the
buffer occupancy can be defined as follows [5]:

�B[t] = I [t]
L[t] − O[t], (7)

i.e., �B[t] is the difference between the amount of video
(in seconds) that is entering the buffer and the amount of
video (in seconds) that is leaving the buffer. Thus, variations
in the buffer occupancy can be introduced due to changes
in I [t] or L[t]. When videos are encoded under a constant
bitrate (CBR) regime, then L[t] is fixed over the entire dura-
tion of the video sequence being streamed, which would not
be the case for videos encoded under a variable bitrate (VBR)
regime.

Fig. 6. Example video sequence with one stall between t1 and t2 and another
stall at t3. A value of 0 in this waveform indicates successful video playback,
while a value of 1 indicates a stall event.

In the proposed model, the client-side data buffer can exist
in one of the following three phases (illustrated in Fig. 5):

1) A steady-state phase where there is sufficient content
in the data buffer to be transmitted to the client’s
media player at time t , i.e., B[t] ≥ BU F F_M I N_
C AP AC I T Y .

2) A build-up phase, where the buffer builds up until it
reaches BU F F_M I N_C AP AC I T Y , i.e., until B[t] <
BU F F_M I N_C AP AC I T Y . In this phase, set O[t] =
0 until I [t]/L[t] ≈ BU F F_M I N_C AP AC I T Y .
In other words, until the buffer contains at least one sec-
ond of content, no amount of video content can leave
the buffer, and thus, a rebuffering event occurs.

3) A depletion phase that occurs when I [t]/L[t] < O[t].
In this phase, the amount of data leaving the buffer
is greater than the amount of data entering the buffer,
which causes the buffer to slowly deplete until there is
no more data to transmit.

We will now illustrate how a data buffer might transition from
one state to another through a general scenario. Consider a
video sequence v[t] (illustrated in Fig. 6) such that

1) there is a stall event between times t1 and t2;
2) there is smooth continuous playback between times

t2 and t3;
3) and there is another stall event that occurs after t3.

A possible data buffer scenario can be described as follows
(Fig. 7):

1) At a discrete time instant t = t1, the buffer starts off
empty, but it must enter the build-up phase before
t = t2 for playback to begin.

2) Next, the buffer must be in the steady-state phase for
some time (ts) between t2 and t3.

3) The buffer should next enter the depletion phase and
must be completely empty at t = t3, for a stall to occur
at t = t3.

We effectively model the different phases of the buffer as
follows:

1) Modeling the buildup phase (between t1 and t2):
• We randomly sample a discrete time instant tb

between times t1 and t2.
• We fit an exponential function between data points

(tb, 0) and (t2, BU F F_M I N_C AP AC I T Y ).
2) Modeling the depletion phase (between t2 and t3):

• We randomly sample a discrete time instance td
between times t2 and t3.
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Fig. 7. Illustrating a possible client-side buffer state (in blue) for a given
playback state (in red). Best viewed in color.

• We fit an exponential function between data points
(td , BU F F_M I N_C AP AC I T Y ) and (t3, 0).

During smooth playback (steady-state phase), the buffer
capacity is not necessarily always at BU F F_M I N_
C AP AC I T Y , but instead can fall anywhere in the range
[BU F F_M I N_C AP AC I T Y, BU F F_M AX_C AP AC I T Y ].
However, we chose not to model the steady-state phase of
the data buffer, because it does not cause any quality
degradations in the streaming video, and therefore does not
influence viewer QoE.

C. Video Content-Driven Inputs
As mentioned earlier, in addition to stalling events,

a viewer’s QoE can further be affected by the interplay of
other factors such as video quality (due to the presence of
distortions), and the spatial and temporal complexities of the
video. During our subjective study in [1], we instructed sub-
jects to not judge a video based on their interest in the content,
but we did not provide instructions regarding the audio or the
video presentation quality. To deepen our understanding in
these regards, we sought to study the contributions of these
aspects on QoE.

1) Perceptual Video Quality: Perceptual video quality can
be defined as the quality of a digital video as perceived by
human observers, as a reaction to the presence of different
forms of spatial and temporal distortions. Rebuffering events,
while a form of distortion, do not fall in this category. Bitrate
variations and rebuffering events co-occur in streaming videos,
and although rebuffering events are more likely to dominate
a viewer’s QoE, rapid bitrate variations can also significantly
impact an end user’s dynamic viewing experience and must
be accounted for when designing a QoE predictor.

Towards this end, we incorporate either a full-reference,
a reduced-reference, or a no-reference video quality assess-
ment (VQA) algorithm [28], [41], [42] in our model,
depending on the application scenario. Given the information
provided by an objective VQA algorithm, we compute a
perceptual VQA score at every second, which provides a
continuous-time waveform of perceptual quality. This serves
as another continuous-time input to our QoE predictor.

2) Video Space-Time Perceptual Measurement: Videos con-
tain highly diverse spatial and temporal complexities, and
different video contents may be retained differently in mem-
ory [43], [44]. These may both interact with past memories of

Fig. 8. Block diagram representing the structure of a Hammerstein-Wiener
model.

unsatisfactory viewing experiences, e.g., caused by rebuffering
events or bitrate drops. The perceptual video quality input
designed in Sec. IV-C1 is not sufficient to capture this aspect,
so we chose to use a variant of a spatial-temporal metric called
scene criticality [40]. Let Fn denote the luminance component
of a video frame at instant n, and (i, j) denote spatial
coordinates within the frame. A frame filtered with the spatial
Sobel operator [45] is denoted as Sobel(Fn). Also define the
frame difference operation Mn(i, j) = Fn(i, j) − Fn−1(i, j).
As formulated in [46], spatial perceptual information (SI)
and temporal perceptual information (TI) measurements are
computed as

SI [n] = ST Dspace

[
Sobel(Fn(i, j))

]
, (8)

T I [n] = ST Dspace

[
Mn(i, j)

]
, (9)

where ST Dspace denotes the standard deviation computed over
all the pixels of a given image (Fn or Mn ). These are simple,
widely used measurements of video activity [46].

By combining these quantities, a continuous-time scene
criticality input at every n is arrived at:

Cri ticali ty[n] = log10

[
SI [n] + T I [n]

]
. (10)

We study the efficacies of each of these content-driven inputs
on continuous-time QoE prediction in Sec. VII. Note that in a
real implementation setting, all of the continuous-time inputs
can be easily computed on the fly in real time.

V. TRAINING A CONTINUOUS-TIME QOE PREDICTOR

A. Hammerstein-Wiener Model

When designing a dynamic model that can accurately pre-
dict perceived QoE, structural simplicity and computational
efficiency are highly desirable. Moreover, the dynamic model
should also crucially account for the affects of subjective
hysteresis and memory on viewers’ QoE [13], [47]. While
a simple linear system model would be desirable, human
visual responses contain numerous nonlinearities [48]–[50],
which should also be modeled. However, there are no existing
behavioral models that can be used to directly and explicitly
model the combined effects of the diverse considered inputs,
nor of how the inputs relate. Therefore, towards simultane-
ously capturing the nonlinearities in human visual responses
and the hysteresis effect, we employed a simple but powerful
classical nonlinear system identification approach called the
Hammerstein Wiener (HW) model [51], which can accept
multiple dynamic inputs and use them to produce dynamic
output predictions.

The core of the HW model is a linear filter with mem-
ory [51] to capture the hysteresis effect, with an input point
nonlinearity of a very general form to allow the model to
learn nonlinearities. This simple design makes it possible to
capture both linear and nonlinear aspects of human behavioral
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Fig. 9. The multi-stage framework for predicting dynamic QoE.

responses. The output linear scaling block simply scales the
output of the linear filter to continuous-time quality scores.
Figure 8 shows a block diagram of the single-input single-
output (SISO) Hammerstein-Wiener model that we use.

We denote any given continuous-time input (described in
Section IV) as u[t] and the resulting continuous-time output
as y[t] (see Fig. 8). The input non-linear and output static
functions are denoted by f and h respectively. The linear filter
block of our model has the following form:

x[t] =
nb∑

d=0

bdw[t − d] +
n f∑

d=1

fd x[t − d]

= bT (w)t−nb:t + fT (x)t−n f :t−1, (11)

where w[t] is the output of the nonlinear input block at time t .
The parameters nb and n f define the model order, while the
coefficients b = (b1, . . . , bnb )

T and f = ( f1, . . . , fn f )
T are

learned.
At the input, we process the signal with a generalized

sigmoid function of the form

w[t] = β3 + β4
1

1 + exp(−(β1u[t] + β2))
. (12)

The output block, which scales the output of the linear IIR
filter to a continuous-time QoE prediction, is a simple linear
function of the form

y[t] = γ1x[t] + γ2, (13)

where β = (β1, . . . , β4)
T and γ = (γ1, γ2)

T are also learned.

B. An Ensemble of Hammerstein-Wiener Models
The HW model is the building block of our continuous-time

QoE predictor. Each of the distortion-informative continuous-
time inputs (detailed in Sec. IV) is independently used to
train a HW model, thereby leading to an ensemble of M
HW models. Our next task is to accurately combine them to
jointly model the interactions between these factors. Formally,
if Yi ∀i = 1, 2, ..M are the continuous-time outputs predicted
from each HW model (H Wi), then

Ycombined = �(Y1, Y2, Y3, ..YM ), (14)

where � is a function that maps the individual outputs to
a combined desired output Ycombined . In our case, we have
a total of 9 inputs (6 stall-derived and 2 content-derived) to
design an ensemble of M = 9 SISO HW models. We chose
to strategically combine these models by learning � via the
following two alternative approaches:

1) Multi-Stage Approach: In this approach, we utilize the
predictions from each HW model (H Wi ) to train another
Wiener model2 (Fig. 9). Specifically, each individual predic-

2A Hammerstein-Wiener model without an input non-linearity block is a
Wiener model [52].

Fig. 10. The multi-learner framework for predicting dynamic QoE.

tion serves as input to another linear filter (in the second stage),
followed by an output linearity block. Thus, the model in
the second stage is a MISO (Multiple Input, Single Output)
Wiener model. Given a test video’s distortion-informative
inputs, we use the trained multi-stage framework to directly
derive the final continuous-time QoE prediction Ycombined .

Although we utilized a two-stage model here, we note that
this can be easily extended to more stages if desired. For
example, by training separate MISO Wiener models for stall-
derived and content-derived inputs, then fusing them using
another MISO model, a third stage could be added to the
framework, and so on.

2) Multi-Learner Approach: As mentioned earlier, the
LIVE Mobile Stall Video Database-II [1] supplies per-instant
ground truth QoE scores for each test video sequence.
We denote the continuous-time output of a H Wi model
for a given video content of length V seconds as Yi =
[yi1, yi2, yi3, . . . yiV ]. In this approach, we first construct a set
of instance-label pairs for each video content, ( ȳ I

n , y L
n ) ∀ n =

1, 2, ..V , where yL
n is the ground truth subjective QoE at time

instant n and ȳ I
n = [y1n, y2n, . . . yMn] are the predictions from

each of the M HW models at time instant n. Using the instant-
label pairs of all the video contents in the training set, we train
a support vector regressor (SVR) to learn the mapping func-
tion �. We illustrate this learning framework in Fig. 10. Thus,
in this approach, we use multiple learners: Hammerstein-
Wiener models that predict the continuous-time outputs Yi ,
and an SVR that learns �. Given a test video’s distortion-
informative inputs, we use the pre-trained H W models and
� to directly derive Ycombined using an SVR. Since the
SVR is trained on the predictions of other learners, it is a
meta-learner [15]. Other learners (random forests, multilayer
perceptron, etc…) could also be used in place of the SVR.

C. Advantages of the Proposed Dynamic Frameworks

• Structural Flexibility: The proposed ensemble frame-
work is extremely flexible, since it can be further sup-
plemented with any number of additional inputs (or by
eliminating any ineffective ones), without changing the
general structure of the model.

• Computational Efficiency: Each of the SISO HW mod-
els are extremely fast (the average training time on a
video of average length 86 seconds was 0.54 seconds).3

3These runtimes were obtained using MATLAB’s implementation of the
Hammerstein Wiener model [52] when executed on Ubuntu 14.04 OS with
an Intel i7 CPU (single processor) and 32 GB of RAM.
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TABLE II

DESCRIPTION OF THE PROPOSED GLOBAL VIDEO QOE FEATURES

The models can also be trained in parallel to improve the
overall computation time on a test video.

• Modeling the effects of Memory: The long-term and
short-term effects of memory on viewing experience
could be easily modeled by adding more SISO HW mod-
els to the ensemble using the same kinds of distortion-
informative dynamic inputs, but with varied values of the
memory parameters (nb and n f defined in (11)).

Note that a single MISO HW model could potentially be
designed instead of constructing an ensemble of SISO H W
models. However, this approach has several disadvantages:
1) the train and test times would be very high when training
on multiple nonlinearly transformed inputs. 2) a MISO HW
model cannot be trained on different inputs in parallel, and
3) jointly learning multiple input non-linear functions requires
a very large amount of training data which is not available in
any of the existing QoE databases.

VI. AN OVERALL QOE PREDICTOR WITH

GLOBAL VIDEO FEATURES

Although continuous-time QoE predictors are valuable,
there is also a need for accurate, computationally efficient
overall (end-of-video) QoE predictors that could be used
when the resources of the stream-switching controllers are
limited or when a different analysis is desired. Thus, we also
trained an overall QoE predictor by designing comprehensive
global features (listed in Table II) which are derived by
effectively encapsulating the aforementioned continuous-time
inputs. With regard to the perceptual quality score feature,
as we describe in Sec. VII-E, we tested different pooling
strategies and different objective VQA algorithms in regard to
their ability to derive a single, effective, representative quality
score to be used as a feature to feed our global model.

A non-linear mapping was learned between these global
features and the corresponding real-valued overall QoE scores
of the training videos, using an SVR with a radial basis kernel
function. Given any test video’s features as input to the trained
SVR, a final QoE score may be predicted. The optimal model
parameters of the learner were found via cross-validation. Our
choice of the model parameters was driven by the obvious aim
of minimizing the learner’s fitting error to the validation data
(details in Sec. VII).

VII. EXPERIMENTS

We evaluated the proposed TV-QoE model and all other cur-
rently known continuous-time QoE and global QoE predictors

on three different databases: the LIVE Mobile Stall Video
Database-II [1], the Waterloo QoE Database [23], and the
recent LIVE-Netflix Video QoE Database [24]. Every dis-
torted video in the LIVE Mobile Stall Video Database-II is
afflicted by at least one stalling event. However, 60 of the
180 distorted videos in the Waterloo QoE Database, and 56 of
the 112 videos of the LIVE-Netflix Video QoE Database are
afflicted only by compression artifacts. Since stall-based inputs
are not applicable to videos having only compression artifacts,
we constructed two disjoint video sets: Vs and Vc, comprising
videos afflicted with only compression artifacts and videos
afflicted with combinations of stalling events and compression
artifacts (if any), respectively.4 In each of the experiments we
describe below, we evaluated the performance of the various
predictors on both of these disjoint video collections, wherever
applicable.5

For every experiment, each database (and video set) was
partitioned into training and testing data (80/20 split) with
non-overlapping content. To mitigate any bias due to the
division of data, the process of randomly splitting each dataset
was repeated 50 times. Since global TV-QoE and one of the
compared models (V-ATLAS [53]) are learning-based, in each
iteration, a model was trained from scratch on the 80% of
the data that was set aside for training, then evaluated on the
remaining 20% of the test data. FTW [54] and the Streaming
QoE Index (SQI) [23] are training-free algorithms, but for
a fair comparison with the learning-based models, we report
their performance on the test data alone. All of the existing
(global and continuous-time QoE) predictors such as SQI [23],
FTW [54], and V-ATLAS [53] capture different aspects of
stall patterns and distortions. V-ATLAS [53] also computes
the normalized (relative to the video duration) time per video
over which a bitrate drop took place. The authors follow the
simple notion that the relative amount of time that a video is
more heavily distorted is directly related to the overall QoE.

For each test split, depending on the type of predictor
being evaluated (continuous-time or global), we computed
three different metrics as described below:

1) Continuous-time performance was evaluated by com-
puting the median of the per-frame correlation and root
mean square error (RMSE) between the subjective and
the estimated continuous QoE for each distorted test
video. The median of these per-video correlations and
errors was computed as a performance indicator of the
given split.

2) Overall QoE performance of a global QoE predictor
for a given split was evaluated by computing the cor-
relation and RMSE between the predicted overall QoE
and the ground truth overall QoE of the test videos.

For continuous-time as well as global predictors, we report
the median Pearson Linear Correlation Coefficient (PLCC),
median Spearman Rank-Order Correlation Coefficient
(SROCC), and the median RMSE across the 50 test splits.
Higher median correlation values indicate better performance

4Skipping stall-based inputs is the same as setting all stall-based inputs
to zero, provided that these instances are carefully handled in the feature
normalization step.

5Note that Vc is the empty set ∅ for LIVE Mobile Stall Video Database-II.
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TABLE III

PERFORMANCE OF CONTINUOUS-TIME QOE PREDICTORS ON THE LIVE MOBILE STALL VIDEO DATABASE-II. NOTE THAT THE PER-FRAME
QOE VALUES LIE IN THE RANGE [0, 100]. THE BEST PERFORMING MODEL IS INDICATED IN BOLD FONT

of a QoE prediction model with better monotonicity and linear
accuracy, while lower median RMSE values indicate better
accuracy of the model. Since SQI and FTW are training-
free algorithms, their predictions were passed through a
logistic non-linearity [55] mapping them to the ground truth
QoE scores before computing PLCC. Furthermore, since
the Waterloo QoE Database [23] does not contain ground
truth continuous-time subjective scores, we were only able to
evaluate global QoE models on that database. The continuous-
time TV-QoE predictors were superior to all the compared
models on all databases with statistical significance. Due
to space constraints, we report the results of the statistical
significance tests that we conducted on the results of every
experiment described below in the supplementary material.

Parameter Selection: To find the optimal parameters for
each individual Hammerstein-Wiener QoE prediction model
in the ensemble, we determined the model order parameters
(nb, n f , b, f, β, and γ ), and the input nonlinearities via cross-
validation on the LIVE Mobile Stall Video Database-II [1].
Specifically, we divided the entire dataset into 70% training,
10% validation, and 20% test sets. We conducted a simple
grid-search of the parameter values to train each model on the
training dataset, then evaluated its performance on the valida-
tion dataset, which is disjoint from the test data. We found
that the values nb = 4 and n f = 3 served as the final
model parameters for each of the SISO Hammerstein-Wiener
models in the ensemble. We also determined the values of
the weights α1 in (1) and α2 in (2) using cross-validation.
Specifically, we performed a grid search varying both scalars
between 0.1 and 0.7 in steps of 0.1, trained a series of models
using the training data, and evaluated the performance of
each on the validation data. We found that the models with
α1 ≈ 0.2 and α2 ≈ 0.1 yielded maximum correlation scores,
and thus, these values were used in all the experiments on all
the databases.

Henceforth, the multi-learner will be referred to as
TV-QoE-1, while the multi-stage learner will be referred to
as TV-QoE-2. The parameters of both the Wiener model in
the TV-QoE-2 framework (Sec. V-B1) and the SVR in the
TV-QoE-1 framework (Sec. V-B2) were also determined via
cross-validation. For the Wiener model in the TV-QoE-2,
we found that the value of nb = 1 and a simple linear output
block yielded maximum correlation scores on all the databases.
In the TV-QoE-1 framework, we employed an SVR using a
non-linear radial basis kernel function.

TABLE IV

CONTRIBUTION OF THE PROPOSED STALL AND VIDEO CONTENT-BASED

DYNAMIC INPUTS TOWARDS CONTINUOUS-TIME QOE ON THE

50 TEST SPLITS OF THE LIVE MOBILE STALL VIDEO
DATABASE-II [1]. THE VIDEO CONTENT-BASED

INPUTS ARE ITALICIZED

A. Performance of Continuous-Time Predictors on
LIVE Mobile Stall Video Database-II

First, we evaluated the performance of continuous-time QoE
models on the distorted videos of the LIVE Mobile Stall Video
Database-II. The results are reported in Table III. Since we
proposed two different ways of combining the ensemble of
Hammerstein-Wiener models, we report the performance of
both of these models. SQI, which is the only other existing
continuous-time QoE predictor, uses a per-frame quality metric
to compute the spatial quality on each frame. Specifically,
the instantaneous QoE (Qn) at each frame n is computed as the
sum of a video presentation quality (Pn), i.e., spatial quality,
and a stall-dependent experience quality (Sn). Since the LIVE
Mobile Stall Video Database-II does not have reference videos,
we relied on a popular per-frame NR-IQA metric, NIQE [41],
to compute the continuous-time SQI scores.

It may be observed from Table III that the proposed set
of dynamic inputs and learners significantly outperform SQI.
It may also be observed that the proposed multi-learner
approach (Sec. V-B2) performs better than the multi-stage
approach (Sec. V-B1), for every given input combination. The
likely reason for this is that the SVM is better able to account
for nonlinear correlations between the first stage outputs.
We will show next that NIQE scores [41] are poor indicators
of instantaneous QoE, so including NIQE as an input slightly
impairs the performance of TV-QoE. Figure 11 illustrates a
few examples of the ground truth and the predicted continuous-
time QoE waveforms of a few test videos from the proposed
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Fig. 11. Some examples of the continuous-time predictions obtained from the proposed algorithm (indicated in red) on different test video sequences of the
LIVE Mobile Stall Video Database-II. The ground truth dynamic QoE response is indicated in magenta and the associated 95% confidence interval derived
from the responses from individual subjects is indicated in green. Spearman Rank Ordered Correlation (SROCC) and Root Mean Squared Error (RMSE)
between the instantaneous predicted and ground truth QoE is also reported in each plot.

TABLE V

PERFORMANCE OF CONTINUOUS QOE PREDICTORS ON THE VIDEO SET Vs OF THE LIVE-NETFLIX VIDEO QOE DATABASE. NOTE THAT THE

PER-FRAME QOE VALUES LIE IN THE RANGE [−2.26, 1.52]. THE BEST PERFORMING MODEL IS INDICATED IN BOLD FONT

approach (using the multi-learner approach and the stall-based
inputs in isolation). It may be observed that the proposed
model does not overfit to the existing dataset, but instead
attempts to accurately predict the varying trends in each
dynamic QoE prediction. In some of the examples, it may
be observed that the QoE predictions occasionally fall outside
of the 95% confidence interval, despite maintaining a strong
monotonic relationship with the ground truth dynamic QoE.

B. Intrinsic Analysis of the Individual Dynamic Inputs

To better understand the relationship between our input
set and the dynamic QoE, we trained separate Hammerstein-
Wiener Models on each input on the same 50 random, non-
overlapping train and test splits of the LIVE Mobile Stall
Video Database-II, as were used in Sec. VII-A. We report
the median SROCC and PLCC scores over these 50 iterations
in Table IV. These results illustrate the degree to which each
of these inputs accurately predict perceived QoE, while also
justifying the choice of our inputs. Nevertheless, this analysis
does not account for any relationships between the various
inputs. It may also be observed that the per-second NIQE
scores [41] performed rather poorly at predicting QoE scores
when videos were afflicted by stalling events. Thus including
this input when conducting continuous-time QoE prediction

degrades performance (Sec. VII-A). Of course, the NIQE
model utilizes only spatial information and does not benefit
from any reference signal or training process.

C. Performance of Continuous-Time Predictors
on the LIVE-Netflix Video QoE Database

As mentioned, we divided the entire collection of 112 videos
in the LIVE-Netflix Video QoE Database into two disjoint
video sets: Vc and Vs . Videos belonging to Vs contain both
compression and stalling artifacts, while those in Vc con-
tain only compression artifacts. Hence, on the video set Vc,
we did not use any stall-based inputs,6 relying instead only
on the content-driven inputs. We report the performance of
TV-QoE-1, TV-QoE-2, and SQI in Table VI. For videos in Vs ,
however, we used both stall-based as well as content-based
inputs, and report the performance in Table V. Furthermore,
we also considered scenarios where either a FR, RR, or NR
VQA model would be incorporated into the QoE predictor.
It may be observed from these results that TV-QoE signifi-
cantly outperforms SQI on both video sets, especially when
videos were afflicted by both stalls and compression artifacts.
Further, the multi-learner approach (TV-QoE-1) yielded better

6This is same as setting stall-based inputs to zero.
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TABLE VI

PERFORMANCE OF CONTINUOUS QOE PREDICTORS ON THE VIDEO SET Vc OF THE LIVE-NETFLIX VIDEO QOE DATABASE. NOTE THAT THE
PER-FRAME QOE VALUES LIE IN THE RANGE [−2.26, 1.52]. THE BEST PERFORMING MODEL IS INDICATED IN BOLD FONT

Fig. 12. Scatter plots of the ground truth overall QoE scores and the predicted overall QoE scores obtained on a single test split from four different global
QoE predictors on the LIVE Mobile Stall Video Database-II [1]. The proposed Global TV-QoE model (left most), is statistically significant than all other
global QoE predictors.

performance than the multi-stage approach (TV-QoE-2) on
both video sets of the LIVE-Netflix Video QoE Database.

D. Cross-Dataset Evaluation of TV-QoE

As an example of cross-database evaluation, we trained
the better performing multi-learner model, TV-QoE-1, on the
LIVE Mobile Stall Video Database-II, then tested it on 20%
of the video set Vs of the LIVE-Netflix Video QoE Database.
This is the only meaningful cross-database comparison we
can make, since otherwise the overlap of features that can
be extracted from the pair of databases under consideration
becomes too small. In this experiment, we only considered
stall-driven, scene criticality, and NIQE as the continuous-time
inputs, since only these input features that are shared by the
two databases. We found that TV-QoE-1 achieved a median
PLCC of 0.7823 and a median SROCC of 0.6355 over the
same set of 50 test splits that were used in the Sec. VII-C.
These are outstanding numbers, given that (Table V) the cross-
dataset performance of TV-QoE-1 was superior to that of SQI
on the LIVE-Netflix Video QoE Database.

E. Performance of Global QoE Predictors

Next, we evaluated the performance of the proposed global
features (Table II) and other global QoE predictors under
identical train/test settings on all three databases and report
the results in Tables VII, VIII, and IX. We computed the
perceptual quality scores using various quality predictors and
tested several pooling strategies to derive a single quality score
from the per-frame perceptual quality score, to be used as a

TABLE VII

PERFORMANCE OF GLOBAL QOE MODELS ON THE LIVE MOBILE
STALL VIDEO DATABASE-II [1]. NOTE THAT THE FINAL QOE
VALUES LIE IN THE RANGE [0, 100]. THE BEST PERFORMING

MODEL IS INDICATED IN BOLD FONT

global feature. However, due to space constraints, we only
report the results obtained from the pooling strategy that
yielded the best performance. Note that the LIVE Mobile
Stall Video Database-II does not contain pristine videos,
so we relied on the no-reference (NR) picture quality model
NIQE [41] to supply VQA scores on this database. For
the other two databases, the reference videos are available,
so we report the performance using full-reference (SSIM [42]),
reduced-reference (ST-RRED [28]), and no-reference VQA
models (NIQE [41]). Note that when evaluating the pro-
posed global QoE predictor on the video sets Vc of different
databases, we utilized only the video content-based inputs,
since the stall-informative global features do not capture
any information. When evaluating the proposed global QoE
predictor and V-ATLAS, we trained an SVR with a radial
basis kernel function, by separately finding the optimal SVR
parameters via cross-validation on all three databases.
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TABLE VIII

PERFORMANCE OF GLOBAL QOE PREDICTORS ON THE WATERLOO QOE DATABASE [23]. NOTE THAT THE FINAL
QOE VALUES LIE IN THE RANGE [0, 100]. THE BEST PERFORMING MODEL IS INDICATED IN BOLD FONT

TABLE IX

PERFORMANCE OF GLOBAL QOE PREDICTORS ON THE LIVE-NETFLIX VIDEO QOE DATABASE [24]. NOTE THAT THE FINAL

QOE VALUES LIE IN THE RANGE [−1.6, 1.6]. THE BEST PERFORMING MODEL IS INDICATED IN BOLD FONT

We found that the proposed global QoE predictor out-
performs all existing QoE predictors on the LIVE Mobile
Stall Video Database-II (Table VII). It is also clear from
these results that including NIQE as a global perceptual
quality metric benefits the QoE prediction. The scatter plots
of the predicted and the ground truth QoE scores for one
test split are illustrated in Fig. 12. With regard to the
Waterloo QoE Database, there are a couple of oddities in
the results arising from the database design. Each of the
120 videos in the Waterloo QoE Database belonging to Vs

are of the same length and each contains one stalling event
of duration 5 seconds. In this peculiar scenario, the other-
wise different global TV-QoE and V-ATLAS features capture
exactly the same information, thereby yielding identical per-
formances (Table VIII). Moreover, since the FTW model [54]
is based on only two features (the number and the summed
length of stalls), it predicts the same quality score on all video
contents in the Waterloo QoE Database. On the LIVE-Netflix
QoE Database, the global TV-QoE model competes very well
with the performances of V-ATLAS and SQI (Table IX).

VIII. CONCLUSIONS AND FUTURE WORK

We presented a continuous-time video QoE predictor that
effectively captures the effects of a variety of QoE-influencing
factors, and that models the client-side data buffer model,
subjective hysteresis, and that is able to accurately predict
viewers’ instantaneous QoE. We have also designed a global

QoE predictor that achieves top performance on all existing
QoE databases. The success of the proposed models encour-
ages us to design quality-aware stream-switching algorithms
which could control the position, location, and length of stalls,
given a network bandwidth budget and the end user’s device
information, such that the end user’s QoE is maximized. Such
a model could have a direct and immediate impact on existing
adaptive stream-switching algorithms that are used in the client
players of global content providers such as YouTube and
Netflix and could also propel user-centric mobile network
planning and management.
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