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Melanoma Classification on Dermoscopy
Images Using a Neural Network

Ensemble Model
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Abstract— We develop a novel method for classifying
melanocytic tumors as benign or malignant by the analysis
of digital dermoscopy images. The algorithm follows three
steps: first, lesions are extracted using a self-generating
neural network (SGNN); second, features descriptive of
tumor color, texture and border are extracted; and third,
lesion objects are classified using a classifier based on
a neural network ensemble model. In clinical situations,
lesions occur that are too large to be entirely contained
within the dermoscopy image. To deal with this difficult
presentation, new border features are proposed, which are
able to effectively characterize border irregularities on both
complete lesions and incomplete lesions. In our model,
a network ensemble classifier is designed that combines
back propagation (BP) neural networks with fuzzy neural
networks to achieve improved performance. Experiments
are carried out on two diverse dermoscopy databases that
include images of both the xanthous and caucasian races.
The results show that classification accuracy is greatly
enhanced by the use of the new border features and the
proposed classifier model.

Index Terms— Dermoscopy image, neural network
ensemble, feature extraction, lesion classification.

I. INTRODUCTION

MALIGNANT melanoma (MM) is the third most fre-
quent type of skin cancer and one of the most malignant

cancers [1], [2]. Invasive melanoma alone has an estimated
incidence of 73,870 and an estimated total of 9,940 melanoma
deaths occurred in the United States in 2015 [3]. As compared
with the U.S., Europe and Australia, the incidence of skin
cancer in China is lower, but it has still been increasing
3%-8% annually and has doubled over the past decade [4].

Dermoscopy is a non-invasive skin imaging technique which
allows a magnified visualization of the skin surface and
subdermal structures [5]. Dermoscopy images have played
a significant role in increasing the survival rate of patients
by assisting the early diagnosis of MM. However, diagnoses
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that are made by human experts, while still the clear gold
standards, are nevertheless subjective. Indeed, the accuracy
and reproducibility of diagnosis is highly dependent on the
expertise of the physician. It has been reported that der-
moscopy may actually lower diagnostic accuracy when con-
ducted by inexperienced dermatologists [6]. Computer-aided
diagnosis (CAD) systems for skin cancer, which are not
subjective, can assist the physician when making decisions
via lesion border detection, quantifying diagnostic features,
classifying lesions by type, etc [2]. According to Schinde-
wolf et al. [7], the accuracy of diagnosis of MM can be
increased from 75% up to as high as 92% when skilled
dermatologists use CAD systems to evaluate skin cancer.

Usually, a computerized dermoscopy image analysis model
includes four aspects: preprocessing, segmentation, feature
extraction and classification. Studies related to classification
of lesion objects can be found in the literature as early
as 1987 [8]. Pigmented skin lesions are typically evaluated by
dermatologists using the “ABCD” rule [9], [10], which ana-
lyzes the Asymmetry, Border irregularity, Color variation and
Different structures of a lesion. Based on the “ABCD” rule,
many classification methods have been developed on diverse
datasets of dermoscopy images. In [11], Kusumoputro et al.
extracted 18 shape and color features from dermoscopy
images and used to train an artificial neural network to
separate MM from benign lesions. In [12], Ganster et al.
extracted a set of features from lesion images, including
shape, border gradient and color colorbluedescriptors. The
most discriminative features among these were then selected.
A K-Nearest Neighbor (KNN) classifier was finally trained on
these features to deliver a sensitivity of 87% with a specificity
of 92%. In [13], 437 features descriptive of color, texture
and shape were extracted, from which 18 optimal features
were selected. A support vector machine (SVM) was then
trained to classify the lesions into benign nevi or melanoma.
Capdehourat et al. [14] characterized each candidate lesion
by a set of features containing shape, color and texture
information, which were used to train an AdaBoost classifier
with C4.5 decision trees. This model delivered a specificity
of 77% with sensitivity of 90% on an automatically segmented
database, and a specificity of 85% with sensitivity of 90% on
a manually segmented database.

Most of the existing literature regarding computer-assisted
lesion classification has focused on feature extraction and
classifier design on images that are either explicitly, or implic-
itly, assumed to contain a complete lesion object. However,

0278-0062 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



850 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 3, MARCH 2017

Fig. 1. Dermoscopy images containing incomplete lesion objects.

images may not always capture entire lesions, as shown
in Fig. 1. Local features can be used to deal with the com-
plex situations. Situ et al. [15] extracted local features from
16 × 16 image patches using wavelets and Gabor-like filters,
then analyzed the responses using a bag-of-features (BoF)
model to recognize MM. In [16], Barata et al. extracted texture
and color features, then used a BoF model to code these
features to classify lesions. They then improved classification
performance by imposing a color constancy constraint [17].
The features in [16] and [17] were extracted from image
patches, in order to better cope with incomplete lesions.
However, border features were ignored, which are important
for lesion diagnosis. Here, we proposed a dermoscopy tumor
classification model that aims to handle incomplete tumor
presentations. The model utilizes a set of tumor border features
along with other tumor-descriptive features, which are fed
to a neural network meta-ensemble model that is trained to
differentiate malignant lesions from benign lesions.

The remainder of the paper is organized as follows.
Section II describes preprocessing and segmentation.
In Section III, feature extraction is presented. Section IV
introduces the neural network ensemble model. In Section V
and Section VI, we present and discuss the experimental
results. Finally, Section VII gives concluding remarks.

II. PREPROCESSING AND SEGMENTATION

Hair removal is the purpose of the preprocessing stage.
Dermoscopy image analysis can be greatly complicated by
the presence of hair. For these images, hairs are detected and
removed using the partial differential equation (PDE)-based
image repair method presented in [18].

The accuracy of the segmentation process greatly affects
subsequent feature extraction and classification. Although a
number of automatic segmentation methods for dermoscopy
images have been proposed, segmentation is usually achieved
via a semi-automatic method involving manual interaction, or
by completely manual segmentation [13], [17]. In our earlier
work [19], an automatic method based on a self-generating
neural network (SGNN) model was developed to segment der-
moscopy images, and was able to obtain more accurate results
under complex conditions than Otsu’s threshold [20], k-means,
fuzzy c-means and statistical region merging (SRM) [21].
Here, we use a SGNN model to segment the images as a
proxy for either fully automatic or semi-automatic segmenta-
tion. Figure 2 shows two segmentation results obtained using
the SGNN model of [19]. Since some of the experimental
images were not accurately segmented by the SGNN method
(for example Fig. 2(b)), we manually segmented these to
obtain more accurate borders.

Fig. 2. Segmentation instances on two dermoscopy images (yellow line:
SGNN, blue line: manual).

Fig. 3. Generation of two lesion regions. (a) Original lesion image.
(b) Segmentation result on (a) Using SGNN. (c) Using SGNN followed
by Otsu’s threshold.

III. FEATURE EXTRACTION

The most common features mentioned in the literature on
dermoscopic lesion classification involve color, texture, and
shape [13], [22], [23]. Border features are less well-described
[12], [24]. Since we are interested in handling images contain-
ing incomplete lesion objects in our dataset, shape features are
abandoned in our model. In the following, we describe a set
of widely used color and texture features as well as a set of
lesion border features that are effective on incomplete lesions.
These features are used in our classification method.

A. Region Division on Dermoscopy Images

In [13], Celebi et al. computed features over three regions:
lesion, inner periphery, and outer periphery. However, on
images containing incomplete lesions, some color and struc-
tural asymmetry features cannot be calculated correctly using
the division proposed in [13]. Therefore, we instead divide
the lesion object into two regions: a diffusion region and
an inner lesion region. First, each lesion object is separated
from the background skin using a combination of the SGNN
method and manual interaction, as described in Section II.
Then, Otsu’s threshold [20] is used to automatically segment
the lesion into these two region types. Figure 3 is an example
showing generation of these two regions. In our method,
features are extracted on both individual regions, as well as
over the entire lesion region.

B. Description of Color and Texture Features

The color and texture features used in our model are the
same as those described by Celebi et al. in [13]. We briefly
summarize these features.
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1) Color features:
(a) RGB features: A total of 24 color features are extracted

from each dermoscopy image represented in RGB color
space. Of these, 18 are calculated as follows: for each
of the 3 RGB channels, 2 statistics (the channel mean
and standard deviation) are computed for 3 segmented
regions (diffusion, inner lesion, entire lesion object). The
remaining 6 features are the ratios of corresponding
statistics from inner and diffusion regions. Denoting
μregion and σregion as the mean and standard deviation
of the channel value within a region, 3 of these features
are μinner

μtransition
on 3 channels, with similar features defined

using σregion .
(b) LUV histogram distances: The LUV color space is

coarsely quantized into 4 × 8 × 8 bins. The color
similarity between the inner region and the transition
region is expressed as the L1-norm and L2-norm of
the difference histograms, yielding 2 additional color
features.

(c) Color diversity: RGB color space is divided into
16 × 16 × 16 bins. Then the number of the bins, into
which there are pixels to be divided, is calculated. The
larger the number of bins, the more that likely the lesion
is malignant. One feature is found here.

(d) Centroidal distances: Given a segmented lesion object,
the distance is calculated between the geometric centroid
of the object and the brightness centroid of the same.
If the pigmentation of the object is homogeneous, the
brightness and geometric centroids should be similar.
This is true even for incomplete objects. Three features
are obtained by computing this distance from each
RGB channel.

2) Texture Features: The spatial variations, randomness
and correlations of local regional image brightness are
important descriptions of possible malignancy. The gray level
co-occurrence matrix (GLCM)-based texture descriptor is
one of the most well-known and widely used methods in the
literature [25]. In this paper, 5 statistical texture descriptors
are calculated from the GLCM: the regional energy, entropy,
contrast, inverse difference moment and correlation. These
5 statistics are also calculated over each of the 3 segmented
regions (diffusion, inner lesion and the entire lesion object).
Again, the ratios of the 5 statistics on the diffusion and inner
lesion regions are also calculated. The total number of texture
features extracted from each candidate lesion image is 20.

C. Description of Border Features

Border features [12], [24] that are used to characterize the
degree of border irregularity of lesions are generally based
on measurements of color, texture or brightness gradient.
Ganster et al. [12] calculated the gradient and normalized
brightness values of border regions. Various sample statistics,
such as the minimum, maximum, average, and variance,
were used as border features. Similar to the method in [12],
the approach in [24] used a variety of gradient features to
characterize border regions, including the mean and variance
of the gradient magnitude along the candidate lesion border,
as well as over 8 symmetric regions around the candidate

Fig. 4. Lesion regions and their convex hulls. (a) Dermoscopy images
of benign (top) and malignant (bottom) lesions. (b) Segmented lesion
regions, where red lines are superimposed convex hulls.

Fig. 5. Extracted concavities on the malignant lesion in Fig. 4.

border in three separate channels: color, texture and local skin
darkness. These features [12], [24] were only extracted on
complete lesion objects. In order to extract border features
from incomplete objects, new border features are needed
that can operate on incomplete lesions, thus weakening the
dependence of lesion classification on perfect acquisition of
dermoscopy images.

1) Lesion Concavity Features: Benign lesions tend to
have roughly elliptical shapes with roundish convex borders
that exhibit few concavities. Malignant lesions commonly
exhibit highly irregular borders that can be characterized as
having more frequent concavities. As such, the convex hull
is a useful tool for identifying border concavities. Figure 4
shows the convex hull of both malignant and benign segmented
lesions. We use the lesion convex hull to define 6 feature
parameters that are descriptive of the degree of concavities
occurring on the lesion border.

Figure 5 shows concavities that were extracted from the
malignant lesion image in Fig. 4. Figure 5 depicts ways of
quantifying border concavities. Let Nr denotes the number
of distinct concave segments along the border of the lesion
object, and let li , di and R Ai be the span, depth and area of
the i th concavity. Then 3 pairs of sample statistics are defined
on the lesion object as follows:

(a) Mean and standard deviation of span:

μs = 1

Nr

Nr∑

i=1

li (1)

δs =
√√√√ 1

Nr

Nr∑

i=1

(li − μs)2 (2)
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(b) Mean and standard deviation of depth:

μd = 1

Nr

Nr∑

i=1

di (3)

δd =
√√√√ 1

Nr

Nr∑

i=1

(di − μd)2 (4)

(c) Mean and standard deviation of the average
thickness:

μt = 1

Nr

Nr∑

i=1

R Ai

li
(5)

δt =
√√√√ 1

Nr

Nr∑

i=1

(
R Ai

li
− μt

)2

. (6)

On benign lesions, concavities tend to be smaller, shallower,
and more uniform in both span and depth. On malignant
lesions, highly variable spans, depths and thicknesses tend
to occur. Therefore, the values of these 6 feature parame-
ters computed on malignant lesions are larger than on the
benign lesion. The same observations are true on images
of incomplete objects, keeping in mind that artificial bound-
aries at the frame of the image are not included in the
computation.

2) Separation Between Inner and Outer Borders: As
described in Section III-A, detected lesions are segmented and
inner and diffusion lesion regions are identified as exemplified
in Fig. 3. Benign lesions tend to have well-defined outer lesion
borders (yellow contour in Fig. 3) and inner lesion borders
(blue contour). The diffusion region between inner and outer
borders are generally of uniform width, whereas malignant
lesions exhibit diffusion regions that are less regular, with non-
uniform diffusion widths. The separations between the inner
and outer borders are highly variable on malignant lesions as
compared to benign lesions.

Let �outer and �inner denote the outer and inner borders
respectively, and d(pi , p j ) denote the Euclidean distance
between any two pixels pi and p j . Then define the distance Di

from the i th pixel on the outer border to the inner border as:

Di = min j (d(pi , p j )), pi ∈ �outer , p j ∈ �inner (7)

The degree of variability of the separation between the inner
and outer borders can then be represented as the variance of
the distance from the outer border pixels to the inner border:

δD =
√√√√ 1

Np

Np∑

i=1

(Di − μD)2 (8)

where Np is the length of the outer border (in pixels) and
where

μD = 1

Np

Np∑

i=1

Di . (9)

As compared with the border characteristics of benign
lesions, the inner and outer borders of malignant lesions tend
to follow different paths causing highly variable separations

between the inner and outer borders. Thus, δD tends to take
much larger values on malignant lesions. Again, this measure
applies equally well to incomplete lesion objects.

D. Feature Normalization

A total of 57 features (30 color, 20 texture and 7 border)
have been described. While these features are highly descrip-
tive of lesion type, the 57 features exhibit very different ranges
of values. Thus we apply a process of feature normalization
prior to classification by forming z-scores as follows:

zi j = (xi j − μ j )/(3δ j ) + 1

2
(10)

where xi j is the value of the j th feature of the i th sample,
and μ j and δ j are the mean and standard deviation of the
j th feature, respectively. Using (10), most of the zi j values
are forced into the range [0,1], while out-of-range values are
clamped to either 0 or 1.

E. Feature Dimensionality Reduction

A careful process of feature reduction can eliminate
redundant, irrelevant and noisy features while also improving
classification performance. For example, in [13], Celebi et al.
extracted 437 original features, then selected 18 optimal
features from among them using the correlation based feature
selection (CFS) method to increase lesion classification
accuracy. However, this method does not completely remove
redundancies. Principal components analysis (PCA) is a
popular technique for dimensionality reduction. Given a set
of data on n dimensions, PCA aims to find a linear subspace
of dimension d lower than n such that the data points lie
mainly on this linear subspace [26]. Here, feature reduction is
accomplished by using PCA to filter out redundant, irrelevant
and noisy features. The details are described in Section V.

IV. CLASSIFIER DESIGN BASED ON

NEURAL NETWORK ENSEMBLE

Artificial nueral networks [11], SVMs [13], Adaboost [14]
and KNN [12] have been widely used for lesion classification.
Many factors influence classification performance, such as
parameter settings, extracted features or feature combinations,
and the quality of the experimental samples. On highly
representative benign or malignant lesions, correct
classification is easily achieved, yet on non-representative
lesions, incorrect classifications often happen. Therefore,
the difficult task is to achieve correct classification of
non-representative lesions. An artificial neural network
ensemble [27] is a composite model of multiple neural
networks, with better generalization ability and stability than a
single network. Bukhtoyarov et al. [31] improved classification
performance by using a network ensemble model to provide
“highly confident” classification results when predictions from
a single network classifier were “not confident”. Generally,
network ensemble models achieve more reliable classification
on non-representative objects. Here, we describe a neural
network ensemble classifier that deploys a variety of individual
networks to achieve more accurate lesion classification results.
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Fig. 6. Meta-ensemble model of multiple neural network ensembles.

A. Neural Network Ensemble

In a neural network ensemble, each network individual is
initially trained using the same training sample. Then, the
outputs of the individual networks are weighted to form the
overall output of the ensemble:

y(x, a) =
p∑

i=1

ai yi (x) (11)

where x is the input feature vector and ai is the weight applied
to the output of the i th individual network.

Neural network ensembles are effective only when the
individual nets make independent errors [27], [29]. A variety
of algorithms have been developed to train network ensem-
bles to achieve better generalization capability, which can be
broadly classified according to the type of initial conditions,
training data, network architecture and individual network
types. In an ensemble, the network architecture and network
type are completed in the model design stage, while the initial
conditions and training data are developed in the generation
stage of the individual nets.

B. Proposed Neural Network Meta-Ensemble Model

In the ensemble model design, varying the network structure
is a very common approach [30], [31]. The individual nets
in an ensemble are usually feed forward networks. Although
using multiple, diverse types of networks is generally regarded
as important to achieve the generalization ability of an ensem-
ble, the individual nets are usually of the same network type.

A back propagation (BP) neural network is a kind of multi-
layer forward network, while a fuzzy neural network (FNN)
is an inference system that combines fuzzy logic with an
artificial neural network. Both can effectively handle uncertain,
nonlinear, and other ill-posed problems. Here, we combine BP
networks with FNNs to create the ensemble model, and input
different features into the BP networks and FNNs. In addition,
in order to further improve the performance of the ensemble,
we design a meta-ensemble model, which is composed of three
ensembles having different network structures/types, as shown
in Fig. 6.

1) Ensemble 1: A lesion is classified as either benign
or malignant, which is a two-class problem. Ensemble 1
is designed to be a combination of single-hidden-layer BP
networks, where all the BP individuals have the identical
structure N-N-1 (N is the dimension of the input feature
vector).

The individual nets need to be generated, and a standard
boosting method [32], [33] is used here. Boosting generates
a series of component networks whose training data sets
are determined by the performance of the former networks.
Training instances that are wrongly predicted by the former
networks will play more important roles in the training of the
later networks. In order to obtain diverse individuals, the initial
parameters are randomly generated.

2) Ensemble 2: Although using diverse types of networks
is regarded as important to achieve individual diversity in an
ensemble, the individual nets are usually of the same network
type. In our model, ensemble 2 is designed as a combination
of BP networks and FNNs. As with ensemble 1, the BPs in
ensemble 2 have the N-N-1 structure, and each individual
is generated using the boosting method. A standard FNN
consists of 5 layers. By using the reduced feature set with
four principle components described in section III-E, the FNN
obtains a classification accuracy close to that obtained using
all 57 original features. Therefore, to increase the difference
between BP networks and FNNs, only the first four principle
components are chosen as input to the FNN individuals in the
ensemble, and their structures are 4-12-81-81-1. Similarly, the
fuzzy net individuals are obtained by the boosting method. It is
obvious that the designed ensemble 2 improves the individual
diversity by using different network types.

3) Ensemble 3: Using a different network structure is
a common way to increase the generalization ability of an
ensemble. In ensemble 3, double-hidden-layer BP networks
with the N-H1-H2-1 structure are employed, where H1 and H2
are the number of units in the two hidden layers, respectively.
For each BP individual, H1 and H2 are determined as follows:

• Given Q samples, randomly select k samples as the
training set;

• While varying H1 from N/3 + 1 to N and H2 from
0 to N/3, train the network on the k samples and
calculate the prediction accuracy using the remaining
Q − k samples. The values of H1 and H2 yielding the
highest accuracy are taken as the optimal ones.

Since H2 ranges from 0 to N/3, the individuals with one
hidden layer will exist in ensemble 3 when H2 is equal to 0.
In addition, because the individuals have been trained when
determining parameters H1 and H2, the boosting method is
not needed here.

There are two main design strategies for neural network
ensemble models [34]: the direct strategy and the overpro-
duce and choose strategy. In our model, ensembles 1 and 2
belong to the direct strategy, while ensemble 3 is better
described as belonging to the overproduce and choose strategy.
Therefore, our designed meta-ensemble model may be
regarded as a combination of these two strategies. By inte-
grating the three ensembles with different structures and
network types (see Fig. 6), the generalization ability of the



854 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 3, MARCH 2017

designed meta-ensemble model can be improved in regards
to four aspects: initial conditions, training data, network
architecture and individual network types.

C. Ensemble Size and Comprehensive Prediction

Many authors [27], [35] have discussed the importance of
ensemble size, and most of them determined the optimal size
through experiments. In [36] and [37], ranges of 5 to 11
individuals were suggested. In [16], Adaboost was used to
classify melanomas, and the best result was achieved with
combinations of only two to five weak classifiers. In this paper,
the size of each ensemble in the proposed model is set to 5.
For ensemble 2, because only 4 principle components are fed
to the fuzzy networks, which is smaller than the feature set
fed to the BP individuals, the number of BP individuals and
FNN individuals are 3 and 2 respectively.

There are two levels of ensemble outputs in the proposed
model shown in Fig. 6. The first level is the output of single
ensembles, and the second level is the integrated output of
all three ensembles. Two commonly used methods to pool or
combine the multiple outputs are voting and averaging. Some
studies [33], [38], [39] suggest that voting delivers better clas-
sification performance, while averaging is more suitable for
regression. Here, voting is employed within ensembles 1 and 3
because their individual nets are of the same type, while
weighted averaging is used for ensemble 2 since its individual
nets are of two different types. Finally, voting is used to form
the combined output of the meta-ensemble model.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We deploy two dermoscopy datasets in our experiments:
a xanthous race dataset and a caucasian race dataset.
The xanthous race dataset includes 240 dermoscopy images
(80 malignant and 160 benign), of which 90 are of incomplete
lesion objects (49 are originally incomplete, while 41 others
were rendered incomplete by random cuts). All of these
images were supplied by the General Hospital of the Air Force
of the Chinese Peoples Liberation Army and each image was
classified by an experienced dermatologist (Rusong Meng).
Of the 240 images in the xanthous race dataset, 174 images
were completely segmented via SGNN, and 66 images were
segmented by SGNN combined with manual interaction.
The caucasian race dataset includes 360 dermoscopy images
(120 malignant and 240 benign), in which there are 80 images
of incomplete lesion objects (67 originally incomplete,
13 rendered incomplete by random cuts). These images were
collected from the PH2 [40] and EDRA datasets [5]. Of the
360 images, 298 were automatically segmented by SGNN,
while 62 were segmented by SGNN combined with manual
interaction.

In order to evaluate the effectiveness of the proposed
method, the experiments were performed in regards to assess-
ing the performance dependence on four aspects of the model:
novel border features, feature reduction, the generalization
ability of the designed meta-ensemble model, and the per-
formance of the proposed classification framework. Three
metrics including sensitivity, specificity and accuracy are used.

TABLE I
FOUR BORDER FEATURE SETS USED FOR COMPARISON

Sensitivity is the probability of correct detection of disease,
while specificity is the probability that a benign lesion would
not be diagnosed as malignant, and accuracy defines the ratio
of the number of correctly classified samples to the total
number of cases. The higher the values of the three metrics,
the better the classification performance of the algorithm.

A. Experiment 1: Effectiveness of Border Features

In the proposed classification framework, the new border
features are combined with 50 color and texture features
to separate MM from benign lesions. In order to evaluate
the proposed border features, we compared them with other
border features extracted in [12], [13], [24], [41], and [42],
as shown in Table I. In these other studies, shape/geometric
features were extracted, which means that their border features
were calculated on the complete lesions. In order to avoid
unfair comparisons, invalid border areas are excluded when
extracting border features from incomplete lesions using the
compared methods.

We evaluated the classification efficiency of the differ-
ent border features on the xanthous race dataset, of which
90 images have incomplete lesions and 150 have complete
lesions. The classifier used was a single BP network with the
N-N-1 structure, with expected error=0.03, learning rate=0.7,
max epochs=1000, and where the activation function is a
sigmoid function. To validate performance, 10 times 10-fold
cross-validation was employed. Figure 7 shows the receiver
operating characteristic (ROC) curves of the different border
feature sets for all 240 images in the xanthous race dataset,
where the left one only used border features and the right
one used border features combined with 50 color and texture
(denote by C&T) features. The closer to the top-left corner
the ROC curve, the better the method. It can be seen that,
when using only border features, our border feature vector
greatly outperforms the compared border feature vectors.
When combined with 50 C&T features, the advantage of our
border feature vector is reduced. The AUC or area under the
ROC curve, when high, indicates good algorithm performance.
Table II shows the AUC values of different feature vectors.
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Fig. 7. ROC curves of different border features on xanthous race dataset.
(a) using only border features; (b) border features combined with
color&texture features.

TABLE II
AUC VALUES USING DIFFERENT BORDER FEATURES

ON XANTHOUS RACE DATASET

TABLE III
CLASSIFICATION ACCURACY USING DIFFERENT BORDER

FEATURES ON XANTHOUS RACE DATASET

It can be seen that our border feature vector achieves the
highest AUC values for only border features or for border
features combined with 50 C&T features.

Table III gives the classification accuracy statistics for
incomplete lesions, complete lesions and all the lesions
(including incomplete lesions and complete lesions). It can
be seen that incomplete lesions indeed decreased the
classification performance. When classifying the lesions
using only border features, our features achieved the best
classification accuracy for both incomplete lesions and
complete lesions. The classification results using only
50-D C&T features are also given in Table III. It can be seen
that, when combining C&T features with these border features,
the classification accuracy is improved, and the increase from
using our border features is the most obvious. Therefore, our
border features outperform the other border features.

Table IV shows the classification results using different
feature sets on the caucasian race dataset. In the caucasian
dataset, there are 80 images with incomplete lesions, and these
generally have more severe border loss than the incomplete
lesions in the xanthous dataset. It can be seen that FeatureSet 1
and FeatureSet 2, which are based on the normalized intensity
or gradient values of the lesion border, were easily influenced
by lesion border loss, and when lesion borders were severely

TABLE IV
CLASSIFICATION ACCURACY USING DIFFERENT BORDER

FEATURES ON CAUCASIAN RACE DATASET

lost, combining them reduced the classification accuracy of the
50-D C&T features on the incomplete lesions. However, the
features in FeatureSet 3 and FeatureSet 4 are based on fractal
dimension, the convex hull or the difference between inner
and outer borders, which are more robust. When combined
with the 50-D C&T features, the classification accuracy was
increased on both the incomplete lesions and the complete
lesions. Among the four feature sets, our border feature set
achieved the highest overall accuracy on the lesions in the
caucasian dataset. Our border features efficiently described the
lesion border irregularities.

B. Experiment 2: Effectiveness of Feature
Dimensionality Reduction Using PCA

Our model deploys 57 features to differentiate malignant
from benign skin lesions. Since not all features are equally
valuable for the classification task, PCA was employed to
remove feature redundancy and noise and to improve the
classification accuracy. In this experiment, we studied the
relative efficiency of using all 57 original features against
using the reduced feature sets obtained via the PCA method,
and selected the optimal reduced feature set for the subsequent
classification. The classifier used was a single BP network,
with the same parameters settings as in Section V-A. For
each of the two datasets including the xanthous race and
the caucasian race, 1/2 of the images were used as training
samples to determine the optimal reduced feature set, and the
remaining 1/2 of the images were used as test samples to verify
the classifier performance in Sections V-C and V-D.

To obtain a reasonable way to reduce the dimensionality, a
series of experiments was carried out by varying the number
of principle components (NPCs) or the accumulated variance
contribution rate (AVCR). Again, 10 times 10-fold cross-
validation was used. Table V presents the classification results
on the xanthous race dataset.

It can be seen that the two feature sets with 12 principle
components (AVCR of 96.07%) and 15 principle components
(AVCR of 97.46%) obtained the best accuracy among the
reduced feature sets and the original 57-D feature vector. The
reduced feature set with 15 principle components achieved
a balance between sensitivity and specificity, with better
performance than with 12 principle components. Therefore,
the reduced feature set with 15 principle components was
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TABLE V
CLASSIFICATION RESULTS OF REDUCED FEATURE SETS WITH

DIFFERENT DIMENSIONS AND 57-D FEATURE VECTOR

ON XANTHOUS RACE DATASET

adopted as the final input of the BP individuals in the designed
classifier for the xanthous race dataset.

The accuracy value in the last line of Table V is different
from that in the last line of Table III (both used the single BP
classifier with the N-N-1 structure) because their experimental
images are different.

As for the caucasian race dataset, the same experimental
protocol as on the xanthous race dataset was adopted, and the
reduced feature set with 22 principle components obtained
the best classification result. The caucasian race dataset has
different dimensions of the optimal reduced feature set than
the xanthous race dataset, perhaps caused by different skin col-
ors, different lesion characteristics, and even different image
datasets.

C. Experiment 3: Generalization Ability
of Different Ensembles

An artificial neural network ensemble has better general-
ization ability and stability than a single network. Here, we
combined BP networks with FNNs, yielding a BP+fuzzy
network meta-ensemble model. In a neural network ensemble,
weak classifier individuals are permitted to increase individual
diversity, therefore for BP individuals in the proposed model,
the expected error was set to 0.05, which is looser than on the
single BP classifier used in Sections V-A and V-B. In ensem-
ble 3 of our model, BP individuals have two hidden layers
and the numbers of the two hidden layers must be determined.
Following the method described in Section IV-B, for each of
the BP individuals, 70 percent of the training samples were
randomly selected to train it while the remaining 30 percent
were used to determine the optimal parameter H1 and H2.

Unlike traditional neural network ensemble models which
have only one level of prediction, our designed meta-ensemble
model, with three ensembles of different network structures/
types, has two level of prediction. In order to verify the
generalization ability of the proposed meta-ensemble model,
the classification performances of the single BP, the three
ensembles in our model, and the final meta-ensemble model,
were compared on the test images. Table VI and Table VII

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT ENSEMBLES

ON XANTHOUS RACE DATASET

TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT ENSEMBLES

ON CAUCASIAN RACE DATASET

give the classification results using the optimal reduced feature
sets for the xanthous race dataset and the caucasian race
dataset, respectively. In Table VI, the classification result for
the single BP with accuracy of 90% is different from the
result obtained with the optimal reduced feature set with
15 principle components shown in Table V (which also used a
single BP), because of the different experimental images used.
From Tables VI and VII, it can be seen that all three ensembles
improved the classification accuracy relative to single BP to
some degree, although one of the specificity metrics decreased.
When integrating the three ensembles together (the proposed
classifier model), the classification performance was improved
significantly relative to the single BP network. Therefore, the
designed meta-ensemble model achieved better generalization
ability than the three single ensembles.

D. Experiment 4: Performance Analysis
of Lesion Classification

In this experiment, our meta-ensemble classifier model was
compared with six common classifier models, including Ran-
dom forests, FNN, KNN, structural SVM [43], SVM with the
radial basis kernel function (RBF), and Gentle Adaboost [44],
to verify the performance of the proposed classifier model. At
the same time, two lesion classification systems using the BoF
model [16], [17] were also tested to verify the performance
of our lesion classification framework. All of these classifier
models, including our model and the compared six common
models were carried out using the optimal reduced feature sets
on the two datasets. For the KNN classifier, we used the K = 3
nearest neighbors using the Euclidean distance. For the SVM
classifier, the LIBSVM software package [45] was used. With
the training images, the optimal parameters C and r obtained
for the SVM with RBF were 2048 and 0.0313 for the xanthous
race dataset, and 64 and 0.25 for the caucasian race dataset,
respectively, using the grid search method.

Table VIII gives the classification results of the nine meth-
ods (our method, six common classifier methods, and two
reference methods [16], [17] on the xanthous race dataset.
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TABLE VIII
CLASSIFICATION RESULTS USING DIFFERENT CLASSIFIER

MODELS ON XANTHOUS RACE DATASET

TABLE IX
CLASSIFICATION RESULTS USING DIFFERENT CLASSIFIER

MODELS ON CAUCASIANS RACE DATASET

It can be seen that Random forests, KNN and the method
in [17] delivered the highest specificity but their sensitivity was
low, while our method obtained the best sensitivity of 95.00%,
with an accuracy of 94.17%. The incorrect classification of a
melanoma is regarded to be the gravest error, and in [16],
the cost of an incorrectly classified melanoma was set to
1.5 times that of an incorrectly classified non-melanoma.
With regards to sensitivity, the performance of our model
was at least 7.5% higher than that of the compared classifier
models. Therefore, with the highest accuracy and the best
balance between sensitivity and specificity, our meta-ensemble
model greatly outperforms the compared classifier models.
In [16] and [17] where features are extracted on patch regions,
the models are able to cope with incomplete lesion objects.
In our method, new border features are proposed on which an
meta-ensemble classifier model is designed. As may be seen in
Table VIII, when compared with the systems in [16] and [17],
by using our method the sensitivity and accuracy were greatly
improved, which is a very positive outcome.

Table IX shows the classification results of the nine methods
on the caucasian race dataset. It can be seen that, although the
specificity of our method is moderate among these methods,
it is still a high value, in addition, the sensitivity increases at
least 8.33% more than other methods. With the best accuracy,
our method is superior to the compared methods. Therefore,
our proposed border features and designed classifier are also
highly effective on the caucasian race dataset.

VI. DISCUSSION

In this paper, a framework was proposed for lesion clas-
sification, where new border features were proposed and a
meta-ensemble model was designed. Regarding the proposed
method, we have the following observations:

1) Although the proposed border features are able to
describe border irregularities more efficiently than the
compared methods, incomplete lesions still present a
greater risk of incorrect classification than complete
lesions. When a border irregularity is well preserved, this
risk is lowered. Correct lesion classification depends on
accurately obtaining a combination of features descrip-
tive of color variations, texture patterns, shape asymme-
tries and border irregularities, following the ABCD rule.
When the borders of a lesion are severely lost, local
features are a good choice, as for example are used in
the BoF model. BoF did not yield good performance in
our experiment, likely because the basic features used in
the BoF model are all low-level. Deep learning methods
could be used to mine high-level features and could be
expected to improve lesion classification performance
dramatically, given a sufficiently large amount of data.

2) There are two main design strategies for neural
network ensemble models: the direct strategy and
the overproduce and choose strategy. Our designed
meta-ensemble model is a combination of these two.
Our main goal was to find a good border irregularity
description method and to design a suitable classifier
model for lesion classification. Therefore, in the
designed meta-ensemble model, some parameters were
set based on the existing literature. Our designed model
is complex relative to some other common classifier
models, such as standard BP, Adaboost, KNN and SVM,
and requires more compute time and storage space.
For example, the complexity of our proposed model is
about 15 times of that using a single BP network (there
are 15 net individuals in the proposed model).

VII. CONCLUSION

We have described a novel method for classifying skin
lesion objects as malignant or benign. We began by identi-
fying 57 descriptive features, including 50 color and texture
features and 7 novel lesion border features. In clinical practice,
images containing large and incomplete lesion objects are
often obtained by dermoscopy, resulting in the failure of
systems that rely on common shape features. The proposed
border features described here were designed to be insensitive
to the incompleteness of lesion objects. Feature dimensionality
reduction was used to eliminate less relevant or noisy features,
thereby improving classification performance. PCA was used
to reduce the feature dimensions and to select the optimal
feature set. An artificial neural network ensemble can be used
to cope with this difficult classification problem in a robust
and efficient way. A neural network meta-ensemble model was
designed, by combining BP neural networks with fuzzy neural
networks to increase individual net diversity. In the experi-
ments, feature extraction and reduction were verified and clas-
sification performance was tested using FNN, Random forests,
KNN, Gentle Adaboost, two SVM methods, and two systems
using the BoF model, and the proposed meta-ensemble
model on two datasets that respectively include xanthous
race data and caucasian race data. The experimental results
strongly suggest that the proposed lesion border features
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are particularly beneficial for differentiating malignant from
benign skin lesions. The classification results delivered by the
designed model were shown to be more accurate than those
by the compared methods.
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