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Estimating an accurate and naturalistic dense depth map
from a single monocular photographic image is a difficult
problem. Nevertheless, human observers have little
difficulty understanding the depth structure implied by
photographs. Two-dimensional (2D) images of the real-
world environment contain significant statistical
information regarding the three-dimensional (3D)
structure of the world that the vision system likely
exploits to compute perceived depth, monocularly as
well as binocularly. Toward understanding how this
might be accomplished, we propose a Bayesian model of
monocular depth computation that recovers detailed 3D
scene structures by extracting reliable, robust, depth-
sensitive statistical features from single natural images.
These features are derived using well-accepted
univariate natural scene statistics (NSS) models and
recent bivariate/correlation NSS models that describe
the relationships between 2D photographic images and
their associated depth maps. This is accomplished by
building a dictionary of canonical local depth patterns
from which NSS features are extracted as prior
information. The dictionary is used to create a
multivariate Gaussian mixture (MGM) likelihood model
that associates local image features with depth patterns.
A simple Bayesian predictor is then used to form spatial
depth estimates. The depth results produced by the
model, despite its simplicity, correlate well with ground-
truth depths measured by a current-generation
terrestrial light detection and ranging (LIDAR) scanner.
Such a strong form of statistical depth information could
be used by the visual system when creating overall
estimated depth maps incorporating stereopsis,
accommodation, and other conditions. Indeed, even in
isolation, the Bayesian predictor delivers depth
estimates that are competitive with state-of-the-art
‘‘computer vision’’ methods that utilize highly
engineered image features and sophisticated machine
learning algorithms.

Introduction

By seamlessly combining binocular and monocular
cues, humans are able to perceive depths and recon-
struct the geometry of the three-dimensional (3D)
visual space so quickly and effortlessly that an
individual rarely feels how difficult and ill-posed this
problem can be. Even given a single color image, or by
gazing with one eye closed, a human viewer can still
perceive meaningful depth structures and 3D relation-
ships such as relative distances from the visible
environment. Yet, automatically estimating range
(egocentric distance) from a single monocular image
remains a very difficult problem. A variety of factors
have been explored to explain how the vision system
might accomplish this using depth cues such as color,
shading, texture, perspective, and relative size.

A wide variety of computational models have been
developed to tackle the problem of depth estimation
from a single monocular image. These models typically
deploy variants of shape from shading (R. Zhang, Tsai,
Cryer, & Shah, 1999; Maki, Watanabe, & Wiles, 2002)
and/or shape from texture (Lindeberg & Garding,
1993; Malik & Rosenholtz, 1997). However, the
efficacy of these models is typically limited by the
information available in luminance and texture varia-
tions unless additional structural assumptions or
specific constraints are placed on their solutions. Little
connection is made with perceptual processes or with
the real-world statistical properties that drive them.

Examples of early ‘‘computer vision’’ methods to
estimate depths from single images include Hoiem,
Efros, and Hebert (2005), who reconstruct a simple 3D
model of outdoor scenes assuming that images can be
divided into a few planar surfaces, and that pixels can
be classified using a small number of limited labels (e.g.,
ground, sky, and vertical walls). Along similar lines,
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Delage, Lee, and Ng (2006) developed a dynamic
Bayesian network to reconstruct the locations of walls,
ceilings, and floors by finding the most likely floor–wall
boundaries in indoor scenes. Saxena, Sun, and Ng
(2009) devised a supervised learning strategy to infer
the absolute depth associated with each pixel of a
monocular image. They assumed that 3D scenes are
made up of small planar surfaces, and used this
assumption in conjunction with a Markov random field
(MRF) model of textural and luminance gradient cues
to infer depth. Nagai, Naruse, Ikehara, and Kurematsu
(2002) used hidden Markov models (HMM) to
reconstruct surfaces of known classes of objects such as
hands and faces from single images. Hassner and Basri
(2006) proposed an example-based approach to esti-
mate the depths of objects given a set of known
categories. On the other hand, Torralba and Oliva
(2002) took a very different (but limited) approach by
studying the relationship between the Fourier spectrum
of an image and its mean depth. Specifically, they
proposed a probability model to estimate the absolute
mean depth of a 3D scene using information extracted
from the global and local spectral signatures of a 2D
image of it. While these methods generally deploy rich
sources of low-level information to produce interesting
depth estimates, the features used have little connection
to known perceptual processes.

More recently, some authors have proposed high-
level, ad hoc features to augment single-image depth
estimation models. For example, B. Liu, Gould, and
Koller (2010) incorporated semantic labels to guide a
monocular 3D reconstruction process, thereby achieving
better depth estimates. By conditioning on different
semantic labels, they were able to better model absolute
depth as a function of local pixel appearance. Based on
assumed mutual dependencies between semantic labels
and geometric depths, Ladický, Shi, and Pollefeys (2014)
proposed a joint semantic and unbiased depth classifier
that used the property of perspective geometry that the
perceived size of an object scales inversely with its
distance from the center of projection. Semantic-based
algorithms are an interesting computer vision approach,
that require considerable manual effort to perform
labeling of objects on image and depth training data, and
also require subjective decisions regarding what object
classes should be defined and labeled. These consider-
ations not only cast doubt on their perceptual relevance,
but alsomay greatly hinder their applicability to practical
problems such as vehicular navigation. Karsch, Liu, and
Kang (2012) presented an optimization framework to
generate a most likely depth map by first matching high-
level image features to find candidates from a database,
then warping the candidate depth maps under a set of
spatial regularization constraints. Utilizing a similar idea
of nonparametric sampling, Baig et al. (2014) proposed a
depth recovery mechanism by forming a basis over both

the RGB and depth feature spaces, and learning a
transformation from the RGB to depth weight vectors,
where the depth map is estimated as a sparse linear
combination of depth-basis elements from the RGB
features of the query image. Very recently, deep learning
architectures have also been studied for this problem.
Eigen, Puhrsch, and Fergus (2014) employ a two-
component deep neural network (DNN) to directly
regress on depths from single images. The first compo-
nent estimates the global structure of the scene, while the
other refines this estimation locally. While their method
delivers promising results, their network architecture is
highly engineered and reveals no insights into any
perceptual features or processes that might drive single-
image depth perception.

Many monocular ‘‘shape-from-X’’ algorithms have
also been devised (too many to survey) that estimate
relative local depths by assuming the presence of one or
more specific attributes, such as texture or shading
gradients. Our belief is that such cues are embedded in
the local, scale-invariant but space-varying natural
statistics of real-world images. Certain natural scene1

statistics (NSS) models have been shown to provide
good descriptions of the statistical laws that govern the
behavior of images of the 3D world and 2D images of it.
NSS models have proven to be deeply useful tools for
both understanding the evolution of human vision
systems (HVS; Olshausen & Field, 1996; Simoncelli &
Olshausen, 2001) and for modeling diverse visual
problems (Portilla, Strela, Wainwright, & Simoncelli,
2003; Tang, Joshi, & Kapoor, 2011; Wang & Bovik,
2011; Bovik, 2013). In particular, there has been work
conducted on exploring the 3D NSS of depth/disparity
maps of the world, how they correlate with 2D
luminance/color NSS, and how such models can be
applied. For example, Potetz and Lee (2006) examined
the relationships between luminance and range over
multiple scales and applied their results to a shape-from-
shading problem. Y. Liu, Cormack, and Bovik (2011)
explored the statistical relationships between luminance
and disparity in the wavelet domain, and applied the
derived models to improve a canonical Bayesian stereo
algorithm. Su, Cormack, and Bovik (2013) proposed
new models of the marginal and conditional statistical
distributions of the luminances/chrominances and the
disparities/depths associated with natural images, and
used these models to significantly improve a chromatic
Bayesian stereo algorithm. Recently, Su, Cormack, and
Bovik (2014b, 2015a) developed new bivariate and
correlation NSS models that capture the dependencies
between spatially adjacent bandpass responses like those
of area V1 neurons, and applied them to model both
natural images and depth maps. The authors further
utilized these models to create a blind 3D perceptual
image quality model (Su, Cormack, & Bovik, 2015b)
that operates on distorted stereoscopic image pairs. An
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algorithm derived from this model was shown to deliver
quality predictions that correlate very highly with
recorded human subjective judgments of 3D picture
quality.

Inspired by these successes, and by psychophysical
evidence of NSS-driven signal processing in the vision
system (Field, 1987, 1999), we describe a Bayesian model
for estimating depths from single monocular images that
employs reliable and robust NSS models of natural
images and depth maps as priors (Su et al., 2014b,
2015a). We trained and tested the model on three
publicly accessible databases of natural image and range
data: the LIVE 3DþColor Database Release-2 (Su,
Cormack, & Bovik, 2016b), which consists of 99 pairs of
high-definition resolution (1920 3 1080 pixel) natural
images and accurately coregistered high-definition
ground-truth depth maps, the Make3D LaserþImage
Dataset-1 (Saxena, Chung, & Ng, 2005; Saxena, Sun, &
Ng, 2005; Saxena et al., 2009), and the NYU Depth
Dataset V2 (Silberman, Hoiem, Kohli, & Fergus, 2012;
Silberman, Kohli, Hoiem, & Fergus, 2012).

Proposed Bayesian depth
estimation model

We begin by summarizing our Bayesian depth
estimation model and the contributions we make.
Figure 1 is an overview of the proposed model, in

which the top row depicts the flow of the process of
depth map estimation from an image, while the bottom
row illustrates the prior and likelihood of the Bayesian
model. Our depth estimation model is patch-based: an
input image is divided into patches of size2 P3P, a set
of perceptual NSS features is extracted from each
image patch, then a Bayesian model uses the extracted
NSS image feature to form an estimate of the pattern/
structure of the corresponding depth patch, offset by a
regressed mean depth value; finally, all estimated depth
patches are stitched together to create the output depth
map. The priors are a set of representative depth
patterns/structures derived from the ground-truth
depth patches, and the likelihoods are the conditional
probability distributions of the extracted NSS image
features given each prior. As illustrated in the bottom
row of Figure 1, an estimate of a depth patch pattern/
structure is calculated as the cluster centroid of the
most probable prior given the extracted NSS image
feature. The Bayesian prior and likelihood models, as
well as the mean depth regressor, are learned from
perceptually relevant features extracted from a high-
quality 3D database of natural images and accurately
coregistered depth maps. These NSS models capture
valuable statistical relationships that are embedded in
the luminances and depths of the natural images,
making reliable depth estimation from monocular
natural images possible. The details of each compo-
nent, including how the perpetual NSS feature set is
extracted from each image patch, how the prior and
likelihood models are constructed, and how the mean

Figure 1. Overview of the proposed Bayesian depth estimation model. The top row depicts the patch-based processing flow of the

depth map estimation process on a single natural image, while the bottom row shows the prior and likelihood of the Bayesian model.

The priors are a set of representative depth patterns/structures derived from the ground-truth depth patches, while the likelihoods

are the conditional probability distributions of the extracted NSS image features given each prior. The red square represents the

current estimated patch, while the red arrow points to the next patch to be estimated. For illustrative purposes, the multivariate

Gaussian mixture likelihood model is shown in a two-dimensional feature space, instead of the much higher-dimensional feature

space defining the depth-from-luminance model. See text for more details.
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depth regressor is trained, are explained in the
following subsections.

The contributions we make are as follows. By
employing established univariate and new bivariate/
correlation NSS models of natural images, we define a
set of depth-sensitive features representative of percep-
tually available depth information. We cast the depth
recovery problem as a Bayesian inference that is solved
in a single step without the need for any assumed high-
level semantics, smoothness constraints, or iterative
optimization methods. Toward validating the method
on a science-quality set of data, we created a high-
quality 3D database of high-resolution naturalistic
stereoscopic color image pairs with accurately coregis-
tered dense depth maps obtained by a precision LIDAR
terrestrial range scanner. This new and accurate
database provides a rich source of information on which
natural depth statistics can be computed. We are
making this database publicly available free of charge
(Su et al., 2016b). Despite its simplicity, the Bayesian
depth estimation model that we construct using simple
natural-scene statistic priors delivers performance that
is highly competitive with and even exceeds that of top-
performing state-of-the-art depth estimation algorithms
that deploy sophisticated deep learning architectures or
highly engineered image heuristics. We are also making
available the code of our simple NSS-based depth
estimation model for independent evaluation and
further academic research (Su, 2016).

Perceptual decomposition

Human vision systems (HVS) extract abundant
information from natural environments by processing
visual stimuli through massively parallel and pipelined
levels of decomposition and interpretation. By analyz-
ing the natural statistics of the 2D and 3D visual world,
and by learning how the HVS processes natural image
and depth information, a variety of statistical models
have been proposed that capture the behavior of
perceptually motivated bandpass responses of lumi-
nance/chrominance and depth/disparity on natural
scenes (Field, 1987; Ruderman, 1994; Wainwright,
Schwartz, & Simoncelli, 2002; Potetz & Lee, 2003; Y.
Liu et al., 2011; Su et al., 2013). Since the philosophy
underlying our approach is to learn and employ good
models of the statistical laws that describe the
relationships between depth perception and the struc-
ture of natural images, we apply certain perceptually
relevant preprocessing steps to the recorded image
data, including biologically motivated linear bandpass
decompositions and nonlinear divisive normalization
processes. A set of depth-sensitive NSS image features
are then extracted from the univariate and bivariate
empirical distributions of these responses.

Our work is therefore perceptually motivated and,
hence, could be particularly applicable to problems in
perceptual image engineering, such as creating 3D
presentations suitable for human viewing, as for
example in the creation of 3D cinematic or television
content from archived 2D movies. However, as we
show in the sequel, the method delivers highly
competitive objective results, and we envision that,
given its conceptual and computational simplicity, it
could find other (e.g., robotic) applications. In its
current form, we utilize only luminance information in
our model, although there are definite statistical
relationships between image color and depth (Su et al.,
2013), as well as on the perception of depth on color
images (Jordan, Geisler, & Bovik, 1990).

We acquire luminance from color images by
transforming them into the perceptually uniform
CIELAB color space (X. Zhang & Wandell, 1997;
Rajashekar, Wang, & Simoncelli, 2010). Each lumi-
nance image (L*) is then decomposed by a steerable
pyramid decomposition, which is an overcomplete
wavelet transform that allows for increased orientation
selectivity (Simoncelli & Freeman, 1995; Portilla &
Simoncelli, 2000). The use of the wavelet transform is
motivated by the fact that its space-scale–orientation
decomposition is similar to the bandpass filtering that
occurs in area V1 of primary visual cortex (Field, 1987;
Olshausen & Field, 2005). It is also a computationally
efficient and convenient decomposition. Similar to a
conventional orthogonal wavelet decomposition, the
steerable pyramid recursively splits an image into a set
of oriented subbands and a low-pass residual band
(Portilla & Simoncelli, 2000). Figure 2 shows a block
diagram of the steerable pyramid decomposition, in
which each block represents a filter in the 2D Fourier
domain. Specifically, the filters involved in the decom-
position are polar-separable in the 2D Fourier domain,
and by using the polar frequency coordinate rx; hxð Þ,
where x ¼ xxxy

� �> ¼ rx cos hxrx sin hx½ �>, they can be
written as:

L rx; hxð Þ ¼
2; rx � p

4

2 cos p
2 log2

4rx
p

� �� �
; p

4 , rx , p
2

0; rx � p
2

8<
: ð1Þ

and

Bk rx; hxð Þ ¼ H rxð ÞGk hxð Þ ð2Þ
where 2 0;K� 1½ �, and K is the number of orientations.
The radial and angular parts, H rxð Þ and Gk hxð Þ, can be
written as:

H rxð Þ ¼
0; rx � p

4

cos p
2 log2

2rx
p

� �� �
; p

4 , rx , p
2

1; rx � p
2

8<
: ð3Þ

and
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Gk hxð Þ ¼ bk cos hx � pk
K

� �h iK�1
; hx � pk

K

��� ���, p
2

0; otherwise

(

ð4Þ
where bk ¼ 2k�1 K�1ð Þ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K 2 K�1ð Þ½ �!
p . Finally, the steerable pyra-

mid decomposition is initialized by splitting the image
into high-pass and low-pass parts using the two filters:

L0 rx; hxð Þ ¼
L rx

2 ; hx
� �

2
ð5Þ

and

H0 rx; hxð Þ ¼ H
rx
2
; hx

� �
ð6Þ

Interested readers may refer to Portilla and Simon-
celli (2000) for further details about the steerable
pyramid decomposition. In our implementation, we
deployed a steerable pyramid decomposition and used
the responses of the filters over the two finest scales,
and over four canonical orientations: 0; 14 p; 12 p; and 3

4 p
(rad). We computed NSS features from those subband
coefficients and used them in the depth estimation
process. Therefore, a total of 2 (scales) 3 4 (orienta-
tions)¼ 8 subband responses are computed on each
image patch.

After applying the multiscale, multiorientation
decomposition, we perform the perceptually significant
process of divisive normalization on the luminance
wavelet coefficients of all of the subbands (Wainwright
et al., 2002). Divisive normalization, or adaptive gain
control, accounts for the nonlinear behavior of cortical
neurons (Heeger, 1992; O. Schwartz & Simoncelli,
2001). In Simoncelli (1999) and Wainwright et al.
(2002), the authors found that the coefficients of
orthonormal wavelet decompositions of natural images
are fairly well decorrelated; however, they are not
independent. The authors also showed that the
empirical joint histograms of adjacent coefficients
produce contour plots having distinct ‘‘bowtie’’ shapes,
which were observed on coefficient pairs separated by
different spatial offsets, across adjacent scales, and at
orthogonal orientations. These findings suggest that
different types of divisive normalization processes over,
for example, neighborhoods of scale, orientation, and
spatial location occur in primary visual cortex.

The divisive normalization transform (DNT) that we
use is Lyu (2011):

t xi; yi; s; rð Þ

¼ v xi; yi; s; rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ

P
xj�xij j�k;jyj�yij�k g xj; yj

� �
v xj; yj; s; r
� �2q ð7Þ

where xi; yið Þ are spatial coordinates; s and r denote
subband scale and orientation, respectively; v are the

Figure 2. Block diagram of a steerable pyramid decomposition, including both analysis and synthesis filter banks. The input image is

split into high- and low-pass bands, and the low-pass band is further split into a set of oriented subbands and another low-pass band.

The recursive decomposition takes a down-sampled low-pass band and repeats the same subband decomposition at the next

(coarser) scale. From Portilla and Simoncelli (2000).
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subband coefficients; t are the coefficients following the
DNT; a is a semisaturation constant; and g xj; yj

� �
 �
is

a finite-extent Gaussian weighting function with a
window size equal to k and r ¼ k=2:

g xj; yj
� �
¼ Ce�

xj�xið Þ2þ yj�yið Þ2
2r2 ; xj � xi

�� �� � k and jyj � yij � k
0; otherwise

(
ð8Þ

where C is a constant that makes g xj; yj
� �
 �

sum to 1.
We perform the DNT for each wavelet coefficient
across spatial neighborhoods using a fixed Gaussian
window (e.g., 5 3 5 regardless of scale, within each
subband. Among the different types of divisive
normalization processes mentioned above, we deploy
the aforementioned spatial DNT in our implementa-

tion due to its simplicity and effectiveness. We found no
significant difference in depth estimation performance
using more complicated DNTs in our experiments.

Figure 3 shows an example patch selected from the
input image in Figure 1, along with its perceptual
decomposition using the steerable pyramid and DNT
described above. Note that in our implementation, the
wavelet decomposition and DNT are performed on the
entire input image, from which each patch is cropped to
estimate the corresponding depth patch. Zeros are used
when pixel coordinates are outside of the image
boundary. Different orientation subbands generate
larger responses along the corresponding texture/struc-
ture directions in the image patch, while the DNT further
normalizes the subband responses using the spatial
neighborhoods. Next, we introduce the three NSS
models (univariate, bivariate, and correlation models)

Figure 3. Perceptual decomposition of an example patch selected from the image in Figure 1. Top row: the original color patch and the

luminance patch. Middle row: the steerable pyramid subband responses from four canonical orientations at the finest scale. Bottom

row: the same subband responses after DNT. The example patch size is 128 3 128 (P ¼ 128).
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used by our Bayesian depth estimator, and we explain
how we utilize these models to extract the depth-sensitive
NSS features from the perceptually processed subband
responses (i.e., the wavelet coefficients subjected to the
DNT).

Image feature extraction

It is well established that there exist statistical
relationships between image luminances and depth
information in natural scenes (Potetz & Lee, 2003), and
a variety of univariate statistical models have been
proposed to fit the bandpass responses of luminance/
chrominance and disparity (Y. Liu et al., 2011; Su et
al., 2013). Very recently, new closed-form bivariate and
correlation statistical models have been developed that
effectively capture spatial dependencies between
neighboring subband responses in natural images (Su et
al., 2014b, 2015a). The Bayesian model of depth
estimation we develop here exploits these NSS features
to learn the relationships that exist between projected
image luminances and colocated depth information.
These NSS features are extracted from each subband of
the perceptually decomposed image patch as described
in the previous subsection; therefore, the number of
feature dimensions of each image patch is equal to the
sum of the number of parameters of each NSS model
times the number of subbands upon which each NSS
model is built. In the following subsections, we explain
in detail the univariate, bivariate, and correlation NSS
models that drive our Bayesian depth estimator.

Univariate NSS model

Considerable work (Field, 1999; Simoncelli &
Olshausen, 2001) has been conducted on modeling the
statistics of natural images that have been passed
through multiscale, multiorientation bandpass trans-
forms (e.g., decompositions using banks of Gabor
filters or wavelets). A common and well-accepted
model of the empirical histograms of divisively
normalized luminance subband responses (i.e., t in
Equation 7), is the univariate generalized Gaussian
distribution (GGD; Mallat, 1989a, 1989b; Li & Wang,
2009). The probability density function of a univariate
GGD with zero mean is:

p x; au; buð Þ ¼ bu

2auC 1
bu

� � e� xj j
auð Þ

bu

ð9Þ

where C �ð Þ is the ordinary gamma function and au and bu

are scale and shape parameters, respectively. Note that
both v and t in Equation 7 are zero-mean coefficients,
since the steerable filters have zero DC response (which is
a necessary condition that the transform be invertible)

unlike, for example, the filters used in ad hoc Gabor filter
decompositions (Clark & Bovik, 1989). Hence, we model
t as x in Equation 9. For pristine, undistorted natural
images, it is commonly assumed that au ’

ffiffiffi
2
p

and bu is
close to 2 (i.e., unit-variance Gaussian), while distortions
tend to create structural degradations that modify au and
bu; typically bu is closer to and often less than one on
distorted images (Sheikh & Bovik, 2006; Moorthy &
Bovik, 2011). For example, if an image is blurred, the
sparse high-frequency subband responses are eliminated,
producing an even larger preponderance of low-fre-
quency responses. The result is a peakier distribution.
Thus, an objective of reconstructing a naturalistic image
of luminance or depth is that the reconstruction
approximately satisfies this Gaussian assumption.
Therefore, these parametersmay be viewed as constraints
on the ‘‘naturalness’’ of the reconstruction. We estimate
the GGD parameters on small P3P patches, so bu

locally varies. The two GGD parameters, au and bu, for
all eight subbands are estimated from each subband
patch histogram (using the widely used maximum
likelihood method described in Sharifi & Leon-Garcia,
1995). These simple measurements are the first elements,
16 numbers, 2 (au and bu)38 (2 scales with 4 orientations
each), of the feature set that we define on each image
patch.

Figure 4 shows the univariate GGD models fitting
the empirical histogram of the subband responses from
the example image patch in Figure 3. It can be seen that
the empirical histograms from different subband tuning
orientations have different shapes, and that the
corresponding univariate GGD fits are able to capture
these distinct characteristics using the model parame-
ters au and bu.

Bivariate NSS model

We also capture dependencies that exist between
spatially neighboring luminance subband responses by
modeling the bivariate distributions of horizontally
adjacent subband responses sampled from all locations,
x; yð Þ and xþ 1; yð Þ, of each orientation subband at
different scales on each image patch. Since we have
observed similar statistics from both horizontally and
vertically neighboring responses (Su et al., 2014b,
2015a), and used subband orientations covering 0 to p
(rad), we exploit only horizontal adjacency to achieve
the same efficacy with reduced computational complex-
ity. This also applies to the correlation NSS feature,
which will be detailed in the next section. To model these
empirical joint histograms, we utilize a multivariate
generalized Gaussian distribution (MGGD), which
includes both the multivariate Gaussian and Laplacian
distributions as special cases. The probability density
function of an MGGD is defined as:
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p x; M; ab;bbð Þ ¼ 1

Mj j
1
2

gab;bb
x>M�1x
� �

ð10Þ

where x � RN, M is an N3N symmetric scatter matrix,
ab and bb are scale and shape parameters, respectively,
and gab;bb

�ð Þ is the density generator:

gab;bb
yð Þ ¼

bbC
N
2

� �
2

1
bbpab

� �N
2

C N
2bb

� � e�1
2

y
ab

� �bb

ð11Þ

where y � Rþ. Note that when bb ¼ 0:5, Equation 10
becomes the multivariate Laplacian distribution, and
when bb ¼ 1, Equation 10 corresponds to the multi-
variate Gaussian distribution. When bb ! ‘, the
MGGD converges to a multivariate uniform distribu-
tion, and when bb , 0:5, it becomes a 2D heavy-tailed
‘‘sparsity’’ density. The scatter matrix M is a sample
statistic that can be used to estimate the covariance
matrix of x � RN, which may embed dependencies in x

� RN (i.e., the spatially neighboring bandpass image
responses). In order to capture these second-order

statistics, we adopt a closed-form correlation model,
which is described in detail in the next subsection, to
extract the corresponding NSS features. In our
implementation, we model the bivariate empirical
histograms of horizontally adjacent subband responses
of each image patch using a bivariate generalized
Gaussian distribution (BGGD) with N ¼ 2 in Equation
10. Specifically, from each subband of an image patch,
we collect all pairs of horizontally adjacent subband
responses to form x � R2, and estimate the BGGD
model parameters using the maximum likelihood
estimator (MLE) algorithm described in (Su, Cormack,
& Bovik, 2014a). In our case, the scatter matrix M is a
23 2 matrix, which can be written as:

M ¼
Xn
j¼1

xj � �x
� �

xj � �x
� �>

;

where �x ¼ 1

n

Xn
j¼1

xj ð12Þ

Figure 4. Best-fitting univariate GGD models to the perceptually decomposed subband responses, t, using the same example image

patch as in Figure 3. The blue bars represent the empirical histograms of the subband responses, while the red circle lines are the

fitted univariate GGD models.
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andn ¼ P3ðP� 1Þ isthenumberofhorizontallyadjacent
pairsinanimagepatchofsizeP3P. BoththeBGGDscale
and shape parameters, ab and bb, from all eight subbands
are included in each image patch’s feature set.

To demonstrate the effectiveness of the BGGD
model and the embedded dependencies between hori-
zontally adjacent subband responses, Figure 5 shows
3D plots and 2D isoprobability contours of the
bivariate empirical histograms of horizontally adjacent
responses, and the corresponding BGGD fits at
different subband tuning orientations from the example
image patch in Figure 3. As can be seen in both 3D
illustrations, where the blue bars represent the empir-
ical histograms and the colored meshes represent the
BGGD fits and the 2D isoprobability contours, the
joint distributions of luminance subband responses are
well modeled as bivariate generalized Gaussian.
Moreover, Figure 5 also shows that there exist
orientation-dependent dependencies between spatially
adjacent subband responses since their correlations
vary with the subband tuning orientations. For
example, the correlation between horizontally adjacent
subband responses is the strongest when the subband
tuning orientation is equal to 1

2 p (rad). In the next
subsection, we present an NSS correlation model that
captures these orientation dependencies.

Correlation NSS model

Here we model the correlations between the spatially
neighboring, divisively normalized bandpass luminance
responses described and demonstrated in the previous
subsection. In particular, we have found that the
correlation coefficients between spatially adjacent
bandpass responses possess strong orientation depen-
dencies (Su et al., 2014b, 2015a). For example,
horizontally adjacent bandpass responses are most
correlated when the subband tuning orientation aligns at
1
2 p (rad), and become nearly uncorrelated at orientation
0 and p (rad). The correlation is periodic in the relative
orientation between spatial and subband tuning orien-
tation. This relative orientation regularity of correlation
implies that there exist powerful constraints on spatially
neighboring bandpass image responses.

Indeed, the periodic relative orientation dependency
of the correlation coefficients between spatially adja-
cent bandpass responses can be well modeled in a
closed form by an exponentiated sine function:

q ¼ f h1; h2ð Þ ¼ A
1þ sin 2p h2�h1ð Þ

T þ u
� �

2

2
4

3
5

c

þ c

ð13Þ
where q is the correlation coefficient between spatially

adjacent bandpass responses, h1 and h2 are the spatial
and subband tuning orientations, respectively, A is
amplitude, T is the period, u is the phase, c is an
exponent, and c is the offset. We use the same definition
of the spatial orientation h1 as in (Su et al., 2015a),
where h1 ¼ 0 (rad) when the bandpass responses are
sampled at vertically adjacent locations; for example,
x; yð Þ and x; yþ 1ð Þ, and h1 ¼ 1

2 p (rad) when they are
sampled at horizontally adjacent locations and, for
example, x; yð Þ and xþ 1; yð Þ. When measured on
naturalistic photographic images, the correlation coef-
ficient is p-periodic, reaching maximum when h2� h1¼
kp, k � Z, yielding a three-parameter exponentiated
cosine model:

q ¼ f h1; h2ð Þ ¼ A
1þ cos 2 h2 � h1ð Þð Þ

2

� c

þ c

¼ A cos h2 � h1ð Þ½ �2c þ c ð14Þ
While the periodicity of the model is unsurprising,

the specific and explicit parametric form of the model
is unexpected. Indeed, it holds well for c ¼ 1 (Sinno &
Bovik, 2015), although here we leave this parameter
free, since it tends to vary with the quality of the
picture. By computing the correlation coefficients
between all horizontally adjacent subband responses
within each image patch for all orientations at the
same subband scale, and fitting each with the
exponentiated cosine model, we arrive at three more
parameters, A, c, and c, that are descriptive of each
patch’s natural statistical structure, for each subband
scale. All three NSS correlation model parameters
from the two subband scales are included in our small
feature set descriptive of each image patch. The fitting
parameters are estimated via nonlinear least squares
using the Levenberg-Marquardt algorithm (Mar-
quardt, 1963).

Figure 6 plots an empirical correlation coefficient
curve from the example image patch in Figure 3 as a
function of h2 � h1 as well as its overlaid exponentiated
cosine fit for horizontally adjacent subband responses;
that is, h1 ¼ 1

2 p (rad). The exponentiated cosine model
nicely fits the spatial-oriented correlations between
adjacent subband responses.

At this point, all of the NSS-based features that drive
the proposed depth estimation model have been
described. We thus define a ‘depth-aware’ image feature
vector fI to characterize each image patch:

fI ¼ au;s;r; bu;s;r


 �
; ab;s;r;bb;s;r


 �
; As; cs; csf g

� �>
ð15Þ

where s 2 1; 2; . . . ;Sf g, S is the number of scales, and
r 2 1; 2; . . . ;Rf g, R is the number of subband orienta-
tions. In our model implementation, we use the
subband responses from all eight subband orientations
to extract the NSS image feature vector of each patch,
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Figure 5. Joint histograms of horizontally adjacent responses from the example image patch in Figure 3 and the corresponding

bivariate generalized Gaussian distribution (BGGD) fits for different subband tuning orientations. From top to bottom rows: 0 (rad),
1
4
p, 1

2
p, 3

4
p. The left column shows 3D perspective plots of the bivariate histograms and the corresponding best BGGD fits, where the

blue bars are the empirical histogram values and the colored meshes represent the BGGD fits. The middle and right columns depict

2D isoprobability contour plots of the histograms and the BGGD fits, respectively.
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resulting in a 38-dimensional feature vector fI, which is
of length 2 (NSS univariate model parameters) 3 8 (all
eight subbands) þ 2 (NSS bivariate model parameters)
3 8 (all eight subbands) þ 3 (NSS correlation model
parameters) 3 2 (two subband scales) ¼ 38.

Depth feature extraction

In order to construct the priors and likelihoods of
our Bayesian depth estimation model, as shown in
Figure 1, it is also necessary to extract depth ‘‘features’’
from depth patches to characterize the depth structures
constituting the prior, and to associate these with
corresponding image patches to form the likelihood. To
create this representation we perform a multiscale,
multiorientation decomposition on the ground-truth
depth patches, from which we extract depth features
from the patterns of activation across different sub-
bands. While there is no direct physiological evidence
(that we are aware of) that depth maps are encoded in
the primate cortex using something like a wavelet-based
decomposition, it is not an unlikely supposition given
the preponderance of bandpass processing of low-level
visual data. This is even more likely given that depth
information is being provided by bandpass V1 outputs
(in our monocular depth estimation model). In this
regard, there is evidence that cyclopean depth (i.e., the
depth representation after disparity processing) is
processed by orientation- and frequency-tuned band-

pass channels, not unlike luminance information, but at
a coarser spatial scale (Tyler, 1974, 1975, 1983;
Schumer & Ganz, 1979; Cobo-Lewis & Yeh, 1994).

With this in mind, we compute divisively normalized
steerable pyramid responses of the ground-truth depth
patch as in Equation 7 to obtain an 8-bin histogram
using the eight canonical orientation subbands; that is,
h ¼ 0; 18p; . . . ; 78 p (rad), at the first (finest) scale. We
compute the average of all of the decomposed
responses at each orientation subband to produce the
corresponding histogram bin value.

In addition to the histograms of depth subband
response magnitudes, we also compute the depth
gradient histograms as part of our depth features.
Specifically, we compute the local histograms of the
depth gradient magnitude (Lowe, 1999) within eight
orientation bins of debiased and normalized patch
depths extracted from ground-truth depth maps. These
histograms of bandpass, nonlinearly normalized depth
gradient values are highly regular NSS signals that
supply very fine-scale bandpass depth features. To
obtain debiased and normalized depth patches, the
patch mean value is subtracted from each depth patch
and the result is then divisively normalized by the depth
patch standard deviation.

The gradient vectors,rD ¼ gDx
gDy

� �> ¼ ]D
]x

]D
]y

h i>
¼

[(D(xþ1, y)�D(x� 1, y)) (D(x, yþ1)�D(x, y� 1))]>

at each coordinate of the resulting normalized depth
patches D are computed (using the centered difference
template �1 0 1½ �> along the two cardinal orientations)
and projected onto each of the eight canonical
orientations h: gDx

cos hþ gDy
sin h. The corresponding

histogram is found for h ¼ 0; 18 p; . . . ; 78 p (rad), resulting
in an 8-bin histogram for each depth patch, where each
bin of the histogram represents the average of the depth
gradient magnitudes projected onto the corresponding
orientation over all pixel locations. In sum, a 16-
dimensional depth feature vector fD characterizing each
depth patch is arrived at from the two 8-bin histograms
described above: one of the gradient magnitudes
computed from the debiased and normalized depth
patch, and the other of the subband response magni-
tudes computed from the perceptually decomposed
depth patch. These feature vectors are used to create
prior and likelihood models, as explained in the next
section.

Figure 7 shows the corresponding depth patch of the
example image patch in Figure 3, including the ground-
truth depth patch, the debiased and normalized depth
patch, and the divisively normalized subband depth
patches. Figure 8 plots the two 8-bin histograms
computed from the depth patches shown in Figure 7. It
can be seen that the two 8-bin histograms capture
different aspects of the depth structure embedded in the
patch.

Figure 6. Graphs of the correlation coefficients between

horizontally adjacent subband responses from the example

image patch in Figure 3 and the corresponding best-fitting

exponentiated cosine model. The correlation coefficient fits are

plotted against h2 � h1 (rad), where h1 ¼ 1
2
p (rad) is the

horizontal tuning orientation, and h2 ¼ 0, 1/12p, ... , 11/12p
(rad) are the 12 subband tuning orientations.
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Before we explain the details of the prior and
likelihood models, it will be beneficial to describe how
the Bayesian inference (i.e., the estimated depth patch)
is formed using the extracted NSS image features. As
illustrated in Figure 1, the Bayesian model consists of
priors and likelihoods, where the priors are a set of
representative depth patterns/structures derived from
the ground-truth depth patches, and the likelihoods are
the conditional probability distributions of the ex-
tracted NSS image features given each prior. Therefore,
the Bayesian model takes the extracted NSS feature of
an image patch as input, computes the likelihood
probability of that feature given all priors, combines
the prior probability and the likelihood probability for
each prior, and outputs the most probable depth patch,
which is the representative depth pattern/structure of

the prior having the highest posterior probability. Next,
we explain how we derive the priors and likelihoods
from the ground-truth depth patches and their associ-
ated image patches using the extracted NSS depth and
image features.

Prior

It has been observed that discontinuities in depth
maps are usually colocated with luminance edges
occurring in the corresponding optical images (Jou &
Bovik, 1989). Depth patches having similar depth
patterns may be expected to exhibit similar luminance
distributions (Y. Liu et al., 2011). In other words, some
image patches may be distinctive enough that their

Figure 7. The depth patch corresponding to the example image patch in Figure 3. Top row: the ground-truth depth patch and the

debiased and normalized depth patch. Middle and bottom rows: the perceptual decomposition (steerable pyramid subband

responses after DNT) along the eight orientations used in the depth feature extraction process.
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latent depth/3D structure can be predicted from their
luminance appearance alone (Owens, Xiao, Torralba,
& Freeman, 2013). Moreover, depth maps tend to
possess simpler, more regular patterns than natural
luminance images. Based on these observations, we
built a dictionary of canonical depth patterns by
clustering the processed, characteristic depth features
(fD) extracted from the depth patches, as explained in
the preceding section. As a simple method of data
reduction, we employ the centroid-based k-means
algorithm. The k-means algorithm is a simple clustering
technique, whereby each sample of a set of n-
dimensional data is assigned to one of k clusters
according to a minimum Euclidean distance criterion
(Lloyd, 1982).

Figure 9 shows examples of several canonical depth
patterns (near cluster centroids) extracted by the k-
means algorithm assuming five clusters, each with eight
examples. For each canonical depth pattern, the
bottom row shows the clustered depth patches (nor-
malized residues) using the extracted features, while the
top row shows the coregistered image patches. The
depicted canonical depth patterns contain a variety of
geometric structures, including depth discontinuities
along the horizontal direction (pattern-1) and along the
vertical direction (pattern-2); a smoother variation of
depth along the horizontal direction (pattern-3) and
along the vertical direction (pattern-4); and a busier,
more complex pattern of depth changes (pattern-5).
Complex depth patterns like pattern-5 are relatively

Figure 8. The two 8-bin histograms of depth gradient magnitudes, which form the 16-dimensional depth feature vector fD. The eight

bins (from 1 to 8) in both histograms represent the eight subband orientations: 0, 1
8
p; . . . ; 7

8
p (rad).

Figure 9. Examples of canonical depth patterns. For each canonical depth pattern, the bottom row shows the clustered depth patches

(normalized residues) using the extracted features, while the top row shows the coregistered image patches. See text for more

details.
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uncommon, and appear in scenes containing rough
objects, such as trees and grass. As the number of
clusters is increased, these five canonical depth patterns
still exist in similar form, although other clusters of
depth patches emerge having similar structures that
differ in some ways, such as orientation. In sum, the
depth prior of the proposed Bayesian model consists of
the normalized residual depth patch dn, (i.e., the cluster
centroid associated with each canonical depth pattern),
and the ratio pðnÞ of each canonical depth pattern
among all processed depth patches, where
n 2 1; 2; . . . ;Nf g and N is the number of canonical
depth patterns (i.e., the number of clusters used by the
k-means algorithm). Since increasing the number of
clusters did not improve performance, in our imple-
mentation, we used N ¼ 5 to keep the model as simple
as possible. We study the effects of varying the number
of canonical depth patterns in the discussion section.

The above procedure may be viewed as a way of
finding a ‘‘sparse’’ set of representative depth patches.
This suggests that a more sophisticated ‘‘sparse basis’’
might be found from which depth estimates could be
computed. Here we used the k-means algorithm as a
simple and efficacious proof of concept. The canonical
depth patterns are conceptually similar to the idea of
3D primitives (Fouhey, Gupta, & Hebert, 2013).
However, since our depth priors are constructed using
NSS depth features obtained via a perceptual decom-
position, as described in the Depth feature extraction
subsection above, they are perceptually available, and
can be acquired without solving regularized optimiza-
tion problems.

Likelihood

As may be observed from the canonical depth
patterns shown in Figure 9, depth discontinuities in
range maps consistently align with luminance edges in
coregistered natural images of the same scene (Jou &
Bovik, 1989; Y. Liu et al., 2011). However, textured
areas in photographic images that present significant
variations in luminance/chrominance may not neces-
sarily correspond to depth changes. In other words,
high correlations exist between image edges and depth
discontinuities, although the relationship is asymmet-
ric. If the bandpass response to an image patch
contains significant energy, then there is a relatively
high likelihood of colocated variations (i.e., large depth
gradients) in the corresponding range map. Conversely,
if the range map contains large variations, then the
colocated image bandpass response is even more likely
to be large. To generalize and better utilize these
relationships between image and depth variations in
naturalistic settings, we derive a likelihood model that

associates image patches with appropriate canonical
depth patterns.

Assume that N canonical depth patterns have been
obtained that define the prior using k-means clustering.
Assign each image patch a label indicating its
associated canonical depth pattern (cluster centroid)
for its corresponding depth patch. Then, using these
labeling results, the depth-aware feature vectors, i.e., fI
in Equation 14, that are extracted from each image
patch are used to train a classifier using a multivariate
Gaussian mixture (MGM) model. The reason that the
MGM model is well suited to this classification task is
that, as may be observed in Figure 9, image patches
presenting different appearances and/or textured sur-
faces may yet be associated with the same canonical
depth pattern. Therefore, we exploit a simple multi-
modal Gaussian mixture model trained on each
canonical depth pattern to handle the heterogeneity of
its image patches. As a result, the number of mixtures
used to train the MGM classifier is the same as the
number of clusters used in the k-means algorithm for
learning the canonical depth patterns. An MGMmodel
is defined as:

p x; hð Þ ¼
XM
m¼1

wmN x; lm;Rmð Þ ð16Þ

where is the model parameter vector, x is a multidi-
mensional data vector (e.g., some measurement or a
feature),N x; lm;Rmð Þ is the m-th Gaussian component,
and wm is the m-th mixture weight with the constraint

that
PM
m¼1

wm ¼ 1. Note that the complete MGM model

is parameterized by h ¼ wm; lm;Rmf g;m 2 1; . . . ;Mf g,
which includes the mean vectors, covariance matrices,
and mixture weights from all Gaussian components.
Finally, the m-th Gaussian component density function
is given by:

N x; lm;Rmð Þ ¼ 1

2pð ÞK=2 Rmj j1=2
e �

1
2 x�lmð Þ>Rm

�1 x�lmð Þ½ �

ð17Þ
where K is the dimensionality of x. Here the depth-
aware feature vector is modeled: x¼ fI � RK. For each
canonical depth pattern, an MGM model is created
using the feature vectors extracted from all of the image
patches within the pattern. Therefore, the likelihood of
encountering an image patch with a specific extracted
feature fI given a particular canonical depth pattern
indexed by n can be expressed as:

p fI; hnð Þ ¼
XM
m¼1

wn;mN fI; ln;m;Rn;m

� �
ð18Þ

where hn ¼ wn;m;ln;m;Rn;m

n o
;m 2 1; . . . ;Mf g, and
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n 2 1; . . . ;Nf g. In our implementation, we set M equal
to the number of canonical depth patterns (i.e.,
M ¼ N ¼ 5) to handle the heterogeneity of the
associated image patches in each depth prior, and to be
able to estimate the MGM model parameters,
hn; n 2 1; . . . ;Nf g, using an iterative expectation max-
imization (EM) algorithm (Dempster, Laird, & Rubin,
1977).

Regression on mean depth

As discussed in the Depth feature extraction section,
a preprocessing step is performed prior to the
extraction of features from depth patches to learn the
prior, whereby each depth patch is normalized by
removing the mean and standard deviation to homog-
enize the depth patterns, and to better reveal their
essentially distinguishing characteristics. In order to be
able to add the mean value of each depth patch back
when estimating the true range values of test image
patches, it is necessary to learn a mapping from the
image feature space using a regression model. In other
words, given an input image patch, the trained
regressor can be used to estimate the mean range of the
corresponding depth patch using the extracted depth-
aware image feature vector fI. Since we observed
negligible influences, both numerically and visually, of
patch standard deviations on the estimated depth
maps, the proposed Bayesian model is able to attain the
same degree of performance without recovering depth
patch standard deviations.

In addition to fI, we exploit two other useful
monocular depth cues to assist with recovery of true
range values. The experiments conducted in Schwartz
and Sperling (1983) and Dosher, Sperling, and Wurst
(1986) suggested that the positive proximity luminance
covariance (PLC; i.e., the observation that objects
closer to the observer are made brighter), may serve as
an important cue in the perception and interpretation
of 3D structures by human subjects. Potetz and Lee
(2003) showed that there exists a general dependency
between intrinsic image brightness and colocated
distance in natural scenes. We use this ‘‘the brighter the
nearer’’ law to further guide the estimation of the mean
patch depth value using the average luminance of the
corresponding image patch. Moreover, in natural
scenes, the distance from the nodal point to any point
in the scene tends to increase as its height increases.
Specifically, if we assume that the y-coordinate of a
pixel increases from the bottom to the top of an image,
the range values of pixels with larger y-coordinates are
generally larger than those with smaller y-coordinates.
Thus, we introduce as a second additional feature into
the regressor on mean depth values, the normalized y-
coordinate of each patch in the image:

fy ¼
py
Ih

ð19Þ

where py is the y-coordinate of the image patch, and Ih
is the height of the image. Thus, in sum, the aggregate
feature vector characterizing each image patch used in
the regression model to learn mean patch depth values
includes the depth-aware feature set fI, the average
patch luminance, and the normalized y-coordinate, fy.
In the proposed Bayesian model, we utilize a standard
support vector regressor (SVR; Schölkopf, Smola,
Williamson, & Bartlett, 2000) to implement the training
and testing processes, using multiple train–test sets as
described in the section of experimental results. SVR is
generally noted for being able to effectively handle high
dimensional data (Burges, 1998). We implemented the
SVR model with a radial basis function (RBF) kernel
using the LIBSVM package (Chang & Lin, 2011).

Bayesian model

We now describe how the proposed Bayesian
framework incorporates the canonical depth pattern
prior model, the likelihood model that associates image
patches with different canonical depth patterns, and the
regression model that recovers mean patch depth
values. Given an input image, the model algorithm first
divides it into overlapped patches of size P3P, where a
1
4 overlap (stride) is used (i.e., the patches overlap each
other by P

4 pixels along both dimensions). In our
implementation, we chose P ¼ 32, although we have
found the model to be robust to this choice, as we show
later. We have also performed a thorough analysis with
detailed discussion on the effect of the patch size, which
will be covered in the discussion section. Next, the
depth-aware feature vector fI is extracted from each
image patch, as well as the average luminance and the
normalized y-coordinate, which are used, as described
earlier, for mean depth regression. Then, the extracted
feature vector fI is fed into the trained prior, likelihood,
and regression models to form a Bayesian inference of
the corresponding estimated depth patch. Specifically,
the estimated depth patch D of an image patch is
formed as follows:

D ¼ dn þ ln ð20Þ

where dn (obtained in the prior model) is the
normalized residual depth patch associated with the
estimated canonical depth pattern n, ln is the corre-
sponding mean depth value obtained from the regres-
sion model, and n is the index of the estimated
canonical depth pattern derived from the prior and
likelihood models, which is given by:
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n ¼ argmax
n0

p n0jfIð Þf g ¼ argmax
n0

p fIjn0ð Þp n0ð Þf g

¼ argmax
n0

p fI; hn 0ð Þp n0ð Þ ð21Þf

where p fIjn0ð Þ ¼ p fI; hn0ð Þ is the likelihood (Equation
18) of encountering an image patch having the
extracted feature vector fI given a canonical depth
pattern n0, and p n0ð Þ is the corresponding prior
probability (ratio) of the estimated canonical depth
pattern n0.

Stitching

The last stage of the overall depth estimation system
is to stitch all of the depth patches together to create a
final estimated depth map using only the monocular
test image as input. Seeking simplicity, we define the
stitching operation to simply average the estimated
depth values of overlapped pixels across the assembled
depth patches.

Experimental results

To evaluate its performance in estimating depth
from single monocular images, we trained and tested
the proposed Bayesian model extensively on three
publicly accessible databases, the LIVE Colorþ3D
Database Release-2 (Su et al., 2016b), the Make3D
LaserþImage Dataset-1 (Saxena, Chung et al., 2005;
Saxena, Sun et al., 2005; Saxena et al., 2009), and the
NYU Depth Dataset V2 (Silberman, Hoiem, Kohli, &
Fergus, 2012; Silberman, Kohli et al., 2012). For the
sake of brevity, we hereafter call our proposed
Bayesian model Natural3D.

Databases

The LIVE Colorþ3D Database Release-2 consists of
99 pairs of color images and accurately coregistered
ground-truth depth maps, all with a high-definition
resolution of 19203 1080. We constructed the database
using an advanced range scanner, RIEGL VZ-400, with
a 12.1 megapixel Nikon D700 digital single-lens reflex
camera mounted on top of it (RIEGL Laser Mea-
surement Systems, 2009). The RIEGL VZ-400 allows
for a maximum scan angle range of 1008 (þ608/ �408)
and 608 in the vertical and horizontal direction,
respectively, with a minimum angle step-width of
0:00248. Scan speeds up to 120 lines/s can be achieved,
with an angle measurement resolution of better than
0:00058 and a maximum measurement range of up to
500 m. Careful and precise calibration was executed

before data acquisition, and a perspective transforma-
tion was applied to project the 3D point clouds of
depth measurements onto the 2D image plane. We also
took into account the real-lens distortions (viz., radial
and tangential) to achieve accurate depth-image
registration (Intel Corporation, 2000). The dense,
ground-truth precision depth data we acquired in this
way make the LIVE Colorþ3D Database Release-2
science-quality. As a result, the LIVE Colorþ3D
Database Release-2 provides a rich source of informa-
tion regarding natural depth statistics, and also serves
as an excellent resource for evaluating depth estimation
algorithms (including binocular, since coregistered
stereo pairs are included). To avoid overlap between
training and testing image/depth content, we split the
entire database into 80% training and 20% testing
subsets at each train–test iteration with no content
shared between the training and testing subsets. This
train–test procedure was repeated 50 times to ensure
that there was no bias introduced due to image/depth
training content.

TheMake3DLaserþImage Dataset-1 contains a total
of 534 pairs of color images and corresponding ground-
truth depth maps, where 400 are used for training and
134 for testing with no content overlap. The color
images are high resolution 22723 1704, while the
ground-truth depth maps are only available at a very
low resolution of 553 305. These very low resolution,
sparse, ground-truth depth maps with unmatched
aspect ratio to the color images make the Make3D
LaserþImage less than ideal for developing and testing
contemporary dense depth estimation algorithms.
However, due to its early availability, it has been widely
used for evaluating monocular depth estimation meth-
ods. To make a complete comparison, we also trained
and tested Natural3D on the Make3D database.

The NYU Depth Dataset V2 is comprised of 1,449
pairs of aligned color images and dense depth maps
taken from a variety of real-world indoor scenes. The
database was recorded using the RGB and depth
cameras of the Microsoft Kinect device (Microsoft,
2010). Both the color images and depth maps are
available at the VGA resolution of 6403 480, while the
depth values fall within the range of 0.7–6.0 m due to
the sensor limit. Kinect depth data is of low resolution,
is notoriously noisy, and is limited to indoor scene
acquisition. Nevertheless, even though the data are not
science quality, it has been widely used in the computer
vision literature for algorithm training and comparison;
hence, we also test our model on these data. We used
the raw depth maps to avoid any unnatural filling or in-
painting of missing depth values from the sensor. As
was done on the LIVE Colorþ3D Database Release-2,
we performed 50 random train–test splits with 80%
training and 20% testing on the entire dataset to avoid
content bias in our experiments.
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Performance comparison

We compared Natural3D with a top-performing
state-of-the-art depth estimation method, called Depth
Transfer (Karsch et al., 2012) on all three datasets.
Depth Transfer has delivered the best-reported perfor-
mance on the Make3D LaserþImage Dataset-1. Depth
Transfer first selects candidates from a database by
matching a high-level image feature, GIST (Oliva &
Torralba, 2001), and then optimizes an energy function
to generate the most likely depth map by considering
all of the warped candidate depth maps under a set of
spatial regularization constraints. We also report
results from two other recent computer vision methods
on the very large NYU dataset. Im2Depth (Baig et al.,
2014) uses a sophisticated sparse dictionary approach
to transform RGB to depth, while in Eigen et al. (2014),
a multiscale deep learning network using two deep
network stacks is employed. Neither method uses
perceptually relevant features beyond RGB pixel values
(viz., the deep learner finds its own features). Unfor-
tunately, these models are not reproducible on the high-
quality LIVE Colorþ3D Database, which contains fine,
detailed, naturalistic outdoor scene data rather than
very low-resolution data (Make3D) or smooth indoor
data (smooth floors, walls, and furniture in NYU).
They are not available for testing and, in any case,
training a deep learner would require vastly more data
than is available in any outdoor/high-resolution 3D
dataset.

Quantitative evaluation

We performed a quantitative evaluation on the two
examined monocular depth estimation algorithms
using three different objective metrics. We first report
the results obtained using three common error metrics,
the log error (Log10; B. Liu et al., 2010; Karsch et al.,

2012; Baig et al., 2014):

XS
i¼1

log10D xi; yið Þ � log10D
� xi; yið Þj j

S
ð22Þ

the relative error (Rel.; B. Liu et al., 2010; Karsch et al.,
2012; Baig et al., 2014):

XS
i¼1

D xi; yið Þ � D� xi; yið Þj j=D� xi; yið Þ
S

ð23Þ

and the root-mean-square error (RMS; Saxena et al.,
2009; Fouhey et al., 2013; Baig et al., 2014):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS
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where D xi; yið Þ and D� xi; yið Þ are the estimated and
ground-truth depth map at pixel location xi; yið Þ,
respectively, and S is the number of pixels. Note that
the ground-truth depth maps in the tested databases are
measured in units of meters (m), as are the error
metrics.

Figures 10 through 12 show the average metric
performances on the LIVE Colorþ3D Database Re-
lease-2 (across all images in the train–test splits), the
Make3D LaserþImage Dataset-1 (across all test
scenes), and the NYU Depth Dataset V2 (across all
images in the train–test splits), respectively, including
those published results for Im2Depth (Baig et al., 2014)
and Eigen et al. (2014). Natural3D achieves superior or
similar performances to Depth Transfer in terms of all
three error metrics, and is highly competitive with the
heavily optimized and data-dependent computer vision
methods, Im2Depth and Eigen et al. (2014), despite its
use of simple, perceptually relevant NSS features.
Figures 13 to 15 show the standard deviations of the
three error metrics on all 3D databases for Natural3D

Figure 10. The average metric performance comparison on the LIVE Colorþ3D Database Release-2.
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and Depth Transfer,3 which reflects the performance
consistencies of the examined depth estimation algo-
rithms. Natural3D delivers more consistent perfor-
mance in terms of Log10, while providing similar or
better Rel. and RMS performances than Depth
Transfer.

Visual examination

In addition to the quantitative comparison, we also
supply a visual comparison by showing examples of the
depth maps estimated by Natural3D and Depth
Transfer along with the corresponding ground-truth
depth maps, as shown in Figures 16 and 17 (from the
Make3D LaserþImage Dataset-1), Figures 18 and 19
(from the LIVE Colorþ3D Database Release-2), and
Figures 20 and 21 (from the NYU Depth Dataset V2).
Note that for the Make3D LaserþImage Dataset-1, the
ground-truth and estimated depth maps are scaled to
match the image resolution for display purposes. We
also supply scatter plots between the estimated and the

ground-truth range values to gain a broader perspective
of performance.

As may be seen on all three databases, Depth
Transfer tends to over-smooth the estimated depth
maps due to its smoothness constraint, while Natu-
ral3D is able to capture detailed depth structures in the
scene. For example, in Figure 16, Depth Transfer
incorrectly wipes out the house on the left, while
Natural3D is able to separate the ground and the
building. Similarly, the trees and sky in the background
of Figure 16 are missing in the estimated range map
delivered by Depth Transfer, while Natural3D suc-
cessfully reconstructs most of them. In Figure 17,
Natural3D is capable of recovering the tree depth
structures, as well as identifying the sky in the
background, while Depth Transfer only captures the
ground.

As shown in Figure 18, Depth Transfer is not able
to capture the tree trunks in the foreground, and it
also incorrectly merges the tree trunks in the
background. By comparison, Natural3D creates a

Figure 11. The average metric performance comparison on the Make3D LaserþImage Dataset-1.

Figure 12. The average metric performance comparison on the NYU Depth Dataset V2. The Log10 error metric is not reported in Eigen

et al. (2014).
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clearer representation of the foreground tree trunks.
Figure 19 shows a number of human objects and a tree
branch, posing more challenging content for monoc-
ular depth estimation algorithms. Natural3D success-
fully captures details such as the intersection of the
human hand and the tree branch, while Depth
Transfer fails to recover such complicated structures
due to over-smoothing.

Figures 20 and 21 show example results of the
estimated depth maps from the NYU Depth Dataset
V2. Note that since indoor scenes are generally less
textured than outdoor natural scenes, it is generally
more difficult for algorithms to make accurate depth
estimates without incorporating special features (such
as planar fits) or heavily training on that type of data.
However, as shown in Figure 21, Natural3D is still
able to infer the relative depths of the objects on the
table on the left side of the image, while Depth
Transfer incorrectly smoothes them with the back-
ground.

It is remarkable that the simple, perceptually driven
NSS-based approach Natural3D is able to compete so

well on the indoor-only NYU dataset, given that the
competitive models either deploy a smoothness con-
straint as in Depth Transfer, a dictionary constructed
from indoor depth data (Im2Depth), or deep machine
learning on rich indoor depth data.

The complete experimental results of the two,
including quantitative and visual comparison, exam-
ined monocular depth estimation algorithms on every
image in both databases can be found at (Su, Cormack,
& Bovik, 2016a).

Another advantage of Natural3D is that there is no
need for an iterative solution process, resulting in
greatly reduced computational complexity. Table 1
shows the runtime per estimated depth map for two
examined algorithms. Natural3D and Depth Transfer
were implemented using the MATLAB programming
language, and the simulations were run on an Intel
Core i7 quad-core processor with 16 GB memory. Since
Natural3D utilizes trained prior and likelihood models,
it runs almost 10 times faster than Depth Transfer,
which uses an iterative procedure to solve an optimi-
zation function.

Figure 13. The standard deviation of error metrics on the LIVE Colorþ3D Database Release-2.

Figure 14. The standard deviation of error metrics on the Make3D LaserþImage Dataset-1.
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Figure 15. The standard deviation of error metrics on the NYU Depth Dataset V2.
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Figure 16. Example estimated depth maps along with the ground-truth depth map on the Make3D LaserþImage Dataset-1.
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Discussion

In order to acquire a better understanding of the
contributions of the individual components of Natu-
ral3D, as well as the power of the bivariate and
correlation NSS models for depth estimation, we
performed a thorough set of intrinsic analyses of the
different algorithmic aspects of our NSS-based Bayes-
ian framework. We first examine the choices of the two
parameters in Natural3D, the patch size and the
number of canonical depth patterns. We then evaluate
variants of the framework to analyze the importance of
each component, including the regression model, the
NSS feature, and the Bayesian inference. Note that we
performed the following intrinsic analyses on the LIVE
Colorþ3D Database Release-2 because of the science-
quality, high-resolution color images, and high-quality
depth maps that it provides.

Patch size

In our implementation of Natural3D, we chose to
use patches of size 323 32 (P ¼ 32). This choice was
based on the need to acquire enough bandpass response
samples to obtain a reliable two-dimensional histo-
gram, upon which accurate NSS models can be built.
To support our choice of patch size, we trained and
tested Natural3D using a variety of different patch
sizes, and plotted the results in Figure 22 with three
error metrics as a function of patch size. It may be seen
that both the RMS and Rel. error metrics improved as
the patch size was increased up to 32, while there was
little variation in the computed Log10 error metric
values. Moreover, both the RMS and Rel. error metrics
stabilized for patch sizes larger than 32. This result
indicates that once there are enough samples to
construct reliable bivariate and correlation NSS mod-
els, the extracted features become sufficiently stable to
enable Natural3D to deliver accurate and consistent

Figure 17. Example estimated depth maps along with the ground-truth depth map on the Make3D LaserþImage Dataset-1.
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depth estimation performance. In other words, the
proposed framework is robust to the choice of patch
size larger than 32.

Number of canonical depth patterns

Another parameter choice we made in our imple-
mentation of Natural3D is the number of canonical

depth patterns, which are the number of clusters used
in the centroid-based k-means algorithm for learning
the depth prior. To demonstrate the influence of the
number of canonical depth patterns on the perfor-
mance of Natural3D, we trained and tested the
algorithm using different numbers of clusters in the k-
means algorithm, and plotted in Figure 23 the three
error metrics as a function of the number of canonical
depth patterns. It can be seen that, while the relative

Figure 18. Example estimated depth maps along with the ground-truth depth map on the LIVE Colorþ3D Database Release-2.

Figure 19. Example estimated depth maps along with the ground-truth depth map on the LIVE Colorþ3D Database Release-2. Photo

credit: Dr. Brian McCann; pictured are Dr. Johannes Burge and Dr. Steve Sebastian. Dr. McCann, Dr. Burge, and Dr. Sebastian all are

creators of LIVE Colorþ3D Database Release-2 and were members of Center for Perceptual Systems at The University of Texas at

Austin.
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error slightly drops as the number of canonical depth
patterns increases, the RMS value increases adversely.
This result suggests that while it may be helpful to
estimate relative distances between objects using more
canonical depth patterns, the increased number of
depth priors may result in inferior regression perfor-
mance when estimating absolute distances. This result
also agrees with our observation during the prior model

development that five most common canonical depth
patterns exist in natural environments. Therefore, using
more than five clusters in the k-means algorithm may
result in some redundant depth patterns, so the
regression model of those redundant depth patterns will
be trained with incomplete image data when estimating
absolute distances, because the extracted image features
belonging to similar depth patterns may be inaccurately

Figure 20. Example estimated depth maps along with the ground-truth depth map on the NYU Depth Dataset V2.

Figure 21. Example estimated depth maps along with the ground-truth depth map on the NYU Depth Dataset V2.
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classified into different clusters to train different
regression models. As a result, to achieve the best depth
estimation performance, we chose to use five canonical
depth patterns: five clusters in the k-means algorithm,
in our Natural3D implementation.

Regression model

A key component of Natural3D is the regression
model used to estimate the mean range of each
corresponding depth patch using the extracted depth-
aware image feature vector fI. In our Natural3D
implementation, we utilize a standard SVR model; in
fact, the proposed Bayesian framework is generic
enough to incorporate different types of regression
models. To demonstrate this, we trained and tested two
variants of Natural3D: the first using the general linear
model regression, and the second with the generalized
linear model (GLM) regression with the log link
function and the assumption of a Poisson distribution,
respectively. Note that the general linear model may be
regarded as a special case of the GLM with the identity
link function and the assumption of a normal
(Gaussian) distribution. The parameter (mean) of both
the Poisson and normal (Gaussian) distributions can be

estimated using the NSS features extracted from the
ground-truth depth patches and the associated image
patches of the training data. We list the performance of
these two variants in Table 2, which includes a baseline
implementation of Natural3D as described herein. It
can be seen that the two variants of Natural3D using
linear regression models deliver comparable absolute
depth estimation performance against the baseline in
terms of the RMS metric. To attain the best
performance when estimating both relative and abso-
lute depths, we advocate a Natural3D implementation
based on the standard SVR model, which can handle
high-dimensional, depth-aware NSS features effective-
ly.

Depth-aware NSS features

One of the major contributions of our work is the
depth-aware features extracted using both established

Algorithm Runtime per estimated depth map (s)

Depth Transfer 1490.53

Natural3D 161.05

Table 1. Computational complexity of monocular depth
estimation algorithms.

Figure 22. Plot of three error metrics as a function of patch size

for Natural3D.

Figure 23. Plot of three error metrics as a function of the

number of canonical depth patterns for Natural3D.

Variant

Metric

Log10 Rel. RMS

Baseline 0.2280 0.5964 12.9623

General linear model regression 0.2515 0.8069 13.6248

GLM regression with Poisson

distribution

0.2505 0.8087 13.7498

HOG feature 0.2871 0.8653 16.9778

No Bayesian 0.2433 0.7287 15.5290

Table 2. Intrinsic analysis of Natural3D. Notes. Rel.¼ relative
error, RMS¼ root mean square error, GLM¼ generalized linear
model, HOG ¼ histogram of oriented gradients.
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and new bivariate and correlation NSS models. In
order to demonstrate efficacy of these perceptually
consistent NSS features, we trained and tested a variant
of Natural3D using instead another type of highly
popular image feature, the classic histogram of oriented
gradients (HOG; Dalal & Triggs, 2005). This image
feature has been widely used in computer vision to
create low-level features for a plethora of different
visual analysis tasks (Serre, Wolf, Bileschi, Riesen-
huber, & Poggio, 2007; Felzenszwalb, Girshick,
McAllester, & Ramanan, 2010), including object
detection, classification, and recognition. We compared
the depth estimation performance of the HOG variant
with the Natural3D baseline implementation, as shown
in Table 2. It can be seen that the HOG variant is not
able to deliver comparable performance with the
baseline in terms of all three error metrics, clearly
demonstrating the effectiveness of the simple but
relevant bivariate and correlation NSS features for
depth estimation.

Bayesian inference

An essential ingredient of Natural3D is the Bayesian
inference engine. To demonstrate the effectiveness of
the priors and likelihoods Natural3D learns from
natural images and registered depth maps, we imple-
mented and compared with the baseline, a variant of
Natural3D that simply trained a regression model to
learn absolute depths directly from the extracted NSS
features. As listed in the bottom row of Table 2, while
the no-Bayesian implementation is able to deliver fair
depth estimation performance, there does exist a
noticeable drop in all three error metrics.

Conclusions

By exploiting reliable and robust statistical models
describing the relationships between luminances and
depths in natural scenes, we have created a perceptu-
ally relevant Bayesian model, called Natural3D, for
recovering depth information from monocular (pho-
tographic) natural images. Two component models
are learned from ground-truth depth maps: a prior
model, including a dictionary of canonical depth
patterns, and a likelihood model, which embeds co-
occurrences of image and depth characteristics in
natural scenes. As compared to several top-perform-
ing state-of-the-art computer vision methods, it
delivers highly competitive performance in regards to
estimating both absolute and relative depths from
natural images. We also performed a thorough set of
intrinsic analyses to acquire a better understanding of

the contributions of the individual components of
Natural3D to its performance, as well as the
effectiveness of the extracted depth-aware NSS
features.

The excellent performance attained by Natural3D
implies that a biological visual system might be able to
capture coarse depth estimates of the environment
using the statistical information computed from
retinal images at hand and the associations between
image textures and true 3D geometric structures. We
believe that the prior and likelihood models developed
in Natural3D not only yield insights into how 3D
structures in the environment might be recovered from
image data, but could also be used to benefit a variety
of 3D image/video and vision algorithms, such as
creating fast estimates of scene or object depth in
images from mobile camera devices. We envision that
our future work will involve introducing deeper
statistical models relating image and range data to
recover more accurate and detailed depth informa-
tion.

Keywords: depth estimation, Bayesian, human vision
systems (HVS), natural scene statistics (NSS)
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Footnotes

1 By ‘‘natural scenes’’ we mean pictures of the real
world, arising in both natural as well as man-made
settings, obtained by a good quality camera under good
(photopic) conditions without distortion.

2 In the following sections, we will provide more
details about the patch size P 3 P used in our
implementation, and how performance is affected by
different choices of P.

3 There are no published results for Im2Depth and
Eigen et al. (2014).
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