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for Picture-Quality Prediction
Challenges and solutions to data-driven image quality assessment

Convolutional neural networks (CNNs) have been shown to de-
liver standout performance on a wide variety of visual informa-
tion processing applications. However, this rapidly developing 

technology has only recently been applied with systematic energy 
to the problem of picture-quality prediction, primarily because of 
limitations imposed by a lack of adequate ground-truth human 
subjective data. This situation has begun to change with the de-
velopment of promising data-gathering methods that are driving 
new approaches to deep-learning-based perceptual picture-quality 
prediction. Here, we assay progress in this rapidly evolving field, 
focusing, in particular, on new ways to collect large quantities of 
ground-truth data and on recent CNN-based picture-quality pre-
diction models that deliver excellent results in a large, real-world, 
picture-quality database.

Introduction
Recent years have seen significant efforts applied to the devel-
opment of successful models and algorithms that can auto-
matically and accurately predict the perceptual quality of 
two-dimensional (2-D) and three-dimensional (3-D) digital 
images and videos as reported by human viewers [1]. Concur-
rently, there has been a tremendous surge of work on exploiting 
large data sets of annotated image data as inputs to deep neu-
ral networks (NNs) toward solving such challenging problems 
as image classification and recognition [2]. These efforts have 
often produced dramatic improvement relative to the state of 
the art. It is perhaps unsurprising that very deep models, having 
universal representation capability, should produce excellent 
results when trained on massive data sets using fast graphi-
cal computing architectures. Nevertheless, the generalization 
capability of these models is remarkable.

Yet, until recently, there has been limited effort directed 
toward optimizing picture-quality prediction models using deep 
networks, although, in principal, this could also lead to greatly 
improved performance. The practical significance of the problem 
and the relative ease of implementing algorithms learned on deep 
architectures make this a compelling topic. The explosive con-
sumption of visual media in recent years, owing to advances in 
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digital camera technology, digital television, streaming video ser-
vices, and social media applications, is driving a critical need for 
improved picture-quality monitoring. The pipelines from picture 
content generation to consumption are fraught with numerous 
sources of distortions, including blur, noise, and artifacts arising 
from such processes as compression, scaling, format conversion, 
color modification, and so on. Multiple interacting distortions  
are often present, which greatly complicates the problem. Pic-
ture-quality models that can accurately predict human-quality 
judgments can be used to greatly improve consumer satisfaction 
via automatic monitoring of the qualities of massively distrib-
uted pictures and videos and to perceptually benchmark picture 
processing algorithms such as compression engines, denois-
ing algorithms, and superresolution systems that substantially 
affect viewed picture quality. While many successful picture-
quality models have been devised, the problem is hardly solved, 
and there remains significant scope for improvement [3]. Deep-
learning engines offer a potentially powerful framework for 
achieving sought-after gains in performance; however, as we 
will explain,  progress has been limited by a lack of adequate 
amounts of distorted picture data and ground-truth subjective 
quality scores, which are much harder to acquire than other 
kinds of labeled image data. Furthermore, typical data-augmen-
tation strategies such as those used for machine vision are of 
little use on this problem.

Perceptual picture-quality prediction
Picture-quality models are generally classified according to 
whether a pristine reference image is available for comparison. 
Full-reference and reduced-reference models assume that a 
reference is available; otherwise, the model is no-reference, or 
blind. Reference models are generally deployed when a process 
is applied to an original image, such as compression or enhance-
ment. No-reference models are applied when the quality of an 
original image is suspect, as in a source inspection process, or 
when analyzing the output of a digital camera. Generally, no-
reference prediction is a more difficult problem.

Both reference and no-reference picture-quality models rely 
heavily on principles of computational visual neuroscience and/
or on highly regular models of natural picture statistics [1]. Here-
tofore, the most successful no-reference models have relied on 
powerful but shallow regression engines to achieve results that 
approach the prediction accuracy of reference-quality predictors.

Deep learning and CNNs
Deep learning has had a transformative impact on such difficult 
problems as speech recognition and image classification, achiev-
ing improvements in performance that are significantly supe-
rior to those obtained using conventional model-based methods 
optimized using shallower networks. In particular, most of the 
top-ranked image recognition and classification systems have 
been optimized using CNNs. One of the principal advantages 
of deep-learning models are the remarkable generalization capa-
bilities that they can acquire when they are trained on large-scale 
labeled data sets. Models learned using conventional machine-
learning methods are heavily dependent on the determination 

and discrimination capability of sophisticated training features. 
By contrast, deep-learning models employ multiple levels of lin-
ear and nonlinear transformations to generate highly general data 
representations, thereby greatly decreasing dependence on the 
selection of features, which are often reduced simply to raw pixel 
values [2], [4]. In particular, deep CNNs optimized for image 
recognition and classification have greatly outperformed conven-
tional methods. Open-source frameworks such as TensorFlow 
[5] have also greatly increased the accessibility of deep-learning 
models, and their application to diverse image processing and 
analysis problems has greatly expanded.

Unlike traditional NNs, CNNs can be adapted to effectively 
process high-dimensional, raw image data such as red, green, and 
blue (RGB) pixel values. Two key ideas underlie a convolutional 
layer: local connectivity and shared weights. Each output neu-
ron of a convolutional layer is computed only on a locally con-
nected subset of the input, called a local receptive field (drawing 
from vision science terminology). However, by stacking multiple 
convolutional layers, the effective receptive fields may enlarge 
to capture global picture characteristics. Usually, the parameters 
in a layer (i.e., filter weights) are shared across the entire visual 
field to limit their number. A common conception is that CNNs 
resemble processing by neurons in visual cortex. This idea largely 
arises from the observation that, in deep convolutional networks 
deploying many layers of adaptation on images, early layers of 
processing often resemble the profiles of low-level cortical neu-
rons in visual area V1, i.e., directionally tuned Gabor filters [6], 
or neurons in visual area V2 implicated in assembling low-level 
representations of image structure [7]. At early layers of network 
abstraction, these perceptual attributes make them appealing 
tools for adaption to the picture-quality prediction problem.

An example of a CNN structure similar to those studied here 
is shown in Figure 1, which also illustrates the kernels learned 
and the feature maps obtained when the model is trained for the 
picture-quality prediction task. Generally, a CNN model con-
sists of several convolutional layers followed by fully connected 
layers. Some convolutional layers may be followed by pooling 
layers, which reduce the sizes of the feature maps. The fully con-
nected layers are essentially traditional NNs, where all of the 
neurons in a previous layer are connected to every neuron in a 
current layer.

Motivated by the great success of CNNs on numerous image 
analysis applications, we comprehensively review and analyze 
the use of deep CNNs on the picture-quality prediction problem.  

Overview of the problem
Machine learning has played an important role in the develop-
ment of modern picture-quality models. Although these models 
have been largely driven by features drawn from meaningful 
quantitative perceptual models, mapping them against the wide 
variety of generally nonlinear, often commingled, and poorly 
understood distortions that occur in practice is a formidable prob-
lem. Sophisticated, yet shallow mapping engines such as support 
vector regressors (SVR), have produced good prediction results 
(against human-quality opinions), yet there remains substantial 
room for improvement [3], which greatly motivates the study of 
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deep learners for this problem. Figure 2 shows conceptual flow 
diagrams of reference and no-reference learned picture-quality 
predictors. A major difference of deep CNN models is the lack 
of a feature extraction stage, although preprocessing steps may 
still be put to effective use. In a deep CNN, features conducive to 
effective picture-quality prediction are ostensibly learned by the 
network during the training process. The preprocessing stages 
may include, for example, color conversion, local debiasing, local 

(divisive) normalization, or a domain transformation to sparsify 
[8] or reduce redundancy in the data.

Most popular learned picture-quality prediction models oper-
ate by regressing an extracted perceptual feature vector onto 
recorded subjective scores. Typically, shallow regressors such as 
SVRs, general regression NNs, or random forests have been used 
[9]–[11]. A deep CNN model can instead alternate feature extrac-
tion and regression stages. High-dimensional input data (raw or 
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preprocessed pixel values) can be fed into the CNN, and, over 
many iterations or epochs of training on a large data set, useful 
image representations are learned automatically. In the early lay-
ers of a deep CNN, low-level encoding or sparsifying features are 
learned, possibly followed by intermediate descriptors of feature 
correlations [7]. In the deeper layers, the learned features contain 
more abstract information that can capture relationships between 
image distortions and human perceptions of them. In a CNN, dif-
ferentiable feature aggregation or pooling stages are interspersed 
with feature extraction and regression stages, enabling effective 
end-to-end optimization. However, despite significant successes 
on a wide array of other image analysis problems, the application 
of deep learning networks to the picture-quality prediction prob-
lem has been complicated by a significant obstacle, which is a 
lack of an adequate amount of perceptual training data, including 
accurate local ground-truth scores.

The performance of deep-learning models generally depends 
heavily on the size of the available training data set(s). Currently 
available legacy, public-domain, subjective picture-quality data-
bases such as LIVE IQA [12] and TID2013 [13] are far too small 
to effectively train deep learning models. For example, the LIVE 
IQA and TID2013 databases each contains fewer than 30 unique 
image contents and no more than 24 different types of distortions 
per image, all of which are synthetic [This is as applied to pristine 
images by a database designer. Algorithm-generated distortions 
such as Gaussian blur (GB), noise, mean shifts, and so on, con-
tained in these databases are poor models of picture impairments 
that actually arise in consumer digital photographs. Even JPEG/
JPEG2000-coded images are created using much more liberal 
amounts and spreads of compression (to create perceptual separa-
tions) than those produced by real image capture devices.] Even the 
recent LIVE “In the Wild” Challenge Database (hereafter, LIVE 
Challenge) [3], the largest available resource in most dimensions 
(with nearly 1,200 unique pictures, each afflicted by a unique, 
unknown combination of highly diverse authentic distortions and 
judged by more than 350,000 unique human subjects) is of insuf-
ficient size, although it provides an excellent challenge for any no-
reference model. By comparison, image recognition data sets such 
as ImageNet [14] contain tens of millions of labeled images. Creat-
ing larger subjective quality data sets is a formidable problem. Con-
trolled laboratory studies like [12] and [13] are out of the question, 
and even the crowdsourced study in [3] exhausted the pool of high-
quality human subjects available on Amazon Mechanical Turk.

Obtaining adequate quantities of reliable human subjective 
labels remains a very difficult problem. Unlike the binary (yes/no) 
confirmations of automatically generated labels that are delivered 
by online human subjects, as used in the construction of object 
recognition data sets like ImageNet [2], each of which might be 
generated in a second or less, collecting human-quality judgments 
is a complex, time-consuming psychometric task that is as much 
about assessing each subject’s response, as it is about the qual-
ity of the labeling the images. The human subjects determine 
an internal judgment of the overall quality of each image after 
holistically scrutinizing it, then record each of their judgments on 
a continuous, sliding subjective-quality scale, while consciously 
discounting factors such as image content or photographic aes-

thetics. This highly engaging task requires dozens or even hun-
dreds of human-quality raters to spend 5–10 s on each image. 
Each subject’s overall session is time-limited, to avoid reductions 
in attention and performance arising from vision fatigue.

Common strategies for attacking this labeled image paucity 
are data augmentation techniques, which seek to multiply the 
effective volume of image data via rotations, cropping, reflec-
tions, and so on. Unfortunately, with the likely exception of 
horizontal reflections, which we use later, applying these kinds 
of transformations to an image will generally significantly 
change its perceived quality. While generating a large amount 
of picture content is simple, ensuring adequate distortion diver-
sity and realism is much harder.

In another common strategy, the images used for training are 
divided into many small patches. However, this approach pro-
duces another problem—distinct local ground-truth subjective 
labels are not available for each of the patches. In every experi-
mental scenario to date, human subjects supply a single scalar 
subjective score on each global image. Since images, distortions 
of images, and human perceptions of both are all highly non-
stationary, the scores that subjects would apply to a local image 
patch will generally differ greatly from those applied to the 
entire image. Obtaining human judgments of local image patch 
quality is not practical, as it would greatly increase the overhead 
of acquiring human scores.

One way to try to overcome the lack of an adequate train-
ing data set is to utilize unsupervised learning, e.g., by training a 
restricted Boltzmann machine or an autoencoder [4] with convo-
lutional layers. With an unsupervised model, it is possible to train 
deep NN models on very large data sets having no ground-truth 
labels. However, picture-quality prediction is a subtle problem 
that involves modeling detailed interactions between distortion 
and content. Conversely, unsupervised models that are designed 
to work well on tasks such as image recognition, may succeed in 
part by learning to promote gross shape-related features, while 
suppressing small variations. For example, a denoising autoen-
coder can be trained to reconstruct an original image from a noisy 
one by enforcing robustness against small corruptions of the input 
data or adding a regularization term to the objective function. By 
contrast, the representations learned by a picture-quality predic-
tor must be particularly sensitive to local and global degrees of 
distortion as well as perceived interactions between content and 
distortion. Successful, generalizable, deep unsupervised picture-
quality prediction models have not yet been reported.

The need for large-scale subjective picture-quality data is 
underlined by the fact that the perception of picture distortions 
engages multiple complex processes along the visual pathway, 
including bandpass, multiscale, and directional decompositions 
[6]; local nonlinearities; and normalization mechanisms. For 
example, contrast masking [15], whereby the spatially localized 
energy of image content can reduce or eliminate the visibility 
of distortions, is well explained by a local cortical divisive nor-
malization model [16]. Successful reference and no-reference 
picture-quality models [9], [10], [15], [17] approximate these per-
ceptual mechanisms by various models. However, errors in these 
approximations, along with a lack of information describing other 
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relevant, perhaps higher-level processes, still limit their predic-
tion efficacy [3]. Traces of such human response properties exist 
and are embedded in human subject data. This suggests that they 
might be unraveled by a deep network served by enough data.

Conventional learning-based picture-quality predictors
The most successful reference picture-quality predictors, such 
as those deployed by the television industry, such as the Emmy-
winning structured similarity (SSIM) model [15] and the visu-
al information fidelity (VIF) index [18] (a core element of the 
VMAF processing system that quality-controls all Netflix content 
encodes) are not learned models but instead compute similarity 
or error measures modulated by perceptual criteria in some man-
ner. Performance is high since a reference error, whether implicit 
or explicit, is available to be analyzed using perceptual models. 
No-reference models operate without the benefit of an implied 
error signal, so their design has relied heavily on machine learn-
ing. Broadly, these models deploy perceptually relevant, low-
level feature extraction mechanisms based on simple, yet highly 
regular, parametric models of good-quality pictures. These natu-
ral scene statistics (NSS) models are predictably altered by the 
presence of distortions [18]. Simply stated, high-quality images 
subjected to bandpass filtering, followed by local energy normal-
ization, become substantially decorrelated and Gaussianized, 
while distorted images tend not to obey this model (although this 
is not always the case on authentically distorted pictures, as dem-
onstrated in [3]). Picture-quality prediction models of this type 
have been developed in the wavelet [18], discrete cosine trans-
form, sparse [8] and spatial domains [9], and have been applied 
to video signals using natural bandpass space-time video statis-
tics models [19], [20]. The FRIQUEE model [21] achieved state-
of-the-art performance on the LIVE Challenge database [3] by 
regressing on a “bag” of NSS features drawn from diverse color 
spaces and perceptually motivated transform domains. 

There have also been recent attempts to apply other, earlier 
types of deep-learning models to the no-reference picture-qual-
ity prediction problem. For example, Hou et al. trained a deep 
belief network on wavelet domain NSS features to classify dis-
torted images into five discrete score categories [17], and Li et 
al. regressed shearlet NSS features onto subjective scores using 
a stacked autoencoder [22]. These models generally used hand-
crafted feature inputs, were not trained via end-to-end optimiza-
tion, and achieved less impressive gains in performance.

Cnn-based picture-quality prediction

CNN-based no-reference picture-quality models
As mentioned previously, several CNN-based picture-quality 
prediction models have attempted to use patch-based labeling to 
increase the set of informative (ground-truth) training samples. 
Generally, two types of training approaches have been used: 
patchwise and imagewise, as depicted in Figure 3. In the former, 
each image patch is independently regressed onto its target. In 
the latter, the patch features or predicted scores are aggregated or 
pooled, then regressed onto a single ground-truth subjective score.

The first application of a spatial CNN model to the picture-
quality prediction problem was reported in [23], wherein a 
high-dimensional input image was directly fed into a shallow 
CNN model without finding handcrafted features. To obtain 
more data, each input image was subdivided into small patch-
es as a method of data augmentation, each being assigned the 
same subjective-quality score during training. Following prior 
successful NSS-based models [9], [18], this method applies a 
process of local divisive normalization on each input image 
and uses both maximum (max) and minimum (min) pooling 
to reduce the feature maps. Patchwise training was used, and, 
during application, the predicted patch scores were averaged 
to obtain a single picture-quality score.
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Figure 3. Patchwise and imagewise strategies used to train patch-based picture-quality prediction models. First, an input image is partitioned into 
patches; then, each is fed into the same CNN model. In patchwise training, a proxy local score or global subjective score is used as a training target for 
each input patch. In imagewise training, extracted features or scores are aggregated, then regressed onto a single, global subjective score.



135IEEE SIgnal ProcESSIng MagazInE   |   November 2017   |

Li et al. utilized a deep CNN model that was pretrained on 
the ImageNet data set [24]. A network-in-network (NiN) struc-
ture was used to enhance the abstraction ability of the model. 
The final layer of the pretrained model was replaced by regres-
sion layers, which mapped the learned features onto subjective 
scores. As in [23], image patches were regressed onto identical 
subjective-quality scores during training.

The labeling of local patches with global subjective-quality 
scores during training may be problematic. While the reported 
prediction accuracy of this model was competitive with that of 
handcrafted feature-based quality prediction models, it is not 
reasonable to expect local image quality to closely agree with 
global subjective scores, even when synthetic distortions are 
applied homogeneously. Picture quality is inevitably space-vary-
ing because of the high degree of nonstationarity of picture con-
tents and the complex perceptual interactions that occur between 
content and distortions (such as masking). A variety of training 
strategies have been studied as solutions to this problem. 

Bosse et al. deployed a deeper, 12-layer CNN model fed 
only by raw RGB image patches to learn a no-reference pic-
ture-quality model [25]. They proposed two training strategies: 
patchwise training (similar to [23]) and weighted average patch 
aggregation, whereby the relative importance of each patch was 
weighted by training on a subnetwork. The  overall loss function 
was optimized in an end-to-end manner. The authors reported 
state-of-the-art prediction accuracies on the major synthetic-
distortion picture-quality databases.

To overcome overfitting problems that can arise from a lack of 
adequate local ground-truth scores, several authors have suggest-
ed training deep CNN models in two separate stages: a pretrain-
ing stage, using a large number of algorithm-generated proxy 
ground-truth quality scores, followed by a stage of re gression 
onto a smaller set of subjective scores. For example, [26] describes 
a two-stage CNN-based no-reference-quality prediction model, 
whereby local quality scores generated by a full-reference algo-
rithm are used as proxy patch labels in the first stage of train-
ing. In the second stage, the feature vectors obtained from image 
patches are aggregated using statistical moments, then regressed 
onto subjective scores. In this instance, the first stage is patch-
wise training, while the second stage is imagewise training. Since 
the local proxy scores reflect the nonstationary characteristics of 
perceived quality, they are reasonable local regression targets, 
and training of the CNN model is enabled by the abundant train-
ing samples. Following the second stage of training on human 
ground-truth, their model attains highly competitive prediction 
accuracy on the legacy data sets.

The same authors later developed a two-stage training 
scheme for no-reference picture-quality prediction called the 
deep image quality assessor (DIQA) [27]. The training pro-
cess of that model was separated into an objective training 
stage followed by a subjective training stage. Rather than using 
a sophisticated picture-quality predictor to produce proxy 
scores, they computed peak signal-to-noise (PSNR). Using 
only convolutional layers, feature maps were obtained, which 
were then regressed onto objective error maps. The second 
stage aggregated the feature maps by weighted averaging, then 

regressed these global features onto ground-truth subjective 
scores. The weighting maps were also learned during training. 
The reported prediction accuracy of these models is competi-
tive with state-of-the-art models on the legacy databases.

CNN-based full-reference picture-quality models
While CNNs were first used to model no-reference picture 
quality, more recently, they have been applied to the reference 
prediction problem as well.

Liang et al. [28] proposed a dual-path CNN-based full-refer-
ence-quality prediction model. They generalized the problem by 
seeking to predict quality using a nonaligned image of a similar 
scene as a reference. Locally normalized distorted and reference 
image patches are fed into a dual-path CNN model, each using 
the same parameter values. Then the concatenated learned fea-
ture vectors are regressed onto the subjective scores of source dis-
torted images. They report state-of-the-art prediction accuracies 
in both aligned and nonaligned full-reference scenarios.

Gao et al. deployed a deep CNN model pretrained on Ima-
geNet. They used it to conduct full-reference picture-quality 
prediction [29] by feeding pairs of reference and distorted pic-
tures into the CNN, where each output layer is used as a feature 
map. Local similarities between the feature maps obtained 
from the reference and distorted images are then computed 
and pooled to arrive at global picture-quality scores. The CNN 
model was not fine-tuned on any picture-quality database.

The deep CNN-based full-reference-quality prediction 
model in [30], called DeepQA, was trained to learn a visual 
sensitivity weight at each coordinate using measured local spa-
tial characteristics of the distorted image. DeepQA accepts the 
distorted image and an objective error map (e.g., mean squared 
error) as inputs. The learned weight map is then used as a mul-
tiplier on the objective error map. The authors reported consis-
tent  state-of-the-art prediction accuracies as compared to other 
reference-quality models, on the synthetic-distortion legacy 
picture-quality databases.

Summary of CNN-based picture-quality models
Table 1 compares the implementations of reported CNN-based 
no-reference [23]–[27] and full-reference [28]–[30] picture-qual-
ity models. For full-reference models, the strategies used to com-
pare distorted and reference features are summarized in the last 
column. In [28] and [30], this merely amounts to supplying both 
to the network. Generally, the reviewed models were designed 
to overcome the lack of training data, which is the most impor-
tant issue that needs to be resolved to employ deep CNN models 
successfully. Most of the models used some type of patch-based 
training to increase the training data volume. Several of the mod-
els used proxy ground-truth scores generated by objective-quality 
prediction models to augment the subjective scores or, alternate-
ly, to pretrain the network on a large amount of easily generated 
proxy data before fine-tuning on subjective scores. Since we have 
found no serious attempts to use unsupervised deep models, we 
make no comparisons of this type, although the success of the 
very simple model [31] suggests this is an interesting research 
direction. Finding ways to embody models of perception into 
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deep picture-quality models is also an issue. While simpler mod-
els often use perceptually relevant bandpass processing and local 
divisive normalization [23], similar processes may be learned by 
the network at the early stages. However, it should be possible to 
impose perceptual weighting or pooling strategies on the network 
to account for aspects of visual sensitivity, which could accelerate 
the process of training on subjective scores.

In CNN-based schemes, the process of feature aggregation or 
score pooling determines the form of a loss function. Examples 
of aggregation and pooling strategies are shown in Figure 4. The 
patch-based algorithms described in [23] and [24] did not use 
aggregation or pooling during training. Instead, each image patch 
was independently regressed onto the global subjective-quality 
score. The loss function used is

 ,
N

f p S1
L i

i

N

= -^ h/  (1)

where pi  refers to the ith patch obtained, N is the number of 
patches, S is the ground-truth score, and ( )f $  is an NN process. 
The models were trained via a patchwise optimization, and, dur-
ing testing, the outputs of multiple patches composing an input 
image were averaged to obtain a final predicted subjective score. 
Conversely, imagewise approaches use aggregation or pooling 
during training. For example, weighted average pooling methods 
[25] may be used, where the loss function looks like

 ,, ...f p f p SpoolL N1= -l ^ ^ ^h hh  (2)

where ( )pool $  refers to an unspecified pooling method [Fig-
ure 4(a)]. In [26] and [27] [Figure 4(b) and (c)], simple feature 
aggregation was used. A more complicated model, such as a 
multilayer perception or recurrent NN [4], could also be used 
for aggregation [Figure 4(d)]. Here, the loss function becomes

 , ... ,g aggr f p f p SL N1= -m ^ ^ ^ ^h hhh  (3)

where (·)aggr  refers to a feature aggregation process and (·)g  
is a regression NN. The forms (2) and (3) have the advantage 
that the model can be trained under the same conditions 
as the actual testing conditions, where the imagewise scores 
are predicted.

Description of picture-quality databases
The choice and consideration of a database for training is 
important for deep-learning-based models, since their per-
formance depends highly on the size of the training set. In 
most picture-quality databases, the distorted images are 
afflicted by only a single type of synthetically introduced dis-
tortion, such as JPEG compression, simulated sensor noise, 
or simulated blur, as exemplified in Figure 5(a). Since they 
have played important roles in the development of perceptual 
picture-quality studies, we briefly describe several popular 
legacy databases in the following.

The LIVE IQA database [12], which was the first success-
ful public-domain picture-quality database and is still the most 
widely used, contains 29 reference images and 982 images, each 

Table 1. A comparison of implementations of CNN-based picture-quality prediction models. 

Models Type Layer Depth Preprocessing Feature Aggregation or Score Pooling 

[23] NR 2 Conv and 2 FC Local normalization Mean pooling (during testing) 

[24] NR 14 Conv (4 NiN blocks) Local normalization Mean pooling (during testing) 

[25] NR 10 Conv and 2 FC Raw RGB image Mean or weighted average pooling 

[26] NR 2 Conv and 6 FC Local normalization Mean and standard deviation aggregation 

[27] NR 8 Conv and 3 FC Low-frequency subtraction Mean or weighted average aggregation 

[28] FR (2 Conv, 1 FC)×2 and 2 FC Local normalization (Not mentioned) 

[29] FR 13 Conv and 3 FC Raw RGB image Mean aggregation and pooling 

[30] FR (2 Conv)×2, 6 Conv and 2 FC Low-frequency subtraction Weighted average aggregation 

Training Targets Comments 

Models Type First Stage Second Stage (Comparison strategy for FR models) 

[23] NR Subjective scores N/A Patchwise training 

[24] NR Semantic label Subjective scores Fine-tuning of pretrained CNN on ImageNet

[25] NR Subjective scores N/A Weighted average patch aggregation 

[26] NR Proxy scores Subjective scores Uses proxy patch labels 

[27] NR Objective error map Subjective scores Uses proxy patch labels 

[28] FR Subjective scores N/A Concatenation of feature vectors 

[29] FR Semantic label N/A SSIM between feature maps of each layer 

[30] FR Subjective scores N/A Concatenation of feature maps 

FR: full-reference, NR: no-reference, Conv: convolutional layers, and FC: fully connected layers.
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impaired by one of five types of synthetic distortions: JPEG and 
JPEG2000 (JP2K) compression, white Gaussian noise (WN), 
GB, and Rayleigh fast-fading channel distortion. The differential 
mean opinion score (DMOS) of each distorted image is provided. 
The CSIQ database [32] includes 30 reference images and 866 
synthetically distorted images of six types: JPEG, JP2K, WN, 
GB, pink Gaussian noise, and global contrast decrements. The 
DMOS of the distorted images is also provided. TID2013 [13] 
contains the largest number of distorted images. It consists of 25 
reference images and 3,000 synthetically distorted images with 
24 different distortions at five levels of degradation. The database 
also provides the mean opinion scores (MOS). The LIVE multi-
ply distorted (MD)  database [33] was the first to include multiple 
(synthetically) distorted images. Images in it are distorted by two 
types of distortion in two combinations: simulated GB followed 
by JPEG compression and GB followed by additive WN. It con-
tains 15 references and 405 distorted images, and the DMOS of 
each distorted image is provided.

Finally, the LIVE Challenge database [3] contains nearly 
1,200 unique image contents, captured by a wide variety of 
mobile camera devices under highly diverse conditions. As 
such, the images were subjected to numerous types of authentic 
distortions during the capture process, often in complex com-
binations of multiple interacting impairments, as shown in Fig-
ure 5(b). The distortions include, e.g., low-light blur and noise, 
motion blur, camera shake, overexposure, underexposure, a 
variety of color errors, compression errors, and many combina-
tions of these and other impairments. There are no reference 
images in the LIVE Challenge database, since the distorted 
images are originals, captured by dozens of ordinary photog-
raphers. The LIVE Challenge pictures were judged by more 
than 8,100 human subjects in a tightly monitored  crowdsourced 
study, yielding more than 350,000 human judgments that 
exhibit excellent internal consistency [3]. A summary of the 
attributes of these five databases is shown in Table 2.

Performances of Cnn picture-quality models
Since only a few CNN-based picture-quality models have 
been released, we provide the prediction accuracies of baseline 
models on the five databases as performance references to be 
compared against. We selected the well-known very deep CNN 
models AlexNet [2] and ResNet50 [34] as the architectures of 
the baseline models, where each was pretrained on the ImageNet 

classification task. Both of these pretrained models are available 
for download. The specific network configurations can be found 
in the original papers. For each pretrained architecture, two 
types of back-end training strategies were tested: using an SVR 
to regress the extracted features from the CNN model onto sub-
jective scores and fine-tuning the pretrained networks to con-
duct picture-quality prediction. We did not test direct training 
of these models on any of the picture-quality databases, since 
they are not large enough. Very deep networks easily overfit on 
insufficient training samples, causing significant decreases in 
testing accuracy (AlexNet has 62 million and ResNet50 has 26 
million parameters). Instead, we tested a smaller CNN network 
as a baseline model of direct training.

In the first approach, the output of the sixth fully connected 
layer (4,096 dimensions) from AlexNet and averaged-pooled 
features (2,048 dimensions) from ResNet50 were used as the 
input feature vectors to the SVR. From each input image, 25 
randomly cropped image patches (the patch size is predefined 
by the pretrained models: 227 × 227 for AlexNet, and 224 × 
224 for ResNet50) were used for training and testing. The 
obtained feature vectors from these 25 image patches were 
averaged to obtain a single global feature vector.

In the second approach, we randomly cropped 100 image 
patches from each training image to be used for training 
(except on the TID2013 database, where 30 cropped patches 
were used, due to the large number of distorted images in the 
database). The image patches inherited the quality scores from 
the source distorted images, which were first normalized to 
the range [0, 1]. This preprocessing enabled us to use the same 
parameter settings on all databases. The basic regression loss 
(1) was used. To alleviate overfitting, one dropout layer with 
dropout rate 0.5 was added before the last fully connected layer. 
The learning rate was set to ,10 3-  and the fine-tuning process 
iterated for eight and six epochs on AlexNet and ResNet50, 
respectively. The batch size was fixed at 48 for both models. 
In the testing stage, the pretrained models were used to predict 
quality scores on each of 25 random image crops. These were 
average pooled to produce the final picture-quality scores.

For the direct training approach, we used the following 
CNN architecture: Conv-48, Conv-48 with stride 2, Conv-64, 
Conv-64 with stride 2, Conv-64, Conv-64, Conv-128, Conv-128, 
FC-128, FC-128, and FC-1. Here, “Conv” refers to convolution-
al layers, “FC” refers to fully connected layers, and the trailing  

Table 2. A comparison of IQA databases in terms of numbers of reference images, distorted images, distortion types,  
authenticity of distortions, type of subjective scores, whether distortions are mixed, and published date.

Database 

Number of  
Reference 
Images

Number of  
Distorted Images

Number of  
Distorted Types

Authenticity  
of Distortions

Subjective  
Score Type

Mixtures of  
Distortions 

Published  
Date 

LIVE IQA [12] 29 779 5 Synthetic DMOS N/A 2003 

CSIQ [32] 30 866 6 Synthetic DMOS N/A 2010 

TID2013 [13] 25 3,000 24 Synthetic MOS N/A 2015 

LIVE MD [33] 15 405 2 Synthetic DMOS  2012 

LIVE Challenge [3] N/A 1,162 Numerous Authentic MOS  2016 
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numbers indicate the number of feature maps (of Conv) or out-
put nodes (of FC). The model accepts 112 × 112 images as 
inputs. All of the convolutional layers were configured to use 
3 × 3 filters, using zero-padding to preserve the spatial size. 
Each layer used a rectified linear unit as the activation function. 
Following the convolutional layers, each 28 × 28 feature map 
(assuming two convolutional layers with a stride of two) was 
averaged yielding an 128-dimensional feature vector, which is 
then fed into the fully connected layers. The number of param-
eters in this model is about 0.4 million, which is much lower 
than AlexNet or ResNet50. This baseline model was trained 
using the imagewise L2  loss in (3). Each input image was 
partitioned into 112 × 112 patches when training on the LIVE 
IQA database, while full-sized images were used on the other 
databases. On the LIVE IQA database, nonoverlapping patches 
were used so that overlapped regions could not be accessed 
multiple times by the CNN model during training and/or test-
ing. The data was augmented by supplementing the training set 
with horizontally flipped replicas of each image. Each mini-
batch contained patches extracted from five images. The train-
ing was iterated over 80 epochs.

Two performance metrics were used to benchmark the mod-
els: Spearman’s rank order correlation coefficient (SRCC), and 
Pearson’s linear correlation coefficient (PLCC). To evaluate the 
baseline models, we randomly divided each database into two 
subsets of nonoverlapping content (distorted or otherwise), 80% 
for training and 20% for testing. Of course, all of the LIVE Chal-
lenge pictures contain different contents. The SRCC and PLCC 
were averaged after ten repetitions of this random process.

The performances of all of the exemplar picture-quality 
prediction models on the LIVE IQA database are shown in 
Figure 6. The first five (from left) are no-reference learning-
based models, where the last two of these used deep learning. 
The next seven are CNN-based no-reference-quality prediction 
models, and the last three are CNN-based full-reference mod-
els. The reported SRCC and PLCC scores of the listed models 

were taken from the original papers. Overall, the CNN-based 
full-reference models followed by the CNN-based no-refer-
ence models achieved higher prediction accuracies relative to 
conventional learning-based models on the legacy databases.

Table 3 compares the performance of the various picture-
quality prediction models on all of the reviewed databases. The 
last five rows show results for the baseline models. The three best 
performing no-reference picture-quality models in each column 
are boldfaced. Generally, the existing CNN-based models were 
able to achieve remarkable prediction accuracies on the legacy 
databases. However, it is much harder to obtain successful results 
on the LIVE Challenge database. For example, the model pro-
posed in [27], DIQA, achieved an SRCC of 0.687, which is lower 
than the results attained by a recent successful SVR-based meth-
od, FRIQUEE-ALL [21], which achieved an SRCC of 0.72.

However, the baseline models that were pretrained on the 
ImageNet databases achieved standout accuracies on the LIVE 
Challenge database. This is likely because the real-world Ima-
geNet pictures are not synthetically distorted. Instead, like the 
LIVE Challenge pictures, any distortions occurred as a natural 
consequence of photography, without intervention by the data-
base creator. This further suggests that the pretrained CNNs are, 
to some degree, already quality-aware, meaning that their learned 
internal features assist the performance of the task (recognition) 
by adapting to the presence of authentic distortions.

The baseline models using the first approach achieved very 
low accuracies on the legacy databases, since they were not 
exposed to any synthetic distortions during training, and hence 
the learned features were not very useful to the SVR for qual-
ity prediction. Fine-tuning the pretrained baseline deep models 
significantly improved performance on the legacy synthetic data-
bases, but not enough to make them competitive, since there was 
not enough data to train them adequately. The exception was the 
directly trained shallow CNN baseline model, which achieved 
competitive performance on the legacy databases, but lower 
accuracies on the LIVE Challenge database.
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A possible explanation for these results is that the pretrained 
deep models adapted easily to the authentic distortions in LIVE 
Challenge as a consequence of having learned image recognition 
tasks on real-world pictures. Applying them to databases with 
synthetic distortions, however, like LIVE IQA and TID2013, 
likely failed to exploit what was learned regarding authentic dis-
tortions; hence, significant retraining would be needed to deal 
with the synthetic distortions. This may help explain the excellent 
generalization power of pretrained models when applied to other 
real world image tasks: their ability to handle authentic distor-
tions, by representing them to improve task performance.

Envisioning the future
The sizes of the training sets used is critical to the success of  
deep NN models. Current public-domain databases have insuffi-
cient size as compared to widely used image recognition data-
bases. However, constructing large-scale perceptual-quality 
databases is a much more difficult problem than image recogni-
tion databases. Creating databases for picture-quality assess-
ment requires time-consuming and expensive subjective studies, 
which must be conducted under controlled laboratory condi-
tions. Even if the number of reference images is small, the 
required number of subjective tests quickly becomes excessive. 
Conducting subjective tests using online crowdsourcing is one 
possible solution (like the LIVE Challenge database), yet even 
online tests are (probably) prohibitively difficult to scale up 
to the necessary size, especially while ensuring the aggregate 
quality of the collected human data. Another possibility would 
be if a large social media company were to engage their cus-
tomers to provide picture-quality scores, similar to the Netflix 
DVD ratings by e-mail of a decade ago. Generally, understand-
ing how to successfully create reliable, very large-scale, and 
authentic picture-quality databases remains an open question.
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