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A Completely Blind Video Integrity Oracle
Anish Mittal, Michele A. Saad, and Alan C. Bovik, Fellow, IEEE

Abstract— Considerable progress has been made toward devel-
oping still picture perceptual quality analyzers that do not require
any reference picture and that are not trained on human opinion
scores of distorted images. However, there do not yet exist any
such completely blind video quality assessment (VQA) models.
Here, we attempt to bridge this gap by developing a new
VQA model called the video intrinsic integrity and distortion
evaluation oracle (VIIDEO). The new model does not require the
use of any additional information other than the video being qual-
ity evaluated. VIIDEO embodies models of intrinsic statistical
regularities that are observed in natural vidoes, which are used
to quantify disturbances introduced due to distortions. An algo-
rithm derived from the VIIDEO model is thereby able to predict
the quality of distorted videos without any external knowledge
about the pristine source, anticipated distortions, or human judg-
ments of video quality. Even with such a paucity of information,
we are able to show that the VIIDEO algorithm performs much
better than the legacy full reference quality measure MSE on
the LIVE VQA database and delivers performance comparable
with a leading human judgment trained blind VQA model.
We believe that the VIIDEO algorithm is a significant step toward
making real-time monitoring of completely blind video quality
possible. The software release of VIIDEO can be obtained online
(http://live.ece.utexas.edu/research/quality/VIIDEO_release.zip).

Index Terms— Intrinsic video statistics, quality assessment,
temporal self similarity, spatial domain.

I. INTRODUCTION

OBJECTIVE VQA models seek to make predictions of
visual quality automatically, in the absence of human

judgments [1], [2]. Depending on the amount of available
knowledge that they utilize, these models are commonly
categorized as belonging to one of three different paradigms.
Blind or NR VQA models assess the quality of videos
without knowledge of the appearance of the video before it
was distorted. At the other extreme are FR models, which
require a ‘clean’, pristine reference video signal with respect
to which the quality of the distorted video signal is assessed.
Reduced-reference (RR) approaches lie somewhere between
these extremes, utilizing some incomplete information regard-
ing the reference image in addition to the distorted video [3].

Digital videos have become ubiquitous; already, more
than 50% of both wireline and wireless data traffic is
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video data. Being able to monitor and control the perceptual
quality of this traffic is a highly desirable goal that could
be enabled by the development of ‘completely blind’ video
quality analyzers that could be inserted into video networks
or devices without any training or reference information [1].
Towards this end, we have developed and explain here a
‘completely blind’ video integrity oracle dubbed VIIDEO.
Like the ‘completely blind’ picture quality analyzer NIQE [4],
the approach taken here is simultaneously ‘opinion-unaware’
and ‘distortion-unaware’. VIIDEO is even more penurious
with respect to requiring exposure to other data: unlike NIQE,
it is not trained on any data extracted from exemplar pristine
videos, hence it is utterly ‘content unaware’ beyond using
statistical models that can be shown to accurately characterize
natural videos. While this may seem to be an extreme paucity
of information, the use of perceptually relevant quantities
yields results that are very promising. Indeed, the resulting
algorithm predicts human judgments of video quality better
than the long-standing full reference MSE on the LIVE VQA
database [5].

This new NR VQA approach is derived based on intrinsic
statistical regularities that are observed in natural videos.
Deviations from these regularities alter their visual impression.
Quantifying measurements of regularity (or lack thereof) under
a natural video statistic model makes it possible to develop
a ‘quality analyzer’ that can predict the visual quality of a
distorted video without external knowledge of any kind beyond
the underlying model.

Like the ‘completely blind’ picture quality analyzer in
NIQE [4], VIIDEO does not require any distortion knowledge
in the form of exemplar training videos containing anticipated
distortions, or human opinions of video quality, distorted or
otherwise. This is a significant advantage, given that creating
VQA databases containing distorted videos and conducting
large-scale studies to acquire co-registered human opinion
scores is more involved than the creation of IQA (Image
Quality Assessment) databases [5]–[7].

Accurately modeling the statistical regularities observed in
natural videos is an important first step in understanding
the perception of video quality by humans, yet it is very
challenging. In the past we have proposed the use of exemplar
natural pictures to serve as ground truth relative to which
statistical regularities may be modeled [4]. Such an approach,
although much more general than existing blind IQA models,
is still limited in that it can only capture the common baseline
characteristics of a specific collection of non-distorted content,
and therefore may fail to represent some video specific intrin-
sic characteristics. Also, the construction of such a database
requires the unbiased selection and maintenance of hundreds
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of natural undistorted videos. This also raises the question
of how many exemplar videos are needed to design an
accurate natural video model, and how diverse and distinctive
these need to be relative to each other and to the world
of videos. Finally, given current limitations of image/video
camera capture, distortions are inevitably introduced in the
acquisition process and hence the procurement of perfectly
natural ‘pristine’ videos is practically impossible.

In this article, we explain our ‘quality aware’ natural video
statistics model in the space-time domain and describe the
relevant temporal features that are derived from it and used
to model inter subband correlations over local and global
time spans. The overall model, which we call VIIDEO, is
the basis of a VIIDEO algorithm that predicts video quality in
a manner that correlates quite well with human judgments of
video quality. We compare the performance of VIIDEO against
existing state-of-the-art FR and NR VQA approaches. Before
we describe the statistical and perceptual underpinnings of the
VIIDEO model in detail, we review relevant prior work in the
area of VQA.

II. PREVIOUS WORK

The topic of NR VQA has been extensively studied and
surveyed [8]–[17]. Unlike our problem here, we only conduct
a brief review of recent relevant progress in the area. Nearly
all prior NR VQA models have been ‘distortion specific’,
meaning they were designed to predict the effect of a spe-
cific type of distortion on perceived quality. For example,
Tan and Ghanbari [18], Vlachos [19], Suthaharan [20], and
Muijs and Kirenko [21] proposed methods to assess blocking
severity in distorted videos.

Methods for assessing multiple coincident distortion types
have also been contemplated. Caviedes and Oberti compute
a set of blocking, blurring, and sharpness features [22],
Babu et. al. calculate a measure of blocking and packet-
loss [23] and Farias and Mitra [24] measures blockiness, blur
and noise. Massidda et. al. also propose a perception-based
three-pronged NR metric for video distortion detection in
2.5G/3G systems which measures blockiness, bluriness and
motion artifacts [17]. Dosselmann and Yang also estimate
quality by measuring three types of impairments - noise,
blocking and bit-error based color impairments [16].
Yang et. al. proposed an NR VQA algorithm that measures
spatial distortion between a video block under consideration
and its motion compensated block in the previous frame,
where temporal distortion is computed as a function of the
mean of the motion vectors [15]. Kawayokeita and Horita
propose a model for NR VQA comprised of a frame quality
measure and correction, asymmetric tracking and mean value
filtering [14].

Other impairment specific NR VQA models include that
proposed by Yang et. al., where dropping severity is measured
as a function of the number of frames dropped using timestamp
information extracted from the video stream [13]. Lu proposed
a method to measure blur caused by video compression [25],
Pastrana-Vidal and Gicquel proposed an algorithm to mea-
sure frame-drops [12], Yamada et. al. proposed an algo-
rithm to measure error-concealment effectiveness [11] and

Naccari et. al. proposed a model for channel induced
distortion for H.264/AVC coded videos [10]. Keimel et. al.
proposed an NR VQA algorithm specifically for compressed
HD videos [26] whereas Ong et. al. proposed a measure
to monitor the quality of streamed videos by modeling the
jerkiness between frames [9]. Saad and Bovik recently pro-
posed a spatio-temporal natural scene statistics (NSS) model
in the DCT domain that predicts the perceptual severity of
MPEG-2, H.264, and two types of packet loss [27]. A linear
kernel support vector regressor trained on a video database
co-registered with human judgments is used to perform video
quality prediction [28]. This model is generalizable for other
distortion types but requires training on distorted videos and
human opinion scores of them.

All of the blind VQA algorithms require knowledge of
(one of possibly multiple) distortion types, or of the artifacts
introduced by them, or of human opinion scores of exemplar
distorted images. There exists no blind VQA model to date
that can predict video quality in the absence of such strong a
priori information.

III. VIDEO INTEGRITY ORACLE

Towards reducing the performance dependency of visual
quality prediction models on distortion type, human opinion or
video content, we have developed a ‘completely blind’ VQA
model that is based on a set of perceptually relevant tempo-
ral video statistic models of video frame difference signals.
Algorithms that measure departures from these regularities
have been used to capture distortion-induced anomalous
behavior and to make visual quality inferences [3], [8].
By exploiting a greater variety of space-time statistical regular-
ities, and by accounting for observable intrinsic properties of
space-time band pass video correlations that are perceptually
significant, we are able to develop a competitive VQA model
that relies only on measuring perturbations of these properties.

A. Spatial Domain Natural Video Statistics

Our quality analyzer model derives insights from the
reduced-reference VQA model proposed in [3] where it was
shown that the bandpass filter coefficients of frame differences
capture temporal statistical regularities arising from structures
such as moving edges [3]. The ST-RRED model described
there models the empirical distributions of the coefficients of
multiscale wavelet transforms of frame differences. In a similar
manner, but also inspired by the success of a recently proposed
fast spatial domain IQA model [4], we instead analyse the
local statistics of frame differences �F (t) of videos that have
been debiased and normalized using a different band pass
perceptual model.

Define the frame difference �Ft between consecutive
frames F2t+1 and F2t of spatial dimensions M × N as
follows:

�Ft = F2t+1 − F2t ∀ t ∈ {0, 1, 2 . . .
(T − 1)

2
} (1)

where T is the total number of frames.
The frame differences are operated on via processes of local

mean removal and divisive contrast normalization following
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Fig. 1. Histograms of processed frame differences (2) computed on (a) ‘mobile calendar’ and (b) ‘river bed’ sequence and various distorted versions of these
videos. All the videos are from the LIVE VQA database, which contains Wireless, IP, H.264 and MPEG distortions described in Section V [5].

the NSS model [29]:

ˆ�Ft (i, j) = �Ft (i, j) − μt (i, j)

σ t (i, j) + C
(2)

over spatial indices i ∈ {1, 2 . . . M}, j ∈ {1, 2 . . . N}, over a
set of consecutive frame time samples t ∈ {0, 1, 2 . . . (T−1)

2 }
where

μt (i, j) =
K∑

k=−K

L∑

l=−L

wk,l�Ft (i + k, j + l) (3)

and

σ t (i, j) =
√√√√

K∑

k=−K

L∑

l=−L

wk,l [�Ft(i + k, j + l) − μ(i, j)]2

(4)

estimate the local time-differenced luminance average and
contrast, respectively, and where wk,l |k = −K , . . . , K ,
l = −L, . . . L is a Gaussian weighting function sampled out
to 3 standard deviations and rescaled to unit volume. In our
implementation, K = L = 3. C = 1 acts as a semi-saturation
constant in the divisive normalization [30]. It prevents insta-
bilities from occurring when the denominator tends to zero
(eg., in the case of a temporal difference computed on a patch
having a static background).

The space-time bandpass filtering and local nonlinear
processing in (1)-(4) affect decorrelation of the video sig-
nal in a manner similar to neurons along the retino-cortical
pathway [1].

B. Characterization of Patches

When computed from good quality, naturalistic still pictures
(rather than frame differences), the coefficients (2) have been
observed to reliably follow a generalized Gaussian distribution
law. We have also found that debiased and normalized frame
differences (2) are strongly decorrelated and Gaussianized,
in agreement with the study on frame difference wavelet
coefficients in [3]. Furthermore, when natural video frame
differences are subjected to commonly encountered unnatural
distortions, their processed coefficients no longer tend towards
Gaussianity.

Fig. 1 plots the histogram of coefficients (2) computed
on frame difference signals from the ‘mobile calendar’

and ‘river bed’ sequences and various distorted versions of
them [5]. The histograms of the frame difference signals
exhibit Gaussian-like appearance, whereas each distortion
modifies the histograms in a characteristic way. For exam-
ple, H.264 creates histograms having a more Laplacian-like
appearance.

While transformed frame-difference coefficients are defi-
nitely more homogeneous for pristine frame-differences, the
signs of adjacent coefficients also exhibit a regular structure,
which is disturbed by the presence of distortion [31]. These
deviations can be effectively probed by analyzing the sample
distributions of products of pairs of adjacent coefficients
computed along horizontal, vertical and diagonal spatial ori-
entations: ˆ�Ft (i, j) ˆ�Ft(i, j + 1), ˆ�Ft (i, j) ˆ�Ft (i + 1, j),

ˆ�Ft (i, j) ˆ�Ft(i + 1, j + 1) and ˆ�Ft (i, j) ˆ�Ft (i + 1, j − 1)
for i ∈ {1, 2 . . . M} and j ∈ {1, 2 . . . N} [31]. The products
of neighboring coefficients have shown to be well-modeled
as following a zero mode asymmetric generalized Gaussian
distribution (AGGD) [32]:

f (x; γ, βl, βr )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ

(βl + βr ) �
(

1
γ

) exp

(
−

(−x

βl

)γ )
∀x ≤ 0

γ

(βl + βr ) �

(
1

γ

) exp

(
−

(
x

βr

)γ )
∀x ≥ 0.

(5)

The parameters of the AGGD (γ, βl, βr ) can be effi-
ciently estimated using the moment-matching based approach
in [32]. Using these models, we characterize the local sta-
tistics of frame difference (pristine or distorted) as follows.
Each coefficient map (2) is partitioned into P × Q patches
to enable a localized analysis of distortions. The estimated
AGGD parameters are extracted from each patch to form
model-based feature vectors that characterize each patch.
By extracting estimates along the four orientations, 12 patch
parameters are arrived at. Denote these features by φt

k,
k ∈ {1, 2 . . . 12} and the overall feature vector by �t

x,y,
t ∈ {1, 2 . . . (T − 1)/2}, (x, y) ∈ {1, 2 . . . P} × {1, 2 . . . Q}.

The coefficient products statistically modeled by (5) may be
viewed as highly localized correlation measurements. As dis-
cussed in section IV, there is evidence that local correlation
operations may be executed by visual neurons (fed by area V1)
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Fig. 2. 3D scatter plots between shape, left scale and right scale obtained by fitting the AGGD model to (a) horizontal spatial paired products, (b) vertical
spatial paired products, (c) on-diagonal spatial paired products and (d) off-diagonal paired spatial products using all pristine and distorted videos from the
LIVE VQA database [5].

involved in computing visual forms, which would be affected
by distortion.

Fig. 2 shows 3D scatter plots between the shape, left
scale and right scale parameters obtained by fitting AGGD
to horizontal spatial paired products, vertical spatial paired
products, on diagonal spatial paired products and off diag-
onal paired spatial products using pristine and distorted
versions of all sequences together from the LIVE VQA
database [5]. As may be observed from Fig. 2, there
is substantial overlap between the features obtained from
pristine and distorted videos in the scatter plot when fea-
tures from all videos are plotted together. This suggests
that the features by themselves are not content agnostic,
hence further processing is required to reduce their content
sensitivity.

Fig. 3 shows 3D scatter plot between temporal changes in
shape, temporal changes in left scale and temporal changes in
right scale obtained from horizontal spatial paired products,
vertical spatial paired products, on-diagonal spatial paired
products and off-diagonal paired spatial products using all
of the pristine and distorted videos from the LIVE VQA
database [5]. The figure strongly suggests that pristine and
distorted videos have a much clearer separation in temporal
feature change space. In the next section, we discuss how to
utilize this useful information captured using temporal change
statistics.

C. Inter Sub-Band Statistics

It is important to understand that variations in the local tem-
poral statistics of a given space-time video patch capture could



MITTAL et al.: COMPLETELY BLIND VIDEO INTEGRITY ORACLE 293

Fig. 3. 3D scatter plots between temporal change in shape parameter, temporal change in left scale parameter and temporal change in right scale parameter
computed on (a) horizontal spatial paired products, (b) vertical spatial paired products, (c) on-diagonal spatial paired products and (d) off-diagonal paired
spatial products using all pristine and distorted videos from the LIVE VQA database [5].

be indicative either of naturalistic motion or of temporal dis-
tortion. However, motion induced changes are associated with
strong correlations between the transformed frame difference
coefficients at fine and coarse scales over time, while temporal
distortion induced changes tend to cause transient statistical
aberrations. Towards capturing these differences, the VIIDEO
model measures the temporal variations of statistical model
feature correlations between different scales of transformed
image coefficients in a local way.

As discussed in Section IV, there is evidence that integrated
products of local visual signals are used in extra-cortical
area V2 of the visual brain, and that these measurements are
implicated in the early computation of visual shapes. However,
the nature of these computations is not yet well understood,
hence we take the simplest available path by computing local
space-time empirical correlations (products) of measurements
derived from the space-time distribution models (1)-(5).

Thus, first compute low pass filtered frame difference coef-
ficients:

�Gt (i, j) =
K∑

k=−K

L∑

l=−L

wk,l�Ft (i + k, j + l) (6)

where as before t ∈ {0, 1, 2 . . . (T−1)
2 }, i ∈ {1, 2 . . . M},

j ∈ {1, 2 . . . N } are spatial indices, M and N are the

image dimensions, T is the total number of frames and wk,l;
k = −K , . . . , K , l = −L, . . . L is a 2D circularly-
symmetric Gaussian weighting function (the same as was used
in Section III-A).

The feature vectors �t
x,y are computed from the low pass

filtered frame differences �Gt (i, j), following the same pro-
cedure described earlier for computing the features �t

x,y from
the frame difference coefficients �Ft (i, j).

We model the change in statistics using temporal feature
vector differences as follows:

��t
x,y = �t+1

x,y − �t
x,y (7)

��t
x,y = �t+1

x,y − �t
x,y (8)

∀ t ∈ {1, 2 . . . (T − 1)/2}; and ∀ (x, y) ∈ {1, 2 . . . P} ×
{1, 2 . . . Q}.

For each time instant (frame) indexed t , these differences
are captured or windowed over a span of frames of length S,
denoted by the sets:

At
x,y = {��t+s

x,y ∀ s ∈ {1, 2 . . . S}} (9)

Bt
x,y = {��t+s

x,y ∀ s ∈ {1, 2 . . . S}} (10)

where At
x,y and Bt

x,y are measured at every t + ηk where η is
the stride and k = 0, 1, 2 . . ..
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Fig. 4. Probability distributions depicting inter subband empirical correlations
on undistorted and distorted natural videos in the LIVE VQA database [5].

The empirical correlation coefficient vector 
̂t+ηk is defined
as C[At+ηk

x,y , Bt+ηk
x,y ] where C[Ax,y, Bx,y] is the normalized

sample covariance Ax,y = {a1
x,y, a2

x,y . . . aS
x,y} and Bx,y =

{b1
x,y, b2

x,y . . . bS
x,y} defined separately for each feature in the

vector:

C[Ax,y, Bx,y]=
∑

x,y,s

(
as

x,y − μ
(
Ax,y

)

σ(Ax,y)

)(
bs

x,y − μ
(
Bx,y

)

σ(Bx,y)

)

(11)

where μ
(

Ax,y
) =

∑
x,y,s as

x,y
P QS and σ

(
Ax,y

) =
√

∑
x,y,s

[
as

x,y−μ(Ax,y)
]2

P QS .

To reiterate, ˆ
t+ηk represents the empirical correlation coef-
ficient feature vector that contains the empirical correlation
coefficients θ̂

t+ηk
f obtained on all features such that f ∈

{1, 2 . . . 12}. To be clear, the 12 correlation coefficients are
defined based on parameters computed using distribution fits
to point-wise spatial products of transformed frame-difference
coefficients (2).

Over each length S time span indexed t + ηk, all the
correlation coefficients are aggregated by averaging as follows:

�t+ηk = 
 f θ̂
t+ηk
f ∀ f ∈ {1, 2, 3 . . . 12} (12)

Fig. 4 shows the histograms of �t for both pristine and
distorted videos from the LIVE VQA database [5]. As seen
clearly in the Fig. 4, the sub band correlations are higher for
pristine videos as compared to distorted videos. Although there
is some overlap between the histograms, they are generally
well separated.

The final score is obtained as follows:

� = 
t+ηk�
t+ηk (13)

thereby capturing both average (summed) statistical measure-
ments of video quality.

IV. RELEVANT PERCEPTUAL MECHANISMS

More detailed discussion of the first and second order
band pass statistical models just described, and their possible

relationship to visual processing architectures is in order. The
processed frame difference coefficients (2) represent a simple
realization of center-surround band pass processing by the
earliest post-retinal visual neurons, which accomplishes signif-
icant reductions in spatial redundancy. The model also includes
temporal decorrelation by frame differencing and divisive
normalization by neighboring energy responses, which serves
to further spatially decorrelate and gaussianize the visual
signal. These processes broadly mimick temporal lag decorre-
lation [33] and adaptive gain control further along the visual
pathway, and extending into area V1 (primary cortex) [30].
Notably, the debiased and normalized space-time signal is not
orientation selective, unlike the responses of visual cortical
neurons [34], [35]. However, in the context of visual quality
assessment, orientation selectivity has not yet been shown to
significantly improve predictions of the perceptual impact of
statistical impairments as can be seen, for example by the
favorable performance of the spatially isotropic model [31]
relative to the orientation-selective DIIVINE index [36].

The statistical model (5) of empirical pairwise products or
correlations of the perceptually processed signal (2) also has a
possible interpretation with respect to processing further along
the visual pathway. In particular, the neurons in area V2 of
primate cortex, which is driven by an extensive projection
of V1 responses, is implicated in the representation of higher-
order spatio-temporal forms such as contours, angles and
disparities. A recent comprehensive study of the population
of V1 neurons that project to V2 [37] showed that, in addition
to constituting the largest projection of V1 responses, it also
includes the gamut of V1 functionality, including directional
and absolute motion sensitivity, orientation sensitivity and
multi-scale. This suggests that the residual correlations present
in the cortical signal may be processed in V2 towards the early
construction of space-time forms, which portends a relevance
to both ventral and dorsal cortical processing, both of which
are critical to the perception of video quality. This is supported
by measurements of V2 responses to complex shapes [38],
combinations of orientations [39], and contour angles [40]
which suggest a functional integration of V1 responses.
Notably, both the preponderance of V1 neurons projecting to
V2 [37], as well as V2 neurons [41] exhibit strong surround
suppression, which may contribute to selectivity to complex
space-time forms. Currently, there is not any settled-on model
of V2 form processing, although it appears to include local
space-time integration of V1 responses [42], which broadly
equates to the computation of local correlations and probing
of correlated structures. It may be expected that correlations
induced by (or destroyed by) distortion will deeply affect
these computations. In the absence of an adequate model,
and following Occam’s Razor, we follow the simple strategy
in [43] of computing space-time correlations (used success-
fully there to model visual crowding) as a simple measure of
the information (possibly distorted) available to V2 units.

V. QUALITY-FEATURE GOODNESS TESTS

We posit that the intrinsic statistics of a video test sample
should satisfy three criteria, if they are to be useful for pre-
dicting perceived video quality. First, the statistics should be
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Fig. 5. Depiction of 10 reference video contents on which different kinds of distortions with varying degrees were introduced to make the LIVE VQA
database.

Fig. 6. Box plot depicting inter subband correlations on undistorted and distorted natural videos in the LIVE VQA database [5] for the average of the
features. Since the inter subband correlations are higher for pristine videos as compared to their distorted versions, boxes at the top of the figures (in green)
are obtained from pristine videos whereas the red boxes are obtained from distorted videos.

regular over pristine videos i.e., they should reliably follow a
model. Second, the regularity should be destroyed on distorted
video samples. Third, the loss of regularity should vary with
the degree of perceived distortion in the distorted video.

We use the videos from the LIVE Video Quality Assessment
Database [5] to conduct the tests. The LIVE Video Quality
Assessment Database contains 10 reference videos, depicted
in Fig. 5 with frames of size 432 × 768 - ‘pedestrian area’,
‘river bed’, ‘rush hour’, ‘tractor’, ‘station’, ‘sun flower’
contain 250 frames at 25 fps, ‘blue sky’ contains 217 frames
at 25 fps, ‘shields’, ‘mobile calender’, ‘park run’ contain
500 frames at 50 fps. Derived from these pristine videos is
a set of 150 distorted videos with a span of 4 distortion
categories, including compression artifacts due to MPEG and
H.264, errors induced by transmission over IP networks and
errors introduced due to transmission over wireless networks.

Currently, LIVE is as general as any video quality database
in terms of distortion diversity. We greatly desire to be able to
test on much more distortion-generic video data, but our own

efforts in this direction are many months or years away from
fruition.

A. Comparing Pristine and Distorted Temporal
Video Correlations

Real-world naturalistic videos exhibit statistical regularities
and strong correlations over both space and time. As just
discussed in Section IV, we hypothesize that the neural circuits
that conduct spatio-temporal perception have adapted to these
regularities and are tuned towards exploiting correlations that
exist in space-time visual signals to accomplish a wide variety
of high level perceptual tasks. Characterizing these regularities
on ‘pristine’ videos not suffering from obvious distortion is an
important step towards developing models of human sensitivity
to visual impairments that destroy the intrinsic regularity and
correlation structure of naturalistic videos.

Fig. 6 shows box plots of �t for 10 different video contents
drawn from the LIVE VQA database [5]. The boxes at the top
of the figures (in green) derive from the LIVE pristine video
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Fig. 7. Final quality predictions using VIIDEO on the LIVE VQA
database [5].

content whereas the boxes at the bottom of each figure (in red)
were obtained from all of the distorted videos present in the
LIVE VQA database [5]. Clearly, the inter sub-band corre-
lations are much higher on the pristine video contents than
on the distorted contents. Moreover, the correlation features
of the pristine videos are remarkably consistent, despite the
significant diversity of content.

B. Perceptual Relevance of Temporal Correlation Features

Of course, the most important criteria that a perceptually
motivated intrinsic video statistic should satisfy in this context
is that it correlates highly with human judgments of visual
quality. To test this relevance, we plotted the VIIDEO score
� against the DMOS of all 150 distorted videos in the LIVE
database, shown in Fig. 7. By examining the scatter plots,
it may be seen that the perceptual NSS based VIIDEO score
presents an approximately linear (aggregate) trend against sub-
jective judgments. We only report test results on the distorted
videos since DMOS = 0 for all pristine videos, which is a
level of consistency beyond any human judgment. Testing on
pristine videos greatly boosts the numerical performance of
VIIDEO (even against other models) but is not as accurate a
comparison.

VI. EXPERIMENTS

To test the VIIDEO features, the patch size parameters P
and Q were set to 72, and the analysis interval length S and
temporal stride η were set to 1 and 0.5 second respectively.

A. Algorithm Prediction Performance

We used SROCC, and Pearson’s (linear) correlation coeffi-
cient (LCC) to test the model. The VIIDEO scores were passed
through a logistic non-linearity [44] to map to DMOS before
computing LCC.

Since it is of value to study the outlier cases on which
VIIDEO delivers worst performance, we recorded the errors

TABLE I

OUTLIER CASES ON WHICH VIIDEO DELIVERS WORST PERFORMANCE,
ERRORS WERE RECORDED WHILE PASSING VIIDEO SCORES

THROUGH THE LOGISTIC NON-LINEARITY [44] TO MAP TO THE

DMOS ON THE COMPLETE DATA SET. WORST 25% VIDEOS IN

TERMS OF SCORE PREDICTION WERE BUCKETED BASED ON
THE CONTENT USING WHICH THEY WERE GENERATED

TABLE II

SROCC OF DIFFERENT VQA ALGORITHMS AGAINST
DMOS ON LIVE VQA DATABASE

TABLE III

LCC OF DIFFERENT VQA ALGORITHMS AGAINST

DMOS ON LIVE VQA DATABASE

incurred while fitting the non-linearity on the complete data
set during this procedure. The worst 25% of all performers
in terms of score prediction were bucketed based on the
content from which they were generated. The results are
tabulated in Table I. VIIDEO delivered the worst performance
on ‘Shields’ and ‘Mobile Calendar’. These two videos present
extremes of motion (slow motion translation) along with a
high degree of spatial activity.

We next compared VIIDEO with five FR indices: MSE,
MS-SSIM [45], MOVIE [46], VQM [47], ST-MAD [48], one
RR index: STRRED [3] and one learning based blind index:
V-BLIINDS [8]. We report the performance of FR and RR
indices on the entire database including pristine and distorted
videos in Tables II and III.

Although there exist differences in the SROCC and LCC
correlations between the different algorithms (see Table II), it
is important to determine whether these differences are not
statistically relevant. To evaluate the statistical significance
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Fig. 8. Box plot of SROCC scores across 45 trials where every trial involved randomly picking 8 out of 10 video contents (including the pristine and
distorted versions) in LIVE VQA database [5].

TABLE IV

RESULTS OF ONE SIDED t-TEST PERFORMED BETWEEN SROCC VALUES

OF VARIOUS FULL REFERENCE VQA ALGORITHMS. A VALUE OF ‘1’
INDICATES THAT THE ROW ALGORITHM IS STATISTICALLY

SUPERIOR TO THE COLUMN ALGORITHM; ‘−1’ INDICATES

THAT THE ROW IS WORSE THAN THE COLUMN; A VALUE

OF ‘0’ INDICATES THAT THE TWO ALGORITHMS

ARE STATISTICALLY INDISTINGUISHABLE

of performance of each of the algorithms considered, we
performed the t-test [44] on the SROCC values obtained from
the 45 trials, where every trial involved randomly picking
8 of 10 video contents (including the pristine and distorted
versions) in the LIVE VQA database [5]. Figure 8 shows
the box plot. We tabulated the results in Table IV. The null
hypothesis is that the mean correlation for the (row) algorithm
is equal to the mean correlation for the (column) algorithm
with a confidence of 95%. The alternate hypothesis is that the
mean correlation of the row is greater than or lesser than the
mean correlation of the column. A value of ‘1’ in the table
indicates that the row algorithm is statistically superior to the
column algorithm, whereas a ‘−1’ indicates that the row is
statistically worse than the column. A value of ‘0’ indicates
that the row and column are statistically indistinguishable
(or equivalent), i.e., we could not reject the null hypothesis
at the 95% confidence level.

As is evident from the results, VIIDEO correlates better
with human judgments of visual quality than the full reference
measure MSE, which is remarkable given that VIIDEO does
not incorporate or depend on any kind of external information.
Unsurprisingly, VIIDEO remains inferior to the perceptually
relevant full reference MS-SSIM and MOVIE, but this also
indicates that there may still be room for improvement.

The only high performance general-purpose blind
VQA algorithm available to compare VIIDEO with is

Fig. 9. SROCC performance of VIIDEO index against different filter window
sizes and block sizes.

TABLE V

MEDIAN SROCC OF DIFFERENT BLIND VQA ALGORITHMS AGAINST

DMOS ON EVERY POSSIBLE COMBINATION OF TRAIN/TEST

SET SPLITS. 80% OF CONTENT USED FOR TRAINING
ON LIVE VQA DATABASE

the learning based V-BLIINDS model [27], which requires a
training procedure to calibrate the regressor module. Hence to
make this comparison, we repeatedly divided the LIVE VQA
database into randomly chosen 80% training and 20% testing
subsets - taking care that no overlap occurs between train
and test content. This train-test procedure was done on every
possible combination of train/test set splits to minimize any
bias due to the video content used for training. We report the
median performance across all iterations in Tables V and VI.
As may be observed, V-BLIINDS performs at a higher
level than VIIDEO, which is not surprising given that it
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Fig. 10. Performance on the test videos ‘pedestrian area’, ‘river bed’, ‘rush hour’, ‘tractor’, ‘station’, ‘sun flower’, ‘blue sky’, ‘shields’, ‘mobile calender’,
‘park run’ taken one at a time.

TABLE VI

MEDIAN LCC OF DIFFERENT BLIND VQA ALGORITHMS AGAINST DMOS
ON EVERY POSSIBLE COMBINATION OF TRAIN/TEST SET SPLITS.

80% OF CONTENT USED FOR TRAINING

ON LIVE VQA DATABASE

has the advantage of distortion specific calibration during
training. The performance numbers reported for VIIDEO
in Tables III and II against Tables VI and V are some what
different. However, the test sets used to evaluate VIIDEO in
these separate analysis differ. The test set used to compute
the performance numbers reported in Tables II and III contain
distorted videos generated from all 10 contents present in
the LIVE Video Quality Assessment Database [5], the test
data used to compute the performance numbers reported in
Tables V and VI contain distorted videos generated from
only 2 video contents at a time. Therefore, there is better
alignment between predicted scores in the latter case, since
the variation in content across videos is smaller and hence
higher performance may be observed. However, since the
algorithm being compared is learning based, it does require
other distorted videos with co-registered human judgments
to be trained on. This is to some degree, a reflection of the
limited size of all available databases.

B. Parameter Variation

We tested VIIDEO using different filter window sizes and
block sizes to explore the dependence of the algorithm on
these parameters. Figure 9 shows the SROCC performance
plotted against filter window sizes and block sizes. As may
be observed from the figure, the algorithm performed best for
intermediate block size [64 72] with Gaussian filter of size 7.

C. Linearity

Linearity refers to a the relationship when the two variables
can be represented as directly proportional to each other and

TABLE VII

LINEARITY OF DIFFERENT VQA ALGORITHMS AGAINST

DMOS ON LIVE VQA DATABASE

can be graphically represented as following a straight line.
We measure the degree of linearity using LCC. It is
important to notice here that unlike the results reported
in Tables III and VI, where the algorithms are passed through
a logistic non linearity, we directly find the coefficient of
linear correlation between the algorithm score and the human
judgments.

Linearity is a highly desirable property of a VQA index
since it makes the model more tractable and amenable for
its use as a quality optimization function in video processing
applications. As may be observed from Table VII, the per-
formance of VIIDEO exceeds that of the MSE in terms of
linearity as well.

D. Content Dependence

We also explored the way that VIIDEO behaves across
diverse video contents. Fig. 10 shows the performance of
VIIDEO on each of the video content present in the LIVE
VQA database. Although the index can be observed to perform
slightly better on some videos than others, the variation in
performance lay within fairly small range.

VII. DISCUSSION

We have proposed a ‘completely blind’ natural video statis-
tics based quality assessment model - Video Intrinsic Integrity
and Distortion Evaluation Oracle (VIIDEO). It does not model
any distortion specific information, but only models the statis-
tical ‘naturalness’ (or lack thereof) of the video. We described
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how the inter subband correlations can be used to quantify the
degree of distortion present in the video and hence to predict
human judgments of video quality.

We also analyzed the time complexity of every step in the
VIIDEO algorithm. The filtering and divisive normalization
operations are the most computationally expensive steps, with
complexity O(T M N log2(N M)). However, since both of the
steps involve point-based pixel wise computations, they are
quite parallel in nature and can easily achieve linear scaling
with the number of processors deployed to achieve the task.

We also undertook a thorough evaluation of the VIIDEO
model in terms of the correlation of the quality predictions it
makes with human judgments, and demonstrated that VIIDEO
performs better in this regard than the FR MSE metric.

There is still scope for improvement by incorporating
better models of motion for integration into blind VQA
algorithms. This may include more complete modeling of
temporal filtering in the lateral geniculate nucleus (LGN) and
motion processing in Areas MT/V5 and MST of extrastriate
cortex [49]–[51]. The development of more detailed models
of functional processing in cortical area V2 remains a very
energetic research area, with obvious positive implications for
applied visual neuroscience problems of this kind.

Future work could involve faster implementation of
the algorithm for real time video monitoring applications.
We envision that the proposed VIIDEO model could help solve
the resource allocation problem, by modeling the quality of
video traffic with the intent of optimizing rate control proto-
cols that heighten the end-user’s perceptual experience. This
would be facilitated by existing databases of rate-switched
videos, e.g. [7].

REFERENCES

[1] A. C. Bovik, “Automatic prediction of perceptual image and video
quality,” Proc. IEEE, vol. 101, no. 9, pp. 2008–2024, Sep. 2013.

[2] Z. Wang and A. C. Bovik, “Reduced- and no-reference image quality
assessment,” IEEE Signal Process. Mag., vol. 28, no. 6, pp. 29–40,
Nov. 2011.

[3] R. Soundararajan and A. C. Bovik, “Video quality assessment by
reduced reference spatio-temporal entropic differencing,” IEEE Trans.
Circuits Syst. Video Technol., vol. 23, no. 4, pp. 684–694, Apr. 2012.

[4] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2012.

[5] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[6] F. de Simone, M. Naccari, M. Tagliasacchi, F. Dufaux, S. Tubaro, and
T. Ebrahimi, “Subjective assessment of H.264/AVC video sequences
transmitted over a noisy channel,” in Proc. QoMEX, Jul. 2009,
pp. 204–209.

[7] A. K. Moorthy, L. K. Choi, A. C. Bovik, and G. de Veciana, “Video qual-
ity assessment on mobile devices: Subjective, behavioral and objective
studies,” IEEE J. Sel. Topics Signal Process., vol. 6, no. 6, pp. 652–671,
Oct. 2012.

[8] M. A. Saad and A. C. Bovik, “Blind quality assessment of natural videos
using motion coherency,” in Proc. IEEE Asilomar Conf. Signals, Syst.,
Comput., Nov. 2012, pp. 332–336.

[9] E. P. Ong et al., “Video quality monitoring of streamed videos,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Apr. 2009,
pp. 1153–1156.

[10] M. Naccari, M. Tagliasacchi, F. Pereira, and S. Tubaro, “No-reference
modeling of the channel induced distortion at the decoder for
H.264/AVC video coding,” in Proc. 15th IEEE Int. Conf. Image Process.,
Oct. 2008, pp. 2324–2327.

[11] T. Yamada, Y. Miyamoto, and M. Serizawa, “No-reference video quality
estimation based on error-concealment effectiveness,” in Proc. Packet
Video, Nov. 2007, pp. 288–293.

[12] R. R. Pastrana-Vidal and J.-C. Gicquel, “Automatic quality assessment
of video fluidity impairments using a no-reference metric,” in Proc. Int.
Workshop Video Process. Quality Metrics Consumer Electron., 2006,
pp. 1–6.

[13] K.-C. Yang, C. C. Guest, K. El-Maleh, and P. K. Das, “Perceptual
temporal quality metric for compressed video,” IEEE Trans. Multimedia,
vol. 9, no. 7, pp. 1528–1535, Nov. 2007.

[14] Y. Kawayokeita and Y. Horita, “NR objective continuous video quality
assessment model based on frame quality measure,” in Proc. IEEE Int.
Conf. Image Process., San Diego, CA, USA, Oct. 2008, pp. 385–388.

[15] F. Yang, S. Wan, Y. Chang, and H. R. Wu, “A novel objective no-
reference metric for digital video quality assessment,” IEEE Signal
Process. Lett., vol. 12, no. 10, pp. 685–688, Oct. 2005.

[16] R. Dosselmann and X. D. Yang, “A prototype no-reference video quality
system,” in Proc. 4th Can. Conf. Comput. Robot Vis., May 2007,
pp. 411–417.

[17] F. Massidda, D. D. Giusto, and C. Perra, “No reference video quality
estimation based on human visual system for 2.5/3G devices,” Proc.
SPIE, vol. 5666, pp. 168–179, Mar. 2005.

[18] K. T. Tan and M. Ghanbari, “Blockiness detection for MPEG2-
coded video,” IEEE Signal Process. Lett., vol. 7, no. 8, pp. 213–215,
Aug. 2000.

[19] T. Vlachos, “Detection of blocking artifacts in compressed video,”
Electron. Lett., vol. 36, no. 13, pp. 1106–1108, Jun. 2000.

[20] S. Suthaharan, “Perceptual quality metric for digital video coding,”
Electron. Lett., vol. 39, no. 5, pp. 431–433, 2003.

[21] R. Muijs and I. Kirenko, “A no-reference blocking artifact measure for
adaptive video processing,” in Proc. Eur. Signal Process. Conf., 2005,
pp. 1–4.

[22] J. E. Caviedes and F. Oberti, “No-reference quality metric for degraded
and enhanced video,” Proc. SPIE, vol. 5150, pp. 621–632, Jun. 2003.

[23] R. V. Babu, A. S. Bopardikar, A. Perkis, and O. I. Hillestad, “No-
reference metrics for video streaming applications,” in Proc. Int.
Workshop Packet Video, 2004.

[24] M. C. Q. Farias and S. K. Mitra, “No-reference video quality metric
based on artifact measurements,” in Proc. IEEE Int. Conf. Image
Process., vol. 3. Genoa, Italy, 2005, p. III-141.

[25] J. Lu, “Image analysis for video artifact estimation and measurement,”
Proc. SPIE, vol. 4301, pp. 166–174, Apr. 2001.

[26] C. Keimel, T. Oelbaum, and K. Diepold, “No-reference video quality
evaluation for high-definition video,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., Taipei, Taiwan, Apr. 2009, pp. 1145–1148.

[27] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind prediction of
natural video quality,” IEEE Trans. Image Process., vol. 23, no. 3,
pp. 1352–1365, Mar. 2014.

[28] A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, “kernlab—
An S4 package for kernel methods in R,” J. Statist. Softw., vol. 11,
no. 9, pp. 1–20, 2004.

[29] D. L. Ruderman, “The statistics of natural images,” Netw., Comput.
Neural Syst., vol. 5, no. 4, pp. 517–548, 1994.

[30] D. J. Heeger, “Normalization of cell responses in cat striate cortex,”
J. Neurosci., vol. 9, no. 2, pp. 181–197, 1992.

[31] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[32] N.-E. Lasmar, Y. Stitou, and Y. Berthoumieu, “Multiscale skewed heavy
tailed model for texture analysis,” in Proc. IEEE Int. Conf. Image
Process., Nov. 2009, pp. 2281–2284.

[33] D. W. Dong and J. J. Atick, “Temporal decorrelation: A theory of
lagged and nonlagged responses in the lateral geniculate nucleus,” Netw.,
Comput. Neural Syst., vol. 6, no. 2, pp. 159–178, 1995.

[34] J. G. Daugman, “Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual cortical
filters,” J. Opt. Soc. Amer. A, vol. 2, no. 7, pp. 1160–1169, 1985.

[35] M. Clark and A. C. Bovik, “Experiments in segmenting texton pat-
terns using localized spatial filters,” Pattern Recognit., vol. 22, no. 6,
pp. 707–717, 1989.

[36] A. K. Moorthy and A. C. Bovik, “Blind image quality assessment:
From natural scene statistics to perceptual quality,” IEEE Trans. Image
Process., vol. 20, no. 12, pp. 3350–3364, Dec. 2011.

[37] Y. El-Shamayleh, R. D. Kumbhani, N. T. Dhruv, and J. A. Movshon,
“Visual response properties of v1 neurons projecting to v2 in macaque,”
J. Neurosci., vol. 33, no. 42, pp. 16594–16605, 2013.



300 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 1, JANUARY 2016

[38] J. Hegdé and V. E. Van Essen, “Selectivity for complex shapes in primate
visual area v2,” J Neurosci, vol. 20, no. 5, pp. 61–66, 2000.

[39] A. Anzai, X. Peng, and D. C. Van Essen, “Neurons in monkey visual
area v2 encode combinations of orientations,” Nature Neurosci., vol. 10,
no. 10, pp. 1313–1321, 2007.

[40] M. Ito and H. Komatsu, “Representation of angles embedded within
contour stimuli in area v2 of macaque monkeys,” J. Neurosci., vol. 24,
no. 13, pp. 3313–3324, 2004.

[41] B. D. B. Willmore, R. J. Prenger, and J. L. Gallant, “Neural represen-
tation of natural images in visual area v2,” J. Neurosci., vol. 30, no. 6,
pp. 2102–2114, 2010.

[42] A. M. Schmid, K. P. Purpura, I. E. Ohiorhenuan, F. Mechler, and
J. D. Victor, “Subpopulations of neurons in visual area v2 perform
differentiation and integration operations in space and time,” Frontiers
Syst. Neurosci., vol. 3, p. 15, Nov. 2009.

[43] J. Freeman and E. P. Simoncelli, “Metamers of the ventral stream,”
Nature Neurosci., vol. 14, no. 9, pp. 1195–1201, 2011.

[44] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation of
recent full reference image quality assessment algorithms,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3440–3451, Nov. 2006.

[45] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. 37th Asilomar Conf.
Signals, Syst. Comput., vol. 2. Nov. 2003, pp. 1398–1402.

[46] K. Seshadrinathan and A. C. Bovik, “Motion tuned spatio-temporal
quality assessment of natural videos,” IEEE Trans. Image Process.,
vol. 19, no. 2, pp. 335–350, Feb. 2010.

[47] M. H. Pinson and S. Wolf, “A new standardized method for objectively
measuring video quality,” IEEE Trans. Broadcast., vol. 50, no. 3,
pp. 312–322, Sep. 2004.

[48] P. V. Vu, C. T. Vu, and D. M. Chandler, “A spatiotemporal most-
apparent-distortion model for video quality assessment,” in Proc. 18th
IEEE Int. Conf. Image Process., Sep. 2011, pp. 2505–2508.

[49] R. T. Born and D. C. Bradley, “Structure and function of visual area
MT,” Annu. Rev. Neurosci., vol. 28, pp. 157–189, Jul. 2005.

[50] E. P. Simoncelli and D. J. Heeger, “A model of neuronal responses in
visual area MT,” Vis. Res., vol. 38, no. 5, pp. 743–761, 1998.

[51] J. A. Perrone, “A visual motion sensor based on the properties of V1
and MT neurons,” Vis. Res., vol. 44, no. 15, pp. 1733–1755, 2004.

Anish Mittal received the B.Tech. degree in electri-
cal engineering from IIT Roorkee, in 2009, and the
M.S. and Ph.D. degrees in electrical and computer
engineering from The University of Texas at Austin,
in 2011 and 2013, respectively. He is currently a
Senior Engineer and Researcher with Reality Cap-
ture and Processing team, HERE maps, Berkeley.
His research interests include applied multidimen-
sional signal processing, statistical modeling, and
machine learning.

Michele A. Saad received the B.E. degree in
computer and communications engineering from the
American University of Beirut, Lebanon, in 2007,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from The University of Texas
at Austin, in 2009 and 2013, respectively. She is
currently a Senior Engineer and Researcher of Per-
ceptual Image and Video Engineering with Intel.
Her research interests include statistical modeling
of images and videos, motion perception, design
of perceptual image and video quality assessment

algorithms, and statistical modeling, data mining, and machine learning.
She is the Co-Chair of the Video/Image Models for Consumer Content
Evaluation project at the Video Quality Experts Group.

Alan C. Bovik (F’96) is currently the Cockrell
Family Endowed Regents Chair in Engineering at
The University of Texas at Austin, where he is the
Director of the Laboratory for Image and Video
Engineering with the Department of Electrical and
Computer Engineering and the Institute for Neuro-
science. He has authored over 750 technical arti-
cles in these areas and holds several U.S. patents.
His publications have been cited more than
45 000 times in the literature, his current H-index
is about 75, and he is listed as a Highly-Cited

Researcher by Thompson Reuters. His research interests include image and
video processing, digital television and digital cinema, computational vision,
and visual perception. His several books include the companion volumes The
Essential Guides to Image and Video Processing (Academic Press, 2009).
He received a Primetime Emmy Award for Outstanding Achievement in
Engineering Development from the Television Academy in 2015, for his
work on the development of video quality prediction models which have
become standard tools in broadcast and post-production houses throughout the
television industry. He has also received a number of major awards from the
IEEE Signal Processing Society, including: the Society Award (2013);
the Technical Achievement Award (2005); the best paper award (2009);
the Signal Processing Magazine Best Paper Award (2013); the Education
Award (2007); the Meritorious Service Award (1998), and (co-author) the
Young Author Best Paper Award (2013). He also was named recipient of the
Honorary Member Award of the Society for Imaging Science and Technology
for 2013, received the SPIE Technology Achievement Award for 2012, and
was the IS&T/SPIE Imaging Scientist of the Year for 2011. He is also a recip-
ient of the Joe J. King Professional Engineering Achievement Award (2015)
and the Hocott Award for Distinguished Engineering Research (2008), both
from the Cockrell School of Engineering at The University of Texas at
Austin, and the Distinguished Alumni Award from the University of Illinois
at Champaign–Urbana (2008). He is a fellow of the Optical Society of
America and the Society of Photo-Optical and Instrumentation Engineers, and
a member of the Television Academy, the National Academy of Television
Arts and Sciences, and the Royal Society of Photography. He also co-founded
and was the longest-serving Editor-in-Chief of the IEEE TRANSACTIONS ON

IMAGE PROCESSING (1996-2002), and created and served as the first General
Chair of the IEEE International Conference on Image Processing, held in
Austin, TX, in 1994. His many other professional society activities include:
Board of Governors, IEEE Signal Processing Society, 1996-1998; Editorial
Board, THE PROCEEDINGS OF THE IEEE, 1998-2004; and Series Editor for
Image, Video, and Multimedia Processing, Morgan and Claypool Publishing
Company, 2003-present. His was also the General Chair of the 2014 Texas
Wireless Symposium, held in Austin in 2014. He is a registered Professional
Engineer in the state of Texas and a Frequent Consultant to legal, industrial,
and academic institutions.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


