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Toward Naturalistic 2D-to-3D Conversion
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Abstract— Natural scene statistics (NSSs) models have been
developed that make it possible to impose useful perceptually
relevant priors on the luminance, colors, and depth maps of
natural scenes. We show that these models can be used to develop
3D content creation algorithms that can convert monocular
2D videos into statistically natural 3D-viewable videos. First,
accurate depth information on key frames is obtained via human
annotation. Then, both forward and backward motion vectors are
estimated and compared to decide the initial depth values, and
a compensation process is applied to further improve the depth
initialization. Then, the luminance/chrominance and initial depth
map are decomposed by a Gabor filter bank. Each subband of
depth is modeled to produce a NSS prior term. The statistical
color – depth priors are combined with the spatial smoothness
constraint in the depth propagation target function as a prior
regularizing term. The final depth map associated with each
frame of the input 2D video is optimized by minimizing the
target function over all subbands. In the end, stereoscopic frames
are rendered from the color frames and their associated depth
maps. We evaluated the quality of the generated 3D videos
using both subjective and objective quality assessment methods.
The experimental results obtained on various sequences show
that the presented method outperforms several state-of-the-art
2D-to-3D conversion methods.

Index Terms— 2D-to-3D conversion, depth propagation,
natural scene statistics, Bayesian inference.

I. INTRODUCTION

THREE DIMENSIONAL (3D) video has become quite
popular in recent years. Yet, the proliferation of

3D capture and display devices has not been matched
by a corresponding degree of availability of quality
3D video content. Towards helping to overcome this
3D content shortage, a new 3D content creation technology,
2D-to-3D conversion, is being developed to convert existing
2D videos into 3D videos [1], [2].
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2D-to-3D video conversion methods can be divided into
two categories, depending on whether human-computer
interactions are involved in the conversion process: fully-
automatic methods and semi-automatic methods [2]. Current
fully-automatic methods are generally only able to deliver
a limited 3D effect. However, semi-automatic methods have
made it possible to balance 3D content quality with production
cost, and has been demonstrated to enable the conversion of
popular old films – such as the Star Wars series, Titanic,
and so on into successful cinematic 3D presentations [3]. The
general approach to semi-automatic 2D-to-3D conversion is to
manually or semi-manually create high quality depth maps at
strategically chosen key frames or parts of frames, then propa-
gate depth information from the key frames to non-key frames
to initiate depth calculations at non-key frames (see Fig. 1 as
an illustration). The highest cost arises during the process of
assigning depths to key frames, whereas the 3D quality of
the final production largely depends on the accuracy of the
key frame depth maps, the key frame separations, and the
depth propagation method. Smaller intervals and higher key
depth accuracy lay a better foundation for subsequent depth
propagation, leading to improved stereo quality. Unfortunately,
these increase the cost as well.

Developing depth propagation methods that effectively
control depth errors can make it possible to relax the key frame
interval constraints, while also significantly improving the
final quality. Of course, the additional algorithm complexity
of automation is negligible as compared with the reduction
in human-computer interaction. This is the main reason why
depth propagation plays such a critical role in 2D-to-3D video
conversion.

Recently, statistical models of natural scenes have proven
to provide useful constraints on many image processing and
computer vision problems, including image compression [4],
image and video quality prediction [5], image denoising [6]
and stereo matching [7], [8]. They provide powerful statistical
priors that can force ill-posed visual problems towards stable,
naturalistic solutions. For example, the univariate distributions
of band-pass luminance images (wavelet coefficients) are
well-modeled as obeying a generalized Gaussian distribution:

P(c) = e−|c/s|p

Z(s, p)
(1)

where Z(s, p) is a normalizing constant that forces the integral
of P(c) to be 1, while the parameters p, s control the shape
and spread of the distribution, respectively. Liu et al. [7] also
showed that the conditional magnitudes of luminance and
depth are mutually dependent, i.e. regions exhibiting larger
luminance variations often have larger depth variations and
vice versa.
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Fig. 1. In stage 1, the initial depths of non-key frames are propagated from previous and next frames. The solid arrows denote bi-direction motion estimation
and compensation. In stage 2, the dashed arrows denote refinement of the initial depths.

Towards producing high-quality and cost-effective
3D videos, we have developed a semi-automatic
2D-to-3D conversion method that utilizes statistical depth
priors to stabilize computation and provide naturalistic
solutions. The overall depth computation framework is cast
in a Bayesian framework. Greatly extending our recent
preliminary work on NSS-guided depth propagation using
only luminance information [9], we further our contribution
in this direction in three ways:

• We explore the statistical relationship between lumi-
nance/chrominance and depth in natural images [10].
Chromatic information can be used to reveal perceptually
relevant statistical relationships between scene texture and
geometry, leading to higher converted 3D video quality.

• We also exploit spatial correlations that exist in the
depth map itself. Natural scene depth maps tend to be
largely smooth and coherent, exhibiting sparse, connected
discontinuities.

• Going beyond the simple Mean-Square-Error (MSE) test
in [9], solid validation is conducted via both subjective
and objective quality assessment demonstrating the
effectiveness of our new statistics-driven model method
over several state-of-the-art 2D-to-3D conversion
schemes.

We proceed as follows: Section II reviews previous
2D-to-3D conversion systems; Section III introduces the entire
pipeline of 3D video generation from monocular 2D video;
our proposed method of statistical and structural modeling
of depth/range and luminance/chrominance is explained
in Section IV; our experimental design of 3D quality eval-
uation along with the performance results are presented
in Section V. Finally, we conclude Section VI with thoughts
towards future work.

II. RELATED WORK

Current 3D content generation methods include stereo-
scopic photography and 3D scene modeling using commercial
software. A third method, 2D-to-3D conversion, continues to

evolve and gain acceptance because of its efficiency, flexibility
and steerability.

Fully-automatic 2D-to-3D conversion methods can be
used in situations where human interaction with the video
is not possible, for example, real-time conversion of live
TV broadcasts. Estimating missing depth data from just one
piece of 2D video is a difficult ill-posed problem. Monocular
depth cues can be utilized to estimate 3D information [2], for
instance, linear perspective, occlusion, texture gradient, and
motion parallax [11], [12]. Another strategy to automatically
generate depth values is by training on a large domain-specific
dataset, using known statistical relationships between the
texture and depth information. Saxena et al. devised a super-
vised learning strategy for predicting depth from images [13].
The use of semantic labels in the learning process was shown
to produce better depth estimates in [14]. Temporal coherence
features were used in [15] to achieve promising 3D conversion
results using a Kinect collected “color + depth” database.
However, fully-automatic methods are still in the early stages
of development.

Aiming at finer 3D quality, semi-automatic 2D-to-3D
conversion methods exploit user interactions to provide initial
depth estimates at key frames. After that, the main task is prop-
agating the annotated depths over time. Recent semi-automatic
methods include Varekamp et al. [16] who propose a scheme
which generates non-key frame depths via bilateral filtering,
then refines them using a block-based motion compensation
algorithm. Wu et al. [17] propose a depth propagation method
using bi-direction optical flow and the Mean Shift algorithm
for foreground object extraction and non-key frame depth
tracking. Cao et al. [18] proposed a semi-automatic conversion
method employing a multiple object segmentation algorithm
to create disparity maps for key frames and shifted bilateral
filtering to propagate disparities to non-key frames. Recently, a
real-time optimization accelerated by a GPU was demonstrated
which enables users to monitor the 3D effect of just-draw
scribbles on-the-fly [19].

While progress in 2D-to-3D conversion holds considerable
promise for 3D content generation, previous work has not
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Fig. 2. Pipeline of key-frame depth map assignment.

addressed the interplay between natural depth, luminance, and
color statistics and how they relate to the creation of depth
propagated 3D videos. These are the contributions explained
in this paper.

III. METHOD OVERVIEW

The basic data unit when conducting semi-automatic
2D-to-3D video conversion is the shot, or series of consec-
utive pictures taken continuously by a single camera and
representing connected actions in time and space. The first
and last frame in a video shot are called key frames, while
frames between them are called non-key frames. Many well
developed shot detection algorithms can be used to partition
a video into shots such as methods based on color histogram
differences [20] or edge changes [21].

An example is shown in Fig. 1. The top row is an image
sequence in a pre-segmented shot. In Stage 1, we assign depth
only to key frames, and estimate the depth of non-key frames.
In Stage 2, only non-key frame depths are refined, yielding
the final depth sequence. The main contribution occurs in the
center of Fig. 1: initial non-key frame depth estimation, and
depth refinement under natural scene statistic prior constraints.

A. Initial Depth Estimation

Assume that accurate depth maps have been obtained for
every key frame. This can be accomplished via an involved
human-computer interaction [18]. First, an over-segmentation
map and a connection map of the over-segmented areas are
built. Some areas are assigned as foreground and background
by user’s scribbles, while others are assigned using graph-cut
optimization [22]. Finally, user can assign depth to each object
layer with the aid of preset depth models. Fig. 2 shows the
pipeline of human annotation for depth assignment on key
frames.

Before the next refinement stage, initial depth estimates for
non-key frames must be found. To accomplish this we deploy
the method proposed in [18] and [23]. First, both forward
and backward motion vectors are estimated between previous
and current frames. Then direct copy and shifted bilateral
filtering is applied to successful and failed matched pixels,
respectively. After that, depths are propagated forward and
backward across all non-key frames. Merging is then carried
out at each non-key frame using a weighting strategy that
decreases with propagation distance.

In the proposed method, the temporal consistency is
partially fulfilled through the smoothed motion vector. In one
video shot, since the depth values are propagated from the
same key frames, the temporal consistence of the motion
vector leads to smoothness in the depth domain.

This stage is illustrated in Fig. 3.

Fig. 3. Pipeline of initial depth estimation.

Fig. 4. Pipeline of depth refinement.

B. Depth Refinement

The depth refinement stage is designed to produce
a high-quality, naturalistic depth sequence from the raw initial
depth estimates. Our method for doing this uses a Bayesian
natural scenes statistics based prior model. As shown in Fig. 4,
the depth refinement stage includes the following steps, where
GLND Fit is the best least-squares fit of a generalized
log-normal distribution (GLND) to the empirical distributions
of the Gabor filter magnitude responses.

Given a non-key frame, a depth refinement algorithm
processes the initial depth map estimated from the previous
stage into a suitable depth estimate at the current non-key
frame. The basic idea is to minimize an energy functional
which merges differential depth cues between the current color
image and the previous depth map within an optimization
framework [24]. A Bayesian inference algorithm is formulated
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that incorporates a likelihood (conditional distribution) and
a prior (marginal distribution) of the natural scene statis-
tics (NSS) model within the energy function to be minimized,
thus forcing the solution to be consistent with the observed
statistical relationships that occur between luminance,
chrominance, and depth in natural scenes.

First, we convert the non-key frames to the perceptu-
ally uniform CIELAB color space. CIELAB was designed
so that color changes corresponding to a given distance
within the color space will yield a similar perceived amount
of change [10]. Then, both luminance/chrominance and the
initial depth map are decomposed by a Gabor filter bank
defined by two radial center frequencies and four orientations.
A GLND natural scene statistics model of the Gabor
magnitude responses is applied to the normalized histogram
of each sub-band by a least-squares fitting progress. This is
incorporated as a prior that is appended to the overall likeli-
hood function to measure the departure from “naturalness” of
the Gabor filter responses.

The data term and smoothness term are likewise introduced
into the energy function in a manner similar to stereo matching
algorithms. The data term measures how well the refined
depths fit the initial depth maps, while the smoothness term
controls the penalty on depth variations.

Finally, the energy function is optimized using the
Simulated Annealing algorithm.

IV. BAYESIAN INFERENCE USING NSS

A. Gabor Filter Bank

The statistical analysis is conducted on the Gabor magnitude
responses to luminance, chrominance, and depth. We adopted
the same Gabor filter bank as used in [8]. A real Gabor
function can be written

Gλ,θ,ψ,σ,γ (x, y) = exp

(
−u2 + γ 2v2

2σ 2

)
cos

(
2π

u

λ
+ ψ

)
(2)

where u = x cos θ + y sin θ and v = −x sin θ + y cos θ . The
standard deviation σ and aspect ratio γ determine the size and
eccentricity of the elliptical Gaussian envelope, respectively.
λ is the carrier wavelength, 2π/λ is the spatial frequency of
the sinusoidal carrier, and θ is the filter orientation. Finally, the
phase offset ψ specifies the symmetry of the Gabor function:
the function is even symmetric when ψ = 0 or ψ = π , and
odd symmetric when ψ = −π/2 or ψ = π/2.

Considering that mid-frequencies provide the best
performance when linear-fitting the depth response and the
color distribution parameters, two center frequencies, 2.22 and
3.61 (cycles/degree), are used, with four different sinusoidal
grating orientations for each spatial frequency: horizontal (0),
diagonal-45 (π/4), vertical (π/2), and diagonal-135 (3π/4)
are used in [8]. The aspect ratio, γ , is chosen to be 1.0 [25].
The spatial frequency bandwidth of each sub-band is
0.7 (octave), and neighboring filters intersect at half-power
point, i.e. 3-dB point [26]–[29]. The half-response spatial
frequency b and the ratio σ/λ are related as follows:

σ

λ
= 1

π

√
ln 2

2
· 2b + 1

2b − 1
(3)

Given a spatial frequency and an orientation, the Gabor
magnitude response for each pixel is

Ĩ (i, j) =
√

Ĩo(i, j)2 + Ĩe(i, j)2 (4)

where Ĩo and Ĩe are the results of the original image I filtered
by a pair of odd-symmetric and even-symmetric Gabor filters.

B. Bayesian Modeling

Taking the initial depth estimation as a number of
measurements and the true depth as unknown parameters, the
refinement problem becomes an inverse problem. A maximum
likelihood estimation can often lead to good solutions. To find
a balance between the initial depth estimation and prior
knowledge, we re-build the Bayesian formulation to integrate
the initial depth estimation, the NSS prior and the spatial
smoothness constraint into a single energy functional. Each
factor in the proposed energy functional can be balanced by
its linear weight.

Given a non-key frame, I , and its initial depth map, Dinit ,
then to estimate the final depth map, D, the canonical Bayesian
inference formulation takes the form

D = arg max
D′

P
(
D′| (I, Dinit )

)
= arg max

D′
P

(
(I, Dinit ) |D′) P(D′) (5)

where P
(
D′| (I, Dinit )

)
is the posterior probability to be max-

imized, and P
(
(I, Dinit ) |D′) and P(D′) are the likelihood

and prior probabilities, respectively. Taking the logarithm of
the product of the likelihood and prior, the Bayesian formula-
tion corresponds to minimization of the energy function:

D = arg min
D′

Ed + λEs (6)

where Ed is the data energy expressed by the likelihood
P

(
(I, Dinit ) |D′), Es is a smoothness term derived from the

prior P(D′), and λ is a weight. To incorporate the marginal
and conditional NSS distributions that we have measured and
modeled, together with the spatial smoothness constraints, the
Bayesian inference formulation can be re-written as

D = arg max
D′

P
(

D̃′∣∣ (I, Dinit ), Ĩ
)

= arg max
D′

P
(
(I, Dinit )

∣∣D̃′, Ĩ
)

P
(

Ĩ
∣∣D̃′) P(D̃′) (7)

where Ĩ and D̃′ are the magnitudes of the Gabor filtered
responses of I and D′, respectively. Taking the logarithm of
Eq. (7) yields

D =arg min
D′

[
Edata + λn(EN SSc +EN SSm )+ λs Esmooth

]
(8)

where Edata is the data energy derived from
P

(
(I, Dinit )

∣∣D̃′, Ĩ
)

, EN SSc and EN SSm are energy terms
related to the conditional and marginal NSS distributions,
respectively, Esmooth is the smoothness term related to depth
changes, and λn and λs are constant weights.

All color images are first converted into the perceptually
relevant CIELAB color space, then decomposed by the
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Fig. 5. Magnified view of depth estimation results obtained on the sequence
“The Dice-1”, the red rectangular zoomed areas are the depth estimated using
the NSS-based method with just luminance, while the blue rectangular zoomed
areas are the depths estimated using NSS models on the full color space.

afore mentioned Gabor filter bank. The Gabor magnitude
response of each channel (depth, and L∗, a∗, b∗ in CIELAB
color space) is then found. As both conditional and marginal
terms are summed over the response of every filter in the
Gabor filter bank, Eq. (8) can be re-written as

D = arg min
D′

∑
i, j

[
Edata + λs Esmooth +

∑
f ∈G B

(
λm EN SSm, f

+
∑

k∈{L∗,a∗,b∗}
λk EN SSc, f,k

)]
(9)

where G B is the set of filters in the Gabor filter bank.
Fig. 5 illustrates the effect of extending the natural scene

statistics from luminance space to full color space, from which
we can see that optimization using a chromatic natural scene
statistics model yields more accurate depth values, especially
around object edges.

C. Data and Smoothness Terms

The data and smoothness terms here are similar to those
used in classic stereo matching formulations. In a global
optimization framework, the initial depth map serves as a
reference and dramatically reduces the time cost. The data
term is defined as

Edata = |D(i, j)− Dinit (i, j)| (10)

The smoothness term constrains the depth variations between
adjacent pixels and thus forces the final solution to be smooth:

Esmooth =
∑

(u,v)∈N(i, j )

min
(
Ts,

∣∣D′(i, j)− D′(u, v)
∣∣) (11)

where Ts is the truncation threshold and N(i, j) is a neigh-
bourhood surrounding pixel (i, j). Currently a 4-connected
region is used.

D. Distribution Terms

The generalized log-normal distribution effectively captures
the shapes of the marginal empirical distributions of the
magnitude Gabor responses to all four types of data. It is
given by

pg(x)=
⎧⎨
⎩

βg

2xα

(

1
βg

) exp

[
−

( |ln(x)−μg|
αg

)βg
]
, x ≥ 0

0, x < 0
(12)

where 
(·) is the gamma function, and μg , αg and βg are
location, scale and shape parameters, respectively.

Incorporating Eq. (12) into Eq. (9) yields

EN SSc, f,k = ln
(

Ĩ f,k(i, j)
)

+ ln

⎛
⎝2α f,k


(
1
β f,k

)
β f,k

⎞
⎠

+
⎛
⎝

∣∣∣ln (
Ĩ f,k(i, j)

)
− μ f,k

∣∣∣
α f,k

⎞
⎠
β f,k

(13)

EN SSm, f = ln
(

D̃′
f (i, j)

)
+ ln

⎛
⎝2α f,d


(
1
β f,d

)
β f,d

⎞
⎠

+
⎛
⎝

∣∣∣ln (
D̃′

f (i, j)
)

− μ f,d

∣∣∣
α f,d

⎞
⎠
β f,d

(14)

where μ f,k , α f,k , and β f,k are the location, scale, and
shape parameters, respectively, of the best-fit generalized
log-normal distributions of filtered luminance and chromi-
nance conditioned on filtered depth, μ f,d , α f,d , and β f,d

are the location, scale, and shape parameters of the best-fit gen-
eralized log-normal distribution of filtered depth, respectively,
and λk and λm are their corresponding constant weights. What
differentiates “conditional” from “marginal” is the way that we
estimate the parameters of the generalized log-normal distribu-
tion. For the marginal distribution of depth, the parameters are
taken directly from the natural scenes statistic results. For the
conditional distribution of CIELAB, the parameters are further
linearly modeled using the depth Gabor magnitude responses:

μ f,k = mμ, f,k D̃′
f (i, j)+ bμ, f,k (15)

α f,k = mα, f,k D̃′
f (i, j)+ bα, f,k (16)

β f,k = mβ, f,k D̃′
f (i, j)+ bβ, f,k (17)

where mμ, f,k , mα, f,k , and mβ, f,k are slope parameters for
μ f,k , α f,k , and β f,k , respectively, and bμ, f,k , bα, f,k , and bβ, f,k

are the corresponding offset parameters.

E. Optimization and Discussions
To solve the optimization of the proposed Bayesian

inference algorithm, we apply simulated annealing on the
derived energy function [30]. The optimization process is
started with an arbitrary assignment of depth. In the optimiza-
tion of the target energy function, both the Gabor filter and the
smoothness term are crucial to the final depth map quality, but
their roles play differently. the effect of Gabor filter reflects
in the parameters of generalized log-normal distribution via
Eq. 15 to Eq. 17, and thus determines the penalty on depth
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Fig. 6. Example of maintaining depth edges using NSS. The sequence used is
“Interview”, captured by Heinrich-Hertz-Institut. (a) Color frame; (b) Ground
truth depth map, where red line shows the depth estimation result using
NSS regularization while the blue line is without NSS.

Fig. 7. Example of reduction of depth outliers using NSS. (a) Color image
from the test sequence; (b) Depth map using the method of Li et al. [23]
method without NSS regularization; (c) Depth map by the proposed method
with NSS prior; (d) Magnified comparison.

changes in the target energy function. Large Gabor magnitudes
attenuate the penalty of depth changes, while small Gabor
magnitudes intensify the penalty. As a result, the main role
of the Gabor filter in the proposed method is to link the color
space and depth map so that the edges of depth changes can be
found effectively. The Gabor filter is capable of detecting depth
changes through its frequency and orientation representations,
however, the depth edges it estimates from color space are not
accurate enough for 3D rendering, which is very sensitive to
object boundaries. Consequently, smoothness term is needed
to guarantee the piecewise smooth within depth domain.

The incorporation of NSS confers two advantages. First,
depth edges are strengthened along object boundaries as
examplified by Fig. 6. If only Gabor filtering were applied,
incorrect depth edges could be detected since there are color
changes in the background Venetian blinds. The other advan-
tage brought by NSS is a reduction of depth outliers remove,
imposed by NSS regularization, as shown in Fig. 7.

V. EXPERIMENTAL RESULTS

In order to verify the effectiveness of the proposed
scheme, we carried out both subjective and objective quality
assessment to compare our method with several state-of-the-art
2D-to-3D video conversion methods (note that the comparison
focuses on previous semi-automatic methods because in most
cases, semi-automatic 2D-to-3D conversion has much
better performance than its fully-automatic counterpart).
The methods that are compared in the performance evaluation

include: 1) bilateral filtering (BF) [31]; 2) improved
depth propagation (IDP) [16]; 3) shifted bilateral filtering
(SBF, bilateral filtering with temporal information) [18];
4) bi-direction motion estimation and compensation
(Li et al) [23]; and 5) The proposed NSS method. In
order to illustrate the effect of each step for the proposed
NSS-based 2D-to-3D conversion method, we also show the
quality assessment result for natural scene statistics using
only luminance (NSS L∗); natural scene statistics using
full color space with CIELAB (NSS L∗a∗b∗); and natural
scene statistics using L∗, a∗, b∗ with spatial smoothness (SS)
regularization (NSS L∗a∗b∗ + SS) in Table II.

The test set consists of 10 different sequences, including
various video clips ranging from indoor scenes to outdoor
scenes, from computer graphics (CG) synthesized shots to
real captured data. Sequences 1-8 were collected from the
Philips WowVx© project website. Sequence 9 “Interview”
was published by Heinrich-Hertz-Institut and sequence 10
“InnerGate” was synthesized by ourselves. The datasets are
either synthesized by CG (Computer Graphics with ideal
camera model) or captured by a camera that senses
co-registered RGB and depth simultaneously, and thus can
be regarded as ground truth data. These sequences contain
challenging factors such as sharp edges, textureless regions,
color ambiguity and objects having fast movement. The key
frame interval was set in the range 20 to 30 frames for each
sequence. Details and properties of the test sequences are listed
in Table I. All of the test sequences can be downloaded from
our website.1 Thumbnails of some of the test sequences are
shown in Fig. 8.

Comparisons of the converted depth maps on some of
the test sequences are shown in Fig. 8. The first column
is a frame from the sequence “Philips-3D-experience-1”, the
second column is a frame from the sequence “Dice-2”, and the
third column is a frame from the sequence “Interview”. From
this figure it may be seen that incorporating both natural scene
statistics in full color space along with spatial smoothness
results in the best depth estimates. Owing to limited space,
not all of the estimated depth maps are shown here, but they
are all available at our website.2 Regarding evaluation of all
the data sets from the various 2D-to-3D conversion methods,
we performed both objective and subjective quality assessment
as follows.

Computing the Mean Squared Error (MSE) between the
degraded signal and the original ground truth is a straight
forward way to measure the quality of a converted video.
In the objective assessment part, we first used the MSE
to measure the differences between the propagated depth
maps and the ground truth. Table II shows the MSE com-
parison results. From the results we can see that if NSS
is only applied on the luminance channel, the converted
video quality is not always the best (see sequence 1, the
previous SBF method outperforms the NSS using luminance).
However, if we extend the NSS model into the full color space,
the proposed conversion method delivers the best performance

1http://media.au.tsinghua.edu.cn/2Dto3D/testsequence.html
2http://media.au.tsinghua.edu.cn/2Dto3D/evaluation.html
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TABLE I

SEQUENCES AND THEIR PROPERTIES USED IN OUR EXPERIMENTS. CG REPRESENTS COMPUTER GRAPHICS SYNTHESIZED VIDEO

Fig. 8. Comparison of converted depth maps from different 2D-to-3D conversion methods. First row: color frame; second row: depth maps from the
IDP method [16]; third row: depth estimation using the shifted bilateral filtering method [18]; fourth row: depth maps recovered using NSS with
luminance [9]; last row: depth estimation using the proposed method.

on all the sequences. This agrees with the finding in [32]
that color is an important ingredient in human stereopsis.
Moreover, if the spatial smoothness term is also incorpo-
rated into the target function, the optimized depth values are
improved even further because both the perceptual depth-color
relationship and the spatial coherence of depth are considered.

The last row of Table II shows the average MSE value
for all the test sequences, from which we could see the
NSS method gain much improvement in terms of objective
evaluation score.

We also used the perceptually relevant Structure
Similarity (SSIM) index to assess the 2D-to-3D converted
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TABLE II

MEAN SQUARED ERROR (MSE) COMPARISON RESULTS

TABLE III

STRUCTURE SIMILARITY (SSIM) COMPARISON RESULTS. AVG REPRESENTS THE AVERAGE SSIM SORE

TABLE IV

SUBJECTIVE TEST CONDITIONS

results. SSIM takes structural information into account,
and can better describe changes in content structure. Depth
changes are crucial to the final viewing 3D experience.
A high SSIM value indicates that two images or depth
maps have more similarity of structure. We used the SSIM
implementation for the LIVE website [33]. The calculated
SSIM values are listed in Table III. From the table it may
be observed that the proposed method also delivers the best
performance in terms of SSIM, indicating that it is able to
deliver depth structure with higher fidelity.

By far the most important test of any 2D-to-3D conver-
sion is its perceptual efficacy. Therefore we also conducted
a subjective test to further evaluate the perceptual efficacy
of the various 2D-to-3D conversion methods. We recruited
22 subjects (with different age, occupation, and so on). All the
participants were screened using the standard Snellen Eye Test
Chart for visual acuity, and the Randot test for stereo depth
perception. Only subjects having normal (corrected) vision

participated in the study. We rendered the stereoscopic videos
using a depth image based rendering algorithm, then displayed
the videos on a 3D display. The 3D display used in the
subjective test is a SONY LMD-4251TD 3D monitor, which
is a 42-inch professional High-Definition display with circular
polarization. The subjective test was performed according
to the standard recommendations ITU-R BT.1438 [34] and
ITU-R BT.1788 [35]. The viewing distance was about three
times of the height of the display (160 cm), and the entire
test for each subject was not more that 20 minutes. The
subjective quality was recorded as scores considering the
perceived sharpness, and overall depth of a set of stereoscopic
image sequences [36]. In our experiments, video quality was
rated on a continuous Mean Opinion Score (MOS) scale
from 0 ∼ 100 (the viewer was asked to rate the quality of
the video using any continuous number between 0 ∼ 100,
the higher the number indicating higher perceived video
quality). The viewing conditions are summarized in Table IV.
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TABLE V

SUBJECTIVE MEAN OPINION SCORE (MOS) SCORES. AVG REPRESENTS THE AVERAGE MOS RESULT

The test results are shown in Table V. Our method deliv-
ered the best perceptual performance except on Sequence 7,
where the results of the best algorithms were similar.

As for the computational cost, the proposed method
requires 15 seconds on average to process one frame with
720 × 576 resolution, and requires 40 seconds on average to
process one frame with High Definition.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a novel 2D-to-3D video conversion method
inspired by psychophysical evidence of human visual
processing of 3D scenes and by recent models of natural
3D scene statistics. The key contribution is that we designed
a global depth optimization process that implicitly combines
2D color and 3D natural scene statistics with spatial depth
coherence. Terms representative of these statistical and struc-
tural constraints in the designed target function serve as
strong and effective priors on the optimization. The Bayesian
inference framework makes it possible to force the 3D solution
towards statistical naturalness and structural consistency. The
algorithm derived from our model produces high-quality depth
propagation over entire 2D video, leading to a better quality
of experience when viewing 2D-to-3D converted content.
The experimental results using both objective quality assess-
ment indices and subjective experiments indicate that the
proposed method delivers better performance than previous
state-of-the-art 2D-to-3D conversion methods. Incorporating
temporal “naturalness” and smoothness terms into the target
energy function and seeking an effective energy minimization
algorithm to accelerate the computation is a promising future
direction.

In the future we intend to extend our work into the
space-time modelling domain by using recent (temporal)
video statistics models [37], [38]. Lastly, we also plan to
explore methods of including content-dependence into the
“naturalness” assessment process as in [39].
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