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a b s t r a c t

Accurately modeling and predicting the visual attention behavior of human viewers can
help a video analysis algorithm find interesting regions by reducing the search effort of
tasks, such as object detection and recognition. In recent years, a great number and variety
of visual attention models for predicting the direction of gaze on images and videos have
been proposed. When a human views video, the motions of both objects in the video and
of the camera greatly affect the distribution of visual fixations. Here we develop models
that lead to motion features that are extracted from videos and used in a new video
saliency detection method called spatial–temporal weighted dissimilarity (STWD). To
achieve efficiency, frames are partitioned into blocks on which saliency calculations are
made. Two spatial features are defined on each block, termed spatial dissimilarity and
preference difference, which are used to characterize the spatial conspicuity of each block.
The motion features extracted from each block are simple differences of motion vectors
between adjacent frames. Finally, the spatial and motion features are used to generate a
saliency map on each frame. Experiments on three public video datasets containing 185
video clips and corresponding eye traces revealed that the proposed saliency detection
method is highly competitive with, and delivers better performance than state-of-the-art
methods.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Digital videos have become an increasingly important part
of daily life owing to the rapid proliferation of networked
video applications such as video on demand, digital television,
video chatting, streaming video over the Internet, and con-
sumer video appliances. A great deal of processing is required
to support the delivery and display of this increasingly
massive amount of video content. Finding ways to process
these videos efficiently is crucial towards delivering them to
the consumer in real time.

An important and underutilized goal of video processing
research are automated anticipation of a user's gaze direc-
tion. Knowledge of the likely times and locations of visual
fixations can allow the definition of a set of strategies to
reduce the computational cost of search processes. Recogniz-
ing this, numerous researchers have developed saliency
detection techniques for applications in multimedia proces-
sing, such as image/video compression, image segmentation,
image retargeting, and advertising design.
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To effectively locate the most visually “attractive” or
“interesting” content in multimedia data, researchers have
built on groundbreaking work by Treisman and Gelade [1],
Koch and Ullman [2], and subsequent attention theories
proposed by Itti [3] and Wolfe et al. [4] and others. Two
broad classes of visual attention mechanisms predominate:
top-down approaches and bottom-up approaches. The top-
down approach is task-driven. This approach needs prior
knowledge of the target before the detection process. It is
modeled as a spontaneous and voluntary process. Traditional
rule-based or training-based saliency prediction methods
belong to the top-down type. Bottom-up approaches are
largely driven by low-level stimuli, where prediction is based
on modeling human reactions to external stimuli, such as
color, shape or motion, and is a largely automatic process.
Over the last decade, many bottom-up and top-down
methods of approaching this problem have been proposed,
such as [5–11]. Most of these methods have been developed
to detect saliency on pictures rather than on video. Here, we
focus on building a bottom-up saliency detection model for
video. Motion is probably the key attribute for accomplishing
saliency detection on video. Considerable attentional res-
ources in the human visual system are driven by motion. As
such, the success of visual attention models significantly
depends on their ability to model and account for motion
perception [12]. However, there are myriads of moving
content and structure found in natural videos, and highly
diverse shooting and editing styles. Thus, it is imperative that
a success saliency model be able to adapt to highly diverse
kinds of videos. In [13], we introduced a still picture saliency
detection model called SWD, which computes saliency maps
based on image patch differences weighted by spatial dis-
tance and center bias. Here we extend our prior model by
introducing a spatio-temporal attention model for predicting
video saliency. The newmodel deploys a simple and effective
way of incorporating motion information into the saliency
map. As we show in Section 4.3, this mechanism can
effectively handle scene changes. When a person watches a
video, the direction of gaze often tends towards regions that
differ from their surrounding and hence are conspicuous.
This pertains to both static (spatial) as well as temporal
characteristics introduced by motion. In our proposed sal-
iency prediction model, likely attractors of gaze direction are
found by integrating three elements as follows: spatial
dissimilarity of each image block which is evaluated in a
reduced dimensional space and weighted by spatial relation-
ships between image blocks, a center bias feature, and block
motion features. We then discuss ways to integrate these
three saliency factors and suggest strategies to adapt them to
different types of video. We also carried out experiments on
three saliency video datasets and compared the saliency
maps generated by several state-of-the-art saliency detection
approaches and the proposed method with recorded eye
tracking data. We show that our method, despite its simpli-
city, predicts human fixations as accurately (or better) than
leading methods. The remainder of this paper is organized as
follows: static and dynamic attention models are presented
in Section 2 and Section 3, respectively. Section 3.5 describes
a fusion model to combine the two (space and time) models.
Section 4 presents experimental results and a performance
evaluation. We conclude in Section 5.
2. Related work

Research on visual attention has beenwidely conducted by
experts in biological vision, perception, cognitive science and
computer vision. The results of visual attention has been
applied to a wide range of problems, such as tele-remote
robot navigation [14], image retargeting [15,16], image com-
pression [17,18] and video quality assessment (VQA) [19,20].
Early on, Treisman and Gelade [1] suggested that humans
perceive external features, such as colors, brightness, texture,
and motion in a distinct manner. Visual attention seems to be
drawn towards visually different, conspicuous regions, and
much of the work in bottom-up saliency analysis has focused
on the detection of feature contrasts, as guided by this concept.
In recent decades, a large number of visual attention models
have been proposed. A classical saliency detection model was
proposed by Itti et al. [21], where a feature map is calculated
using the multi-scale center-surround differences of each of
three image features: intensity, color, and orientation, then a
linear combination of the three feature maps is utilized to
obtain a final saliency map. Subsequently, Goferman et al. [7]
presented a content-aware saliency detection model that
considered local low-level clues, global features, visual organi-
zation rules, and high-level features. In [22] Hou and Zhang
analyzed the log amplitude spectrum of an image and
obtained a spectral residual which they related to saliency.
Cheng et al. [23] developed a regional contrast based saliency
extraction model which can be used to create high quality
segmentation masks.

Visual gaze prediction on still images has been long
studied, but less effort has been applied to the problem of
spatiotemporal visual attention analysis. A naive way to
generate the saliency map in videos is to utilize the image-
based saliency model frame-by-frame. But, this neglects the
influence of motions which is crucial in gaze prediction on
video sequences. Based on this idea, many researchers pro-
posed various spatial and temporal models to estimate video
saliency map. Zhai and Shah [24] proposed a method of
combining spatial and temporal attention models. In the
temporal attention model, motion contrast was computed
based on analysis of planar motions, which was estimated by
applying RANSAC to establish between-frame point correspon-
dences. A dynamic fusion techniquewas then used to combine
the temporal and spatial saliency maps, where temporal gaze
attractive was assumed to dominate spatial factors when large
motion contrast exists, and vice versa. Another novel method
presented by Itti and Baldi [25] elaborated the concept of
“visual surprise”when there is little motion contrast, using the
Kullback–Leibler divergence between the prior and posterior
distributions of a feature map. Cheng et al. [26] incorporated
motion information into an attention model by analyzing the
magnitudes of pixel motions. Boiman and Irani [27] proposed
a spatiotemporal “irregularity” detection method for video.
They reinterpreted the ideas of “saliency” and “visual atten-
tion” on videos in this regard. Guo and Zhang [28] suggested
that the phase spectrum of an image's Fourier transform can
be effectively used to calculate the locations of salient areas,
and they subsequently devised a phase-based saliency detec-
tion algorithm. Rudoy et al. [29] received a competitive result
by applying the center-surround in candidate locations rather
than every pixel. Rapantzikos et al. [30] treat video sequences



Fig. 1. Framework of proposed video saliency model.
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as a volumewhichmaintains spatial and temporal information
and produce saliency measurements in different voxel levels.
In [31] Kim et al. adopted the center-surround framework to
obtain the spatial and temporal saliency. The spatial saliency is
acquired by the association of edge and color conspicuous in
local regions and temporal saliency between temporal gradi-
ents of the adjacent regions. Fang et al. [32] considered a
center-surround saliency model with coded spatio and tem-
poral features from uncompressed video. Mahapatra et al. [33]
indranght the coherency information in both spatio and
temporal saliency. Liu et al. [34] proposed saliency detection
based on motion and color histograms at the super-pixel level.
Meanwhile, several researches are inspired by biological
mechanisms and under the common view of center-
surround framework. Mahadevan and Vasconcelos [35] extend
a discriminant formulation of center-surround saliency to
obtained temporal components. In [36] Tavakoli et al. exploited
a spherical representation to implement center-surround
model. Zaharescu and Wildes [37] also proposed a effective
method by measurements of visual spacetime orientation.
Marat et al. [38] unified spatial and temporal saliency by
merging both static and motion saliency map generated by
cortial-like filters. Besides biological inspirations, a novel
saliency detection for video and image is proposed by Mauth-
ner et al. [39], they suggest that salient regions of videos can be
modeled as a fully unsupervised encoding problem. There are
also some machine learning-based methods for video saliency
prediction. Liu et al. [40] utilized amachine learningmethod to
obtain a saliency map on either a single image or on videos.
They defined a new set of features and integrate them using a
conditional random field (CRF) model to predict salient objects.
Deploying stimulus-driven (bottom-up) and task-related (top-
down) factors simultaneously, Li et al. [41] proposed a video
saliency prediction model based on multi-task learning.

All of these models use temporal change or motion
features such as frame differences and optical flow. However
a common assumption that is made in most of these models
is that the video camera is fixed; with motion arising only
from moving objects. However, many real videos are cap-
tured during camera motions, such as translation, rotation,
and scaling. It is important to also account for camera ego-
motion in the development of video saliency prediction
models. Further, real-world videos viewed by humans often
contain abrupt scene changes, typically not accounted for by
saliency models even though scene changes affect visual
attention. The space time saliency model that we present
here accounts for both of these important practical factors.

3. Video saliency detection

The saliency of an item in a video, be it an object, a person,
a pixel, etc., may be viewed as a state or quality by which it
stands out relative to its neighbors. Here, we propose a
saliency detectionmodel for videos, which follows this precept
using both spatial and temporal information. A broad overview
of our model follows. As shown in Fig. 1, we first partition a
current frame into blocks of equal dimensions. Features
expressing both spatial and temporal information relevant to
each block's level of possible saliency are extracted. The spatial
information includes a measure of spatial dissimilarity relative
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to the surrounding blocks and a factor accounting for the well-
known center bias. Differences between each block's motion
vector relative to the motion vectors of the spatially co-located
blocks in current and previous frames are used as salient
temporal information. These three factors are fused to com-
pute a saliency value for each block. Finally, all of the block
saliency values are combined to define the overall saliency
map. Each processing stage shown in Fig. 1 is detailed in the
following.

3.1. Pre-processing

All calculations are carried out at the block level to
capture local image properties and to promote computa-
tional simplicity. For example, standard block matching
methods, as used for motion estimation in video compres-
sion, can be used to obtain the necessary motion informa-
tion. Denote an H�W video frame as I, represented in the
efficient YUV color space [42]. The frame I is partitioned
into non-overlapping blocks of size of k� k, hence, the
number of blocks in I is approximately L¼ ⌊H=kc � ⌊W=kc.
Denote the blocks as bi where i¼ 1;2;…; L. Each block is
represented by a length 3k2 column vector fi, containing
the YUV block color values. Then I can be represented by
the matrix A¼ ½f 1; f 2;…; f i;…; f L�.

3.2. Spatial dissimilarity

For each block bi, two aspects of spatial dissimilarity are
computed: the appearance difference and the spatial
location relationship between bi and all the other blocks
within the current frame. The spatial location relationship
is used to weight the local dissimilarity of each block,
which is motivated by the fact that the degree of saliency
of a visually fixated area is related to the difference in
appearance between the fixated area and also the dis-
tances to the compared (similar of dissimilar) areas [43].
The concept is related to, but used differently than, the
method of selecting image patches in nonlocal mean
image denoising models [44]. Thus spatial dissimilarity is
measured by

SDðbiÞ ¼
X
ia j

Locðbi; bjÞDðbi; bjÞ ð1Þ

where Dðbi; bjÞ denotes the appearance difference between
bi and bj, and Locðbi;bjÞ denotes the distance between bi
and bj, as defined below.

Realizing that a sufficient difference in appearance as it
relates to saliency between two blocks may be more abstract
and be based on just a few structural elements, the appear-
ance difference metric Dðbi; bjÞ is defined by first applying a
principal component (PC) decomposition to each block as a
dimension reducingmethod. This has the virtue of eliminating
factors such as unnecessary detail or noise from the saliency
calculation, unlike pointwise dissimilarity metrics such as the
mean-squared error (MSE) or even the perceptually relevant
SSIM index [45]. The block principal components are extracted
by regarding each column in the matrix A¼ ½f 1; f 2;…
; f i;…; f L� as a sample. Applying PCA to matrix A yields the
new d� L matrix An ¼ ½f n1; f n2;…; f ni ;…; f nL �. Then each block bi
is represented by column f ni in a reduced dimensional space.
Given two arbitrary blocks bi and bj, the appearance difference
Dðbi; bjÞ between them is defined as

Dðbi; bjÞ ¼
Xd
s ¼ 1

jf nsi� f nsjj: ð2Þ

The spatial location relationship Locðbi; bjÞ is defined as
a biased reciprocal of the Euclidean distance Dðbi; bjÞ
between the centers of blocks bi and bj, which favors
nearer blocks:

Loc bi; bj
� �¼ 1

1þDistðbi; bjÞ
: ð3Þ

3.3. Preference difference

By analyzing the distribution of human's fixations on a
large number of images, it has been be found that the human
gaze direction when viewing displays tends forwards the cen-
ter of the display, even if the central region has no particularly
attractive feature [46]. In an interesting study, Judd et al. [47]
analyzed fixation data on a public image library and found
that 40% of the fixations fell into 11% of the image area near
the image center, and that 70% of the fixations fell into the
region near the image center comprising 25% of the image
area. Therefore, we employ a “Center Bias” mechanism as a
significant factor in the video saliency index. It increases the
saliency value of patches close to the center of the image, and
vice versa. In the following, CðbiÞ is the “center bias” weight
on block bi, and is defined:

CðbiÞ ¼ 1�Distðbi; bcenterÞ=Dmax ð4Þ
where bcenter is the center block in the current frame, that is,
Distðbi; bcenterÞ is the spatial Euclidean distance between the
center of block bi and the center of the block that is located at
the center of the current frame, and Dmax ¼max fDist ðbi;
bcenterÞg is a normalization factor such that 0rCðbiÞr1. In
Section 5.3, the impact of including the center bias factor will
be discussed in detail.

3.4. Visual motion saliency factor

In the temporal part of our saliency model, we express
the saliency degree in units of image blocks. A visual motion
saliency factor (VMSF) is defined using motion vector fields
computed from the video sequence. Our implementation
uses the approach [48] that deploys four-step search to
accomplish motion vector estimation. The VMSF is computed
on the differences of motion vectors between adjacent ima-
ges, estimated using Zhu et al.'s method [20]. Note that we
apply VMSF from the second frame, due to there is no former
frame for the first frame.

3.4.1. Motion vector computation
Motion vectors capture the displacements between

patches in a current frame and corresponding best match
patches from neighboring reference frames, and thus indicate
the image motion of the current patches. Denote motion
vectors as ðVhðtÞ;VvðtÞÞ, where Vh(t) and Vv(t) are horizontal
and vertical displacements, respectively, of current blocks in
the tth frame, relative to matched blocks in a previous frame.
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We deploy a simple and fast block matching method to
estimate the motion vectors. Specifically, we employ the
four-step search approach [48] to obtain best matching blocks
under the minimum Mean Square Error (MSE) criterion:

MSEðVhðtÞ;VvðtÞÞ ¼
X

jf t�1ðxþVhðtÞ; yþVvðtÞÞ� f tðx; yÞj
ð5Þ

where f t�1 and f t denote a previous frame and a current
frame, and x and y indices the horizontal and vertical position
of the current block, measured in block units. Here f tðx; yÞ
represents the three RGB channels of the block at position (x,
y). Supposing the position of the current block to be
ðPosxðcÞ; PosyðcÞÞ and the position of the best match block to
be ðPosxðmÞ; PosyðmÞÞ, then the motion vector computed from
the current block is

VhðtÞ ¼ PosxðcÞ; PosxðmÞVvðtÞ ¼ PosyðcÞ; PosyðmÞ: ð6Þ
Scene changes present a difficulty, since it is not possible

or meaningful to compute motion features across scenes
transitions. We therefore utilize a simple scene change detec-
tion mechanism to adaptively decouple the computation of
motion vectors. First, we compute the magnitudes of pre-
viously obtained horizontal and vertical motion vectors:

VðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VhðtÞ2þVvðtÞ2

q
: ð7Þ

Then, let

M¼
X
x

X
y
jVðtÞ�Vðt�1Þj ð8Þ

where V(t) and Vðt�1Þ are computed from corresponding
blocks in the current and previous frame, respectively.

Fig. 2 shows some successive frames from a video
“mtvclip01” which includes two scene changes. At scene
changes,M generally takes much larger values than elsewhere
in a video. Thus, we use M to determine whether a scene
occurs at the current frame. When the current frame is the
first frame of a new scene, all motion vectors at that frame are
set to 0, i.e. motion computation is decoupled. In Section 4.3,
we demonstrate the effectiveness of this simple expedient for
improving the prediction accuracy of the saliency model.

3.4.2. Computation of VMSF
In some temporal saliency models, a saliency map is

constructed using the contrast of motion. However, we believe
that moving objects should be assigned higher temporal
saliency. In [20], a motion vector model was proposed to
obtain frame-level saliency. Here, we modify and use this
model to compute the value of VMSF for each block.

The VMSF of block bi denoted by SVi(t) is computed as
follows:

SVðbi; tÞ ¼
ViðtÞ�

Xt�1

k ¼ 0

ViðkÞ
" #�

3 if 0otr3

ViðtÞ�
Xt�1

k ¼ t�3

ViðkÞ
" #�

3 if t43

8>>>>><
>>>>>:

ð9Þ

where Vi(t) denotes V(t) computed by (7) for block bi.
Fig. 3 shows a video frame (left) and its computed

temporal feature map (right). In the red rectangle in Fig. 3
(a), the hand holding the phone is a foreground moving
target. In Fig. 3(b), the region corresponding to the red
rectangle has a much higher average temporal saliency
than the rest of the map.

3.5. Saliency fusion

Next we describe a method of integrating the various
saliency factors described in the preceding to produce a
final spatiotemporal saliency value for each block. Under
the assumption that spatially dissimilar and moving blocks
are more visually attractive, the fusion strategy used to
create the overall spatiotemporal saliency value of block bi
at time t:

Saliencyðbi; tÞ ¼N CðbiÞ
X
ia j

Locðbi; bjÞDðbi;bjÞ
8<
:

9=
;

þα �N CðbiÞ
X
ia j

Locðbi; bjÞDðbi; bjÞ
2
4

3
5 � SVðbi; tÞβ

8<
:

9=
;:

ð10Þ
In formula (10), the first term supplies the spatial saliency
value, the second term supplies the spatiotemporal sal-
iency value arising from motion features. Also, α weights
the relative contributions of the two saliency terms, β
regulates the contribution of the temporal motion feature,
and Nð�Þ is a normalizing operator which maps the value of
its argument to the range ½0;1�, it is defined as

N xð Þ ¼ x�xmin

xmax�xmin
ð11Þ

where xmin and xmax are the minimum and maximum
values of x over all blocks in the tth frame.

In our implementation, we set α¼0.2 and β¼3 follow-
ing the discussion in Section 5.2. Finally, the saliency map
is normalized using (11), resized to the scale of the original
video, and smoothed with a unit-energy Gaussian function
ðσ ¼ 3Þ.

4. Experiments

We evaluated the performance of the described video
saliency method on three public eye-movement datasets
[9,49], ORIG-CRCNS, MTV and DIEM. The ORIG-CRCNS data-
set is provided by iLab at the University of Southern
California. It consists of 50 video clips which have over
46,000 video frames with a total display duration of 25 min.
This dataset contains different scenes, and eight subjects
viewed the video clips while being eye tracked, where at
least four subjects viewed each clip. An ISCAN RK-464 eye-
tracker was used to record the fixation traces. The MTV
dataset was created by cutting the same set of video clips
into 1–3s “clippets”, randomly reassembling those clippets,
and another eight subjects viewed this dataset. Other aspects
of the second study were identical as the ORIG-CRCNS
dataset. To analyse our method in detail, we divided the
ORIG-CRCNS dataset into two subsets, ORIG-M and ORIG-N,
based on whether a video clip contained obvious moving
objects. All 30 video clips in ORIG-M contained obvious
moving objects while all 20 video clips in ORIG-N contained
none. The scenes in ORIG-M included outdoor day and night,



Fig. 2. Successive frames from video “mtvclip01”, which includes two scene changes. At the top are the video frames, at the bottom are the values of M
corresponding to each frame.

Fig. 3. (a) Original frame. (b) The temporal feature map computed from (a).

Fig. 4. Illustration of some frames in “beverly03” and corresponding saliency maps generated by the different models, where red circles are the locations of
human eye fixations on each frame.
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Fig. 5. Comparisons between Itti'98, Itti'05, HOU'07, PQFT'09, Fang'12 and our method. We quantify differences between histograms of saliency maps
generated by these models with fixations samples collected from human and random fixation regions using the Kullback–Leibler (KL) distance. (a)
Comparison on ORIG-M dataset. (b) Comparison on ORIG-N dataset. (c) Comparison on MTV dataset.

L. Duan et al. / Signal Processing: Image Communication 38 (2015) 45–56 51



Fig. 6. Comparison with other four algorithms on DIEM dataset. We
display the χ2 distance between saliency maps and fixations which is
better when the result is lower. The red lines stand for the median and
blue represent the 90-th percentile.

Table 1
Comparison with [29] on DIEM.

Model Rudoy'13 (all cues) STWD (ours)

χ2 0.313 0.199

Table 2
Comparison of the three methods: STWD
including scene-change prediction (SCP),
STWD without scene-change prediction
and SWD.

Model KL distance

STWD (with SCP) 0.5919
STWD (without SCP) 0.5699
SWD'11 [13] 0.5670

Note: Two parameters need to be dis-
cussed: (1) the dimension d to which
each vector representing a block is
reduced and (2) the size p of each block.
The best results obtained by our method
(Fig. 5) were obtained when d¼30 and
p¼14. More details on finding good para-
meter values are given in Section 5.2.

Table 3
Comparison with SWD on the ORIG-M, ORIG-N and MTV.

KL distance ORIG-M ORIG-N MTV

STWD 0.5610 0.4123 0.5919
SWD 0.5425 0.4165 0.5670
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parks, crowds, sports, commercials, and video games. The
scenes in ORIG-N include a rooftop bar scene, TV news show,
and talk shows. We choose these datasets to understand the
influence of moving objects on saliency and whether our
method can adapt to both smoothly continuous scenes as
well as scene changes. The DIEM dataset is a more challen-
ging dataset in video saliency detection which is provided by
the Dynamic Images and EyeMovements (DIEM) project. It is
collected from over 250 volunteers gazing performance on
85 videos of several different types like sports, news report,
and documentary film. There is quite a high resolution for
most of the videos.

We compared our proposed method with five established
methods of saliency detection on ORIG-CRCNS and MTV
datasets: Itti'98 [21], Itti'05 [25], HOU'07 [22], PQFT'09 [28],
Fang'12 [50]. Note that Itti'98, HOU'07 and Fang'12 estimate
saliency on pictures (no temporal information) hence are
applied on a frame-by-fame basis, whereas Itti'05 [25] and
PQFT'09 [28] both use temporal information as an important
factor. Each of the compared methods is representative of
saliency detection in a different domains: spatial [21], spatial–
temporal [25], spatial transform [22], temporal transform [28],
and compressed [50] respectively. The method SWD'11 [13] is
also used as a representative method that uses motion fea-
tures. We will discuss the detailed result in Section 5.1. The KL
distance is a popular evaluation of video saliency which
measures the similarity between the predicted saliency dis-
tribution around fixations and random distribution saliency. In
existing studies, KL distance can be computed in different
ways. For example, in Itti et al. [25] KL distance is computed as
the dissimilarity between the histogram of saliency sampled
at eye fixations and that sampled at random locations, and
[51] measured the KL distance between the saliency distribu-
tion of fixated points of a test image and the saliency
distribution at the same pixel locations but of a randomly
chosen image from the test set. In this paper, we reference the
classical KL distance valuation of video saliency in [21,25,52].
Higher KL distances from randommeans that the correspond-
ing method can better predict human fixations. Moreover, we
evaluate the performance of our method on the DIEM. The
parameters we set in this experiment are the same with the
optimal parameter values selected from ORIG-CRCNS experi-
ment. The whole DIEM dataset is seen as the test set. Our
method is compared with four saliency detection algorithms,
including one image saliency algorithm of GBVS'06 [5], and
three video saliency methods from Rudoy'13 [29], PQFT'09
[28], and Hou'07 [22]. In this experiment we followed the
evaluating indicator in Rudoy'13 [29] where χ2 distance
between saliency maps and fixations is employed to exhibit
the result.

Next, we discuss the performance of our method on the
datasets and the effectiveness of the motion feature for
saliency detection on video.

4.1. Performance on ORIG-M dataset

The videos in this dataset contain obvious moving objects,
such as joggers, cars, and cartoon characters. We randomly
partitioned the dataset into 2 equal site subset. For each
experiment, we selected one subset as the training set for
parameters selection, and the remaining subset as the testing
set. Fig. 5 provides quantitative comparison results for the
compared methods. From Fig. 5(a) we can see that, on the
ORIG-M dataset, our method delivered the best performance
among all the compared saliency models. The results show
that the performance of the proposed model is significantly
different from the others. Some visual comparison samples
are provided in Fig. 4. In the figure, the red circles in the first
column are locations of human eye fixations. It is apparent



Table 4
(a) Relationship between β and performance, when α¼0.2. (b) Relationship between α and performance, when β¼3.
(a)

β 1 2 3 4 5

KL distance 0.7310 0.7458 0.7481 0.7394 0.7406

(b)

α 0 0.2 0.4 0.6 0.8

KL distance 0.7290 0.7481 0.7218 0.7113 0.6985

Fig. 7. Saliency maps on accelerating objects. Left: original frame, where the objects in the red circles have higher motion saliency. Middle: saliency map
generated by the SWD'11 model. Right: saliency map generated by the STWD model.
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that the saliency maps generated by our model on these
examples were more consistent with the recorded human
visual fixations.

4.2. Performance on ORIG-N dataset

This video dataset does not contain any videos where
the camera tracks moving objects. Rather it contains a
random selection of scenes from daily life. In this experi-
ment, we use the same model parameters as in the
previous experiment. As shown in Fig. 6(b), our method
yields higher KL values than do Itti'98, Itti'05, HOU'07,
PQFT'09 and Fang'12. However, the performance of our
method is essentially equivalent to that of SWD'11 on this
dataset.

4.3. Performance on MTV dataset

The MTV dataset also contains a wide variety of scenes.
We also study the efficiency of our method when applied
to scene changes, i.e. when the concatenated MTV clips are
analyzed. Fig. 6(c) compared the proposed method with
the other five methods. We again used the same para-
meters as were used in the previous experiment. The KL
values from the proposed method are noticeably higher
than those of the other models.
4.4. Performance on DIEM dataset

The DIEM dataset contains more complex scenes and
have a higher resolution. We ran our algorithm on DIEM
with the same parameter shown in Section 5.2. Our method
performed well and extract the conspicuous motion success-
fully. We employed the results for other methods from [29]
and compared with our method. It can be seen in Fig. 6 that
our method presents the lowest χ2 distance, it means the
performance of our method on DIEM outperforms other
algorithms. Table 1 presents the χ2 distance compared with
algorithms in [29].

5. Discussion

5.1. Comparison with SWD

The proposed method is an effective extension of
SWD'11 [13]. We compared our method with SWD from
two aspects, the effectiveness of the motion feature and
our scene change handling mechanism.

To intuitively demonstrate the effectiveness of the motion
feature, Fig. 7 depicts the result of saliency processing at a
single frame using SWD'11 model and STWD respectively. In
the original frame (Fig. 7, row 1 left, ORIG dataset “game-
cube17” Frame ♯306), the cartoon character has a more



Table 5
(a) Relationship between retained dimension and performance, when block size is 14�14. (b) Relationship between block size and performance, when
retained dimension is 30.
(a)

Retained dimension 6 10 14 18 22 26 30 34

KL distance 0.6237 0.6910 0.7167 0.7229 0.72637 0.7333 0.7477 0.7151

(b)

Block size 8�8 10�10 12�12 14�14 16�16 18�18

KL distance 0.6692 0.6784 0.6985 0.7477 0.7427 0.7144

Table 6
Performance on the three datasets (including center bias vs. not including
center bias).

KL distance Including center bias Not including center bias

ORIG-M 0.5610 0.3997
ORIG-N 0.4123 0.3490
MTV 0.5699 0.2935
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distinctive conspicuous appearance than the fruits (red cir-
cles), but the fruits have an accelerating motion at that
moment which is more likely to attract visual fixations. The
saliency map output by the STWD model (Fig. 7, row 1 right)
takes much larger values on the fruits than does the saliency
map generated by the SWD'11 model (Fig. 7, row 1 middle)
does. In Fig. 7 row 2, the spouting paint received higher
saliency from STWD model.

To further verify the effectiveness of our scene change
handling mechanism, we studied the performance of our
method both with and without it against the SWD'11 model
(Table 2) on MTV dataset. When the scene-change mechan-
ism is not used, the performance of our model falls below
that of the SWD'11 model. However, when it is used, the
performance of our model is much higher than that of the
SWD'11 model. Indeed, handling scene changes on such
videos appears to be an important ingredient of saliency
prediction. The results of our method and SWD on ORIG-M,
ORIG-N and MTV are present in Table 3. The KL distance of
STWD is higher on both ORIG-M and MTV datasets which
contain obvious moving objects. On ORIG-N dataset STWD
performs a flat level with SWD. And this is sensible because
the expand strategies focus on moving objects.

5.2. Parameter selection

In the proposed method, four parameters need to be
discussed, which are α and β in formula 10, the block sizes
and the dimensions to be reduced. Since the number of
possible combinations of these parameters exceeds 10,000,
computing the KL distance for every combination would be
excessively time-consuming. As a more parsimonious solu-
tion, we use locally optimized parameters to approximate
the global ones. The training set selected from ORIG-M
dataset was used to accomplish parameters selection.

We first analyze α and β. In the testing phase, the block
size and the retained dimensions were initialized at 16�16
and 32, respectively. When αwas fixed to 0.2 (α¼0.2), the β
was varied from 1 to 5 in increments of 1. Table 4(a) shows
the performance of the proposed method at each increment.
It may be seen that when β¼3, the performance obtained
was most accurate. To obtain the best value of α, we then fix
β¼3. Six different values of α (ranging from 0 to 0.8, in
increments of 0.2) were tested. The results are shown in
Table 4(b), from which it may be observed that the KL
distance was the highest when α¼0.2.

Also, the block sizes and the dimensions to be reduced
need to be discussed. We tested multiple combination of
them to find the best block sizes and retained dimensions
as we did when selecting α and β, as shown in Table 5.
Here, we set α¼0.2 and β¼3 as above. In the training
phase, the block size was fixed to 14�14 (p¼14), while
the number of retained dimensions was varied from 6 to
34 in increments of 4. Table 5(a) shows the performance of
the proposed method at each increment. It may be seen
that when the number of retained dimensions is 30, the
performance obtained was most accurate. Then, we fixed
the number of retained dimensions at d¼30. Six different
patch sizes (ranging from 8 to 18, in increments of 2) were
tested. The results are shown in Table 5(b), from which it
may be observed that the KL distance was the highest
when the block size is 14.

Although α¼0.2, β¼3, d¼30 and p¼14 are not neces-
sarily the optimal parameter values, our method achieves
the best performance on the ORIG-M, ORIG-N and MTV
datasets, as compared with the other five models using
this assignment of parameters.
5.3. Effectiveness of center bias

The center bias factor is an important contribution to
saliency prediction performance. We tested the perfor-
mance of the proposed method both with center bias and
without center bias, respectively. As shown in Table 6, on
the ORIG-M dataset, eliminating the center bias causes the
performance to decrease by 0.2754 (E28.8%). On the
ORIG-N dataset, the performance decreases by 0.0633
(E15.4%). On the MTV datasets, the performance
decreases by 0.2764 (E48.5%). This strongly indicates that
center bias is a significant contributor to the efficiency of
our method.



L. Duan et al. / Signal Processing: Image Communication 38 (2015) 45–56 55
6. Conclusion

We proposed a new video saliency detection model for
detecting salient regions on video, which combines two
spatial features with one motion feature. We demonstrated
the effectiveness of our model on four kinds of video datasets
(ORIG-M, ORIG-N, MTV and DIEM) and found that it delivers
highly competitive performance. We showed that accounting
for sudden scene changes can boost the performance of
visual saliency prediction, and hence we developed a model
that is sensitive to scene changes. By employing this strategy,
we found that our model can effectively locate salient
regions even in the presence of scene changes. A novel
feature fusion technique was applied to combine the pro-
posed temporal and spatial features. Experimental results on
four video datasets, ORIG-M, ORIG-N, MTV and DIEM, show
that our model outperforms state-of-the-art video saliency
detection approaches when predicting human fixations.
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