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Abstract—We propose a new steerable, multi-scale ratio in-
dex for detecting impulse singularities in signals of arbitrary
dimensionality. For example, it responds strongly to curvilinear
masses (ridges) in images, but minimally to step discontinuities.
The ratio index employs directional derivatives of gaussians,
making it naturally steerable and scalable. Experiments on
real images demonstrate the efficacy of the index for detecting
multi-scale curvilinear structures. A software version of the in-
dex can be downloaded from: http://live.ece.utexas.edu/research/
SingularityIndex/SingularityIndex.zip.

Index Terms—Singularities, impulses, singularity detection,
curvilinear structures.

I. INTRODUCTION

Detection of singularities is important for finding thin, dense
structures in signals of one or more dimensions. For example,
locating curve-like singularities in images is important in
applications such as the detection of blood vessels and cancers,
filaments in images of biological specimens, and roads and
river deltas in satellite images [1].

Many approaches have been proposed to detect and local-
ize impulse (mass) singularities. Mallat and Hwang [2] ap-
proached singularity detection by characterizing the Lipschitz
regularity of image wavelet transform modulus extrema across
scales and showed that the Lipschitz exponent reveals where a
signal varies smoothly, and where there are edges, or impulse
singularities. Lindeberg [3], [4] and Steger [5] presented a
general scale-space framework for detecting edges and ridges
in images.

We have developed a new ratio index for the detection of
impulse singularities in signals of arbitrary dimensionality. It
is inspired by conditions put forth by Lindeberg [3], [4] and
Steger [5], by Canny’s approach to edge detection [6], and by
an energy operator developed by Teager and Kaiser [7]. The
index employs steerable directional derivatives of gaussians
yielding a computationally efficient multi-scale framework.
We show analytically and experimentally that the index re-
sponds strongly to impulse- or ridge-like curves in images,
and minimally to edges.

II. PROPOSED SINGULARITY INDEX IN 1-D

We first define the new singularity index in 1-D and in mul-
tiple dimensions afterwards. Let f(x), x ∈ R, and f ′(x) and
f ′′(x) denote first and second order derivatives, respectively.
Then define the dimensionless ratio index

(ψf)(x) =
|f(x)f ′′(x)|
C + |f ′(x)|2

(1)
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Fig. 1. 1-D impulse (left) and edge (right) profiles.

where C ∈ R. The index ψ responds strongly to impulse
singularities, where the twice-derivative is large, but weakly
to step singularities, where the once-derivative is large. Where
the once-derivative is small, the denominator has little effect,
suggesting the nominal value C = 1 although other criteria
such as noise might promote other choices. For simplicity,
assume (ψf)(x) = |f(x)f ′′(x)|

1+|f ′(x)|2 .
To ensure invariance to local DC offset, the function f(x)

is locally debiased prior to computing (ψf)(x). This is done
by everywhere subtracting the local mean computed using a
large, unit area gaussian filter. The scale λ of this gaussian
may be chosen as follows: consider a smoothed impulse of
height K and scale w: f(x) = Ke

−x2

2w2 (Fig. 1, left). The
locally debiased signal is f̂(x) = f(x) − gλ(x) ∗ f(x) =

Ke
−x2

2w2 − Kw√
λ2+w2

e
−x2

2(λ2+w2) . At x = 0, f(0) = K, and f̂(0) =

K − Kw√
λ2+w2

. By choosing λ so that |f(0) − f̂(0)| ≤ εK,

where ε ∈ (0, 1], the lower bound λ ≥ w
√

1−ε2
ε2 is arrived at.

Reasonable values of w = 1.5 and ε = 0.2 yield λ ≥ 7.34.
We next analyze the behavior of the index on 1-D impulse
and edge profiles.

A. 1-D Impulse Profile

Model a smoothed 1-D impulse as before by a gaussian of
height K > 0 and scale w (see Fig. 1, left): f(x) = Ke

−x2

2w2 .
Then the index evaluates to

(ψf)(x) =

∣∣∣K2

w2

∣∣∣ ∣∣∣ x2

w2 − 1
∣∣∣ e−x2w2

1 +
∣∣K2

w4

∣∣x2e
−x2
w2

. (2)

At x = 0, (ψf)(0) =
∣∣∣K2

w2

∣∣∣. As K ↑, or w ↓, (ψf)(0) ↑.
The singularity index favors sharp impulses. As w → ∞ or
x→∞, then ψ → 0. In the absence of other stimuli, the index
vanishes with increased smoothness of, or distance from the
impulse. It responds to both positive going and negative going
impulses, although polarity is easily retained.
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B. 1-D Edge Profile

Model a 1-D edge profile as a step u(x) of height K > 0
smoothed by a gaussian gw(x) (see Fig. 1, right):

f(x) = Ku(x) ∗ gw(x) = KΦ
( x
w

)
, (3)

where Φ
(
x
w

)
= 1√

2π

∫ x
w

−∞ e
−t2
2 dt. In this case, the singularity

index evaluates to

(ψf)(x) =

(∣∣∣ K2

2πw4

∣∣∣ |x|(∫ x−∞ e
−t2

2w2 dt

)(
e
−x2

2w2

))
1 +

(∣∣∣ K√
2πw

∣∣∣2 e−x2w2

) . (4)

At x = 0, the index vanishes: (ψf)(0) = 0, and near the edge
the index decreases with K.

C. Side-lobe Response

Lemma 1: For an impulse whose cross-section profile is a
gaussian, the peak side-lobe response (ψf)s of the singularity
index is bounded by 1.
Proof: First notice that in (2), (ψf)(w) = 0. The side-lobes
occur at |x| > w. Let A = K2

w2 and y = x2

w2 . Substituting these
in (2) yields: (ψf)(y) = A|y−1|e−y

1+Aye−y .

Case 1: y − 1 > 0 ⇒ (ψf)(y) = A(y−1)e−y

1+Aye−y

Differentiating ψ w.r.t y and equating to 0 yields (y− 2)ey =
A, the solution of which is the location of the peak side-lobe
response. Substituting for A in ψ yields the peak side-lobe
response (ψf)s = y−2

y−1 = x2−2w2

x2−w2 ≤ 1 ∀ |x| > w.

Case 2: y − 1 < 0 ⇒ (ψf)(y) = A(1−y)e−y

1+Aye−y

Differentiating ψ w.r.t y and equating to 0 again yields (y −
2)ey = A. Following similar (reversed) reasoning we find
|(ψf)s| ≤ 1.

From Lemma 1, (ψf)s is bounded by 1 and does not depend
on the impulse height K. By comparison, the simple impulse
detector f ′′(x) has a peak side-lobe response 0.446K

w2 at x =

±
√

3w, which increases linearly with K for a fixed scale.
The singularity index does produce a small, but undesir-

able side-lobe response to edges. Rewrite (4) as (ψf)(z) =∣∣∣K2

w2 Φ(z)φ′(z)
∣∣∣

1+K2

w2 φ
2(z)

, where z = x
w , φ(z) = 1√

2π
e
−z2
2 and Φ(z) =∫ z

−∞ φ(t) dt are the standard normal probability density and
cumulative distribution functions, respectively. Differentiating
(ψf)(z) w.r.t z and equating to 0 yields a substitution for
Φ(z), which when used in (ψf)(z) yields the peak edge side-
lobe response (ψf)Es = K2z2φ2(z)

K2(z2+1)φ2(z)−w2(z2−1) . Unlike the
impulse side-lobe response, the edge side-lobe response is not
bounded by 1 and depends on K for a fixed scale w. How-
ever, the peak edge side-lobe response can be substantially
attenuated as described next.

For some constant a ∈ R, compute the first derivative re-
sponse using a scale aw so that the singularity index becomes

(ψf)(x) =
|f(x)f ′′(x)|
1 + |f ′a(x)|2

. (5)

To choose a, consider the edge model (3), where now
f ′a(x) = K

awφ( x
aw ) = K√

2πaw
e
−x2

2a2w2 , and define P (a) =

aw(f ′a(x))2. The optimal value for a is then taken to be
a∗ = argmax

a
P (a) =

√
2x0

w , where x0 is the location where

the numerator |ff ′′| is maximized in response to the step edge.
Numerical solution yields x0 = 1.2554w and a∗ = 1.7754.
Extensive simulations using a = 1.7754 suggest that the peak
side-lobe edge response of the singularity index computed with
f ′a(x) in (5) is upper bounded by 3.7. By comparison, f ′′(x)
has a peak side-lobe edge response K√

2πew2
at x = ±w, which

increases linearly with K for a fixed scale w.

D. Generalized Singularity Index

It is possible to control the scale of the singularity index by
smoothing the signal first:

(ψf)(x, σ) =
|gσ ∗ f(x)||g′′σ ∗ f(x)|

1 + |g′aσ ∗ f(x)|2
, (6)

where, g is a smoothing filter such as an unit-area gaussian:
gσ(x) = 1√

2πσ
e
−x2

2σ2 . The first derivative of the smoothed
signal is computed at a scale aσ to attenuate the edge side-
lobe responses. The use of gaussian filters stabilizes derivative
computations and reduces noise. The concept of the index (6)
can be generalized to detect other types of discontinuities such
as edges. The kth-order index

(ψkf)(x, σ) =
|gk−1
σ ∗ f(x)||gk+1

σ ∗ f(x)|
1 + |gkaσ ∗ f(x)|2

(7)

includes (6) as a special case (k = 1). Odd integer values of k
yield impulse detectors, while even integer values of k yield
edge detectors.

E. Multi scale analysis

The smoothed singularity index (6) is easily ex-
tended to detect impulses at multiple scales. Consider
a smoothed gaussian impulse of height K > 0 and
scale w, i.e. f(x) = Ke

−x2

2w2 . Then f(x) ∗ gσ(x) is

also gaussian: f(x) ∗ gσ(x) = Kw√
σ2+w2

e
−x2

2(σ2+w2) . Sim-
ilarly, it can be shown that the first derivative re-

sponse is (f(x) ∗ gaσ(x))′ = −Kwx
((aσ)2+w2)3/2

e
−x2

2((aσ)2+w2)

and the second derivative response is (f(x) ∗ gσ(x))′′ =

−Kw
(σ2+w2)3/2

(
−x2e

−x2
2(σ2+w2)

(w2+σ2) + e
−x2

2(σ2+w2)

)
. Then (ψf)(0, σ) =∣∣∣ −K2w2

(σ2+w2)2

∣∣∣ = K2w2

(σ2+w2)2 .
Now consider the scale normalized index (ψnormf)(x, σ) =

σ2γ(ψf)(x, σ), where γ ∈ R. The scale-normalized index
is motivated by the scale-space selection methodology based
on local extrema over scales of γ-normalized derivatives that
was proposed by Lindeberg in [4]. Then (ψnormf)(0, σ) is
maximized when σ =

√
2γ

4−2γw, which matches the smoothed
impulse width when γ = 1. Hence, the scale normalized index
(ψnormf)(x, σ) = σ2(ψf)(x, σ) attains a scale-space maxima
at σ = w. Substituting this into the scale-normalized index
yields (ψnormf)(0, w) = K2

4 , a constant independent of w.
Thus, the scale-normalized singularity index is scale-invariant.
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It is worth comparing the scale-normalized index to Linde-
berg’s γ-normalized maximum eigenvalue of the Hessian ridge
strength measure, Mγ−normL, defined in equation (46) in [3]

for a smoothed gaussian impulse f(x) = Ke
−x2

2w2 . As shown in
[3], in order that the maximizing scale equal the width of the
impulse, γ = 3/4. Substituting this into Mγ−normL yields a
response of K

23/2
√
w

at the origin, which is not scale invariant.

III. PROPOSED SINGULARITY INDEX IN 2-D

The smoothed singularity index (6) is easily extended to de-
tect curvilinear masses in 2-D. In 2-D, curvilinear masses are
characterized by a dominant orientation. Hence, the sensitivity
of the index can be improved by adopting a design mechanism
inspired by Canny for edge detection [6]. First, determine the
direction θ at each pixel along which the second derivative of
the gaussian filtered image attains a local extremum, which is a
good estimate of the direction orthogonal to a curvilinear mass.
Once this direction is estimated, evaluate the responses of the
gaussian derivative filters along this direction and compute the
ratio index as follows:

(ψf)(x, y, σ) =
|f0,θ,σ(x, y)f2,θ,σ(x, y)|

1 + |f1,θ,aσ(x, y)|2
(8)

In (8), f0,θ,σ(x, y), f1,θ,aσ(x, y), and f2,θ,σ(x, y) are the
responses to the zero, first and second order gaussian derivative
filters along the direction specified by θ(x, y) and at scale
σ. To estimate θ(x, y), deploy an isotropic gaussian filter
and exploit the steerable property of gaussian directional
derivatives as described in [8].

A. Multi-scale Realization

As in the 1-D case, the use of gaussian derivatives allows
for an easy extension of the singularity index (8) to detect
curvilinear masses at multiple scales. We employ a discrete,
coarse-to-fine approach where (8) is computed in the order of
decreasing scale σ. Automatic scale selection is achieved by
selecting the scale yielding the largest scale normalized index
value.

IV. EXPERIMENTS AND RESULTS

In all our experiments, we computed the scale-normalized
singularity index i.e. σ2(ψf)(x, y, σ). We fixed the lowest
scale σ of the isotropic gaussian to 1.5 pixels, and the constant
a = 1.7754. Each subsequent coarser scale was larger than the
previous finer scale by a factor of

√
2. The number of scales

was set to 6. Prior to computing the singularity index (8), the
image was locally mean debiased using a large unit-volume
isotropic gaussian with λ ≥ w

√
1−ε2
ε2 pixels, where ε = 0.2,

and w was the largest scale. For comparison, we also show
results using the scale normalized second derivative index i.e.
σ1.5f2,θ,σ(x, y) and Lindeberg’s square of the γ-normalized
eigenvalue difference ridge strength measure (Aγ−normL in
equation (51) in [3]). For Aγ−normL, we used an imple-
mentation by Kokkinos et al. [9]. It has to be noted that
σ1.5f2,θ,σ(x, y) exactly corresponds to the ridge strength mea-
sure Mγ−normL defined by Lindeberg in equation (46) in [3].

The scale normalized second derivative index was computed
using the same set of scales as the singularity index, while
Lindeberg’s Aγ−normL measure [3] was computed using the
same set of scales as the singularity index and also with a
more exhaustive 50 scales (provided as the default setting in
the implementation [9]). Further, the implementation provided
by [9] applies a square-root transformation to Aγ−normL
to yield a contour saliency measure whose dimensionality
is the same as σ1.5f2,θ,σ(x, y). No such transformation is
applied to the singularity index since it is dimensionless under
the assumption that the constant in the denominator has a
dimension intensity2/length2.

Fig. 2 illustrates the results of the singularity index in rows
2 and 3, the scale normalized second derivative measure in
rows 4 and 5, and Lindeberg’s Aγ−normL measure (after the
square-root transformation) in rows 6 and 7 on four images
containing curvilinear structures - an aerial image (courtesy
University of Southern California) in column 1, the Ganges
river delta (NASA, courtesy of nasaimages.org) acquired as
part of the NASA Human Spaceflight collection in column 2, a
volcano on venus (NASA, courtesy of apod.nasa.gov) captured
by the Magellan spacecraft in column 3, and an image of pine
tree trunks in column 4. Each result illustrates the maximum
response computed across all scales at every pixel location.
The results in rows 3, 5, 6 and 7 are obtained after applying
non-maxima suppression (NMS) along the dominant orienta-
tion at each pixel after the maximum response across all scales
has been computed. For σ2(ψf)(x, y, σ) and σ1.5f2,θ,σ(x, y),
we use the steerability of gaussian derivatives to estimate the
dominant orientation θ(x, y), while for Aγ−normL, [9] uses
the eigen directions of the Hessian matrix of the brightness
function to estimate θ(x, y).

The results in Fig. 2 illustrate a strong response by the
proposed singularity index to impulse-like structures, with
suppressed response to edges. The normalized second deriva-
tive index (rows 4 and 5) produces significant response to
edges as noted by Lindeberg too [3]. Lindeberg’s Aγ−normL
ridge strength measure (rows 6 and 7) produces a better re-
sponse than the normalized second derivative index, but misses
out on fine-scale impulses and lacks the contour continuity
produced by the new singularity index (rows 2 and 3). A
broader set of results on a total of 18 high-resolution images
can be downloaded from: http://live.ece.utexas.edu/research/
SingularityIndex/SingularityIndex.zip.

V. CONCLUSION AND FUTURE WORK

We presented a new steerable, multi-scale singularity index
for analyzing impulse singularities in images. Our analyses
and experiments reveal promising behavior by the index for
detecting impulse-like or ridge curvilinear structures in im-
ages. The index is scalable and efficient due to the steerable
directional derivatives of isotropic gaussians. We will explore
the index in (7) for detecting generalized discontinuities in
future work.
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Fig. 2. Row 1: Original images; row 2: normalized singularity index result; row 3: NMS on singularity index result; row 4: normalized second derivative
index; row 5: NMS on second derivative index; row 6: Lindeberg’s Aγ−normL ridge strength measure using 50 scales; and row 7: Lindeberg’s Aγ−normL
ridge strength measure using 6 scales.
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