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ABSTRACT 
 
Motion can reduce the visibility of flicker distortions. We 
performed human subjective tests to investigate how motion 
influences the visibility of flicker distortions in naturalistic 
videos. Forty three naïve subjects participated in two tasks 
(“follow the moving object” and “view freely”) and reported 
their percepts on 36 test videos. Flicker distortions were 
simulated by periodic changes of video frames at different 
quality levels and flicker frequencies. An eye tracker was 
used to monitor each subject’s gaze. The results indicate that 
the visibility of flicker distortions is strongly reduced when 
the speed of coherent motion is large, and the effect is more 
pronounced when the video quality is poor. We conjecture 
that sufficiently fast and coherent motions near the gaze 
point mask or ‘silence’ the perception of flicker distortions 
in naturalistic videos in agreement with a recently observed 
‘motion silencing’ effect on synthetic stimuli.  
 

Index Terms— Motion, flicker distortion, visibility of 
distortion, gaze, and video quality 
 

1. INTRODUCTION 
 
As high-quality video applications become increasingly 
available and are exponentially growing, the reliable 
assessment of video quality plays an important role in 
satisfying the quality of service (QoS) delivered to 
consumers [1], [2]. Since humans are the final consumers of 
videos, the development of models of distortion perception 
is a key aspect in the design of systems that can accurately 
predict human opinions of visual quality. Relevant 
perceptual properties that have been used in video quality 
assessment (VQA) design include contrast sensitivity [3], 
visual attention [4], cortical motion representations [5], and 
temporal natural video statistics models [6].     

The mere presence of distortion does not imply the 
quality degradation [7] for humans due to masking. The 
interactions between video content, distortion, and visible 
response are key to understanding distortion visibility.  

To understand the various characteristics of temporal 
visibility, psychologists and vision scientists have probed a 
variety of related topics, including visual masking [8], 
change blindness [9], crowding [10], and motion silencing 

[11]. Very recently, Suchow and Alvarez [11] demonstrated 
a “motion silencing” illusion, in which the salient temporal 
changes of an object in luminance, color, size, and shape 
appear to stop in the presence of sufficiently large, cohesive 
object motion. Their results imply that changes in object 
appearance are tightly coupled with motion, and that motion 
can dramatically alter the appearance and visibility of visual 
changes. While we believe that this can be explained using a 
space-time model of cortical simple cell responses [12], [13] 
the effect has only been studied on highly synthetic stimuli. 

From an engineering perspective, the visibility of 
distortion has been studied in the context of video 
compression. Netravali et al. [14] investigated the effects of 
luminance transitions on the perception of quantization 
noise and applied it to design a predictive coder. Girod [15] 
discussed the significance of spatial and temporal masking 
effects on source coding. Johnston et al. [16] used simple 
models of spatial and temporal masking to create a non-
linear quantizer. Similarly, Puri et al. [17] designed an 
adaptive video coder using the visibility of noise on flat 
areas, textures, and edges. Horne et al. [18] suggested that 
further improvement could be obtained by measuring 
temporal activity in the video, driven by the notion that 
quantization noise on fast moving objects that the eye 
cannot track will be less visible than on slow moving 
objects. Haskell et al. [19] suggested that observers are 
more tolerant of distortions in moving images than in 
stationary images due to a presumed difficulty of focusing 
on details on moving objects. While a variety of ideas and 
algorithms have been proposed to account for “temporal 
masking” in video compression, implementations have been 
largely heuristic and/or been based on an anecdotal 
evidence. There has not yet been any systematic studies of 
the quantitative perceptual nature of texture masking 
phenomena on real-world, naturalistic videos. We aim to 
make progress in this direction by deepening our 
understanding of the silencing/masking phenomena.  

The idea of just-noticeable distortion (JND) has played 
an important role in video quality research. Hontsch et al. 
[20] presented an adaptive image coding method using JND 
and perceptual distortion control, while Jia et al. [21] 
estimated the JND of videos using the spatio-temporal 
contrast sensitivity function. Zhao et al. [22] measured the 
visibility of noise in space-time to accomplish VQA. An 

2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX)

978-1-4799-0738-0/13/$31.00 ©2013 IEEE 164 QoMEX 2013



early successful approach to VQA was based on the JND 
principle [23]. Recently Ni et al. [24] executed a study of 
subjects viewing videos afflicted by noise, blur, and motion 
flicker. They studied the visibility of flicker as a function of 
flicker amplitude and frequency, but not how it is affected 
by motion. Likewise, other work has focused on factors 
such as color, details, and motion induced blur on flicker 
visibility [25], [26], but not on the impact of object motion.    

 Here we study a new observed motion silencing 
phenomenon wherein flicker visibility is affected by the 
speed of coherent object motion in naturalistic videos. We 
conducted a human subjective study to investigate the 
impact of object motion on flicker visibility. This was 
accomplished by presenting compressed videos undergoing 
regular, periodic changes in quality levels to 43 naïve 
subjects engaged in two tasks: an object tracking task 
(“follow the moving object”) and a “free viewing” task. We 
found the empirical distributions of flicker visibility on 
these tested videos and investigated the impact of motion on 
the visibility of these changes using a correlation analysis. 
Subjects’ gaze was measured by an eye tracker (faceLAB5, 
Seeing Machines) while motion in the videos were 
estimated by an optical flow algorithm.  

The remainder of the paper is organized as follows. In 
Section 2, we describe the source videos, flicker distortion 
simulations, and subjective test methodology. The results of 
the human study are presented in Section 3. We conclude 
the paper in Section 4 with a discussion.  
 

2. HUMAN STUDY DESIGN AND EXPERIMENT 
 

2.1. Source videos and distortion simulation 
 

Source videos were obtained using a RED ONE digital
cinematographic camera. The 12-bit REDCODE (.r3d)
RAW data was captured at a resolution of 3K (3072 × 1728) 
at the frame rate of 30 fps using the 42MB/s option to 
ensure that the best possible acquisition quality was 
obtained. The source videos were truncated to 10 second
lengths and then downsampled to resolution 720p (1280 ×
720) or cropped to 1920 × 720 at 30 fps. The .r3d videos
were converted into uncompressed .yuv files by a 
combination of the “imresize” (option: bicubic) function in
MATLAB and Adobe Premiere CS5. One video, “Tr,” was 
added from a database available from the Technical
University of Munich [27] and followed the same
processing. A total of eight reference videos were selected.
Two were used for a training session, while six were used 
for the test. Fig. 1 shows sample frames from the six test
videos. The marked areas show moving objects, while the
blue arrows indicate the paths followed by moving objects.
The reference videos include various speeds of object
motions. For the first five videos (“Bb,” “BMX,” “La,” 
“Mr,” and “Rc”), the camera was fixed on a stable tripod, 
while for the “Tr” video sequence, the camera panned and
zoomed as the video was acquired. 

Bb BMX La

Mr Rc Tr

 
Fig. 1. Example frames of the videos used in the study. The 
marked areas indicate moving objects while arrows indicate the 
paths of object movement. The camera was fixed for the first five 
scenes but moved when acquiring the ‘‘Tr’’ scene.  
 

                                      (a)                          (b)
 
Fig. 2. Schematic illustration of the flicker distortion simulation: 
(a) Video quality level changes. (b) Video frame duration changes. 
Every 2, 3, and 5 frames were alternated, corresponding to flicker 
frequencies of 7.5, 5, and 3Hz, respectively.  
 

Flicker distortions were simulated by alternating 
subsequences of videos at different rates (amplitude) at three 
flicker frequencies (duration) as illustrated in Fig. 2. Flicker 
frequency means the number of rate alternations per second. 
More specifically, the flicker is caused by changing frames 
from high to low quantization parameter (QP) and then back 
from low to high QP in an H.264 codec. Each reference 
video was encoded using the JM reference implementation 
of H.264 Advanced Video Codec (AVC) [28] at one of four 
fixed QP values: QP26, QP32, QP38, and QP44. The 
perceptual video quality was found to be well separated 
using these QP values, corresponding to roughly excellent, 
good, poor, and bad, respectively, from QP26 to QP44. Over 
each flicker period, the QP was alternated either from QP44 
to QP26, from QP38 to QP26, or from QP32 to QP26 by 
inserting appropriate segments from the four already 
compressed videos. Further, to investigate the effect of 
flicker frequency on the visibility of flicker as a function of 
motion, videos with variable-length QP durations (periods) 
were also constructed, corresponding to time-varying flicker 
frequencies of 7.5, 5, and 3Hz, respectively, all using a fixed 
alternating QP pair (QP38, QP26). Each case is illustrated in 
Fig. 2(a) and (b).  

A transition from low to high quality decides flicker 
magnitude. When quality difference is large (e.g., QP44, 
QP26), the flicker magnitude is large, so flicker can be 
easily perceived. However, when quality difference is small 
(e.g., QP32, QP26), the flicker magnitude is small, so flicker 
can be perceived less. We investigate how flicker visibility 
at each quality difference is influenced by object speeds. 
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Fig. 3. The subjective study interface displaying the instruction and 
the video to the subject. When each video begins, the instruction 
and the rating bar disappear except for a white score gauge along 
the bar. Subjects rate flicker visibility by moving a mouse up or 
down continuously. 
 
2.2. Methods  

 
A single-stimulus continuous quality evaluation (SSCQE) 
study [29] with hidden reference was conducted. Forty three 
University of Texas at Austin students served as naïve 
subjects. All subjects were between the ages of 20 and 35. 
Each was found to have normal or corrected-to-normal 
visual acuity (Snellen Test) and color perception (Ishihara 
Test). Subjects viewed videos on a 24" screen Dell U2410 
monitor with a resolution of 1920 × 1080, using special-
purpose processing and display software programmed in 
MATLAB and XGL toolbox [30]. Each entire video was 
loaded into memory before its presentation to avoid latency 
due to slow hard disk access of a large video file, and played 
on the center.   

Before presenting a test video, visualization was 
displayed indicating the pre-defined moving object 
contained in each test video. The subjective study interface 
is shown in Fig. 3. A continuously calibrated rating bar was 
shown at the right side of the screen. The rating scale ranged 
from 0 to 100, where the increments 0, 25, 50, 75, and 100 
were marked as “Hardly,” ”Little,” “Medium,” “Highly,” 
and “Extremely.” The initial score displayed on the rating 
bar was “Medium” at the beginning of each video. During 
play back, the rating bar disappeared.  

An eye and head tracker (faceLAB 5, Seeing Machines) 
was used to monitor each subject’s gaze direction. The 
subjects’ heads were unrestrained. Gaze was calibrated by 
using a 9 point calibration sequence before each experiment, 
and it was recorded at every 1/60 second into calibrated 
display coordinates. Viewing distance was 87cm (three 
times of display height).  

Each subject participated in two separate tasks; Task 1, 
“follow the moving object” and task 2, “free viewing.” 
Subjects performed Task 1 first and executed Task 2 after an 
enough rest (e.g., one day). In Task 1, subjects were 
requested to fixate their eyes on the pre-defined moving 
object throughout the duration of the video and to rate the 
visibility of flicker on the object by moving the mouse up or 

down the scale continuously. In Task 2, subjects were 
requested to view videos naturally. Each task lasted less 
than 20 minutes, each of which consisted of 36 test videos 
(6 hidden reference videos and 30 flicker distorted videos) 
in randomized order. A short training session preceded the 
actual study to familiarize the subjects with the procedure.  

In addition, a lag response (the time difference between 
the perception of flicker and the movement of a mouse to 
rate the visibility) was measured for each session and for 
each subject. Subjects were asked to move a mouse up when 
a black dot on a white background flickered and to move a 
mouse down when the dot did not flicker. The black dot 
distinctively flickered for 2 or 3 seconds. Time duration 
from the start of the dot flicker (or no-flicker) on the screen 
to the mouse movement by the subject was measured five 
times, and then those values were averaged.  

 
3. EXPERIMENT RESULTS AND ANALYSIS 

 
3.1. Processing of subjective flicker visibility scores  

 
To ensure appropriate time synchronization between the 
frame at which the subject visually perceived the flicker and 
the mechanical scoring of flicker visibility (rated by hand), 
the evaluated score was matched after shifting score signals 
by the average lag response time for each subject. Let sijf 
denote the score assigned by subject i to video j at frame 
number f, msijf be the visibility score of subject i to video j at 
frame number f, and lag_i be the average lag response of 
subject i. Then the visibility score is given by, 

 
                           msijf = sij(f + lag_i).                                (1) 
 

The range of lag response time was 0.47 ~ 1.17 seconds (14 
~ 35 frames). 

In order to unbias measured flicker visibility in each 
flicker distorted video from its content, we calculated the 
difference flicker visibility scores between the score that the 
subject assigned to each reference video and the scores 
assigned to the corresponding flicker distorted videos. 
Specifically, let msij_reff denote the flicker visibility score 
assigned by subject i to the reference no-flicker video 
associated with the distorted video j after lag response 
matching and, Mj be the total number of ratings received for 
video j. The difference scores dsijf are computed as   

 
    dsijf = msijf - msij_reff .                          (2) 

 
The final flicker visibility score is  
 

    1
jf ijf

ij

fvs ds
M

= ∑ .                            (3) 

 
The flicker visibility scores range continuously from 0 to 
100, where 0 means that the subject failed to, or hardly 
perceived flicker on the moving object, while 100 means 
that the subject perceived flicker extremely and clearly.
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Fig. 4. Distributions of flicker visibility and object speed: (a) Quality level changes at 5Hz flicker frequency. (b) Flicker frequencies at QP 
alternations (QP38, QP44). Solid lines indicate flicker visibility, while dotted lines show motion velocity (pixel/frame). It can be observed 
that when motion is large, the visibility of flicker distortion decreases, and this effect is more pronounced when the video quality is poor.  

 
3.2. Results  
 
We analyzed the flicker distorted videos with regard to the 
visibility of flicker for each video frame and the motion of 
the identified moving object. 

Fig. 4 summarizes the human results on flicker 
visibility for the test videos in Task 1 along with the 
computed object speed. Each column represents different 
content from “Bb,” (Baseball batter) to “Tr,” (Tractor). In 
each plot in Fig. 4(a), solid red, green, and blue lines 
indicate the flicker visibility distribution for different QP 
alternation pairs (QP44, QP26), (QP38, QP26), and (QP32, 
QP26), respectively, at 5Hz flicker frequency. The left y-
axis is the flicker visibility score and the x-axis is the frame 
number. The dotted cyan line shows the average speed of 
the moving object, which was computed on successive 
frames using [31]. The magnitude of flow on the area of the 
pre-defined moving object was then averaged. The 
magnitude is displayed on the right y-axis (unit: 
pixel/frame). The area of the moving object associated with 
each video frame was extracted (segmented) manually, then 
used to calculate object motion as well as to monitor 
subjects’ gaze whether they followed the pre-defined object 
or not.  

Each video content contains an object having a different 
motion speed. For example, in the “Bb” video, the motion of 
the object (the batter) increased from frame 150 to frame 
208. “BMX” contains an object (a BMX rider) whose speed 
changes rapidly and continuously. “Mr,” (Metro rail) and 
“Tr” present gradual increases of object motion, each having 
a different maximum speed, while “Rc,” (Red car) contains 
both slow and abrupt object motion with a scene change. 
“La,” (Lacrosse) includes both static and rapid motions.  

Due to the shift of flicker visibility scores arising from 
manual response latency, the final 35 frames of visibility 
scores for each video were not displayed. Each subject spent 
about 1.67 ~ 3 seconds to decide the first flicker visibility 
score by moving a mouse after a given video started, which 

explains why the flicker visibility scores begin at 0 in Fig. 4. 
We displayed the object speed superimposed on flicker 
visibility scores for easy comparison. Further, when moving 
objects disappeared from a scene, the speed was not shown. 

The results show that the visibility of flicker distortions 
was reduced when the motion was large or increased rapidly 
for all test video sequences. It happened even when video 
quality was maintained at a given QP level or when the 
apparent quality worsened due to blur as the speed of 
motion increased. The reduction of flicker visibility in 
naturalistic videos was dependent on both overall video 
quality (range of QP values) and on the speed of motion. 
When video quality was high, flicker visibility was low and 
less sensitive to motion, whereas when video quality was 
poor, the impact was large. In addition, an abrupt increase of 
object speed (e.g., “Rc”) led to a significant reduction of 
flicker visibility. On the other hand, slow and gradual 
movement (e.g., “Tr”) influenced flicker visibility very 
little. Furthermore, although the subjects were able to hold 
their gaze on the moving objects, less flicker was seen on 
fast-moving objects.  

The distribution of flicker visibility at different flicker 
frequencies for a fixed QP alternation pair (QP38, QP44) is 
shown in Fig. 4(b) against object speed. The solid red, 
green, and blue lines show 7.5, 5, and 3Hz flicker 
frequency, respectively. The dotted cyan line indicates the 
same object speed as is shown in Fig. 4(a). Similar to the 
result of quality level changes, the visibility of flicker 
distortion decreased when objects motion was large, or 
increased abruptly, while it gradually reduced when motion 
was small or increased steadily. Subjects perceived more 
flicker at high flicker frequencies, but the impact of flicker 
frequency was not as large as was the effect increased object 
motions. 

We plotted object speed against flicker visibility for 
each test sequence. Since subjects required at least 1.67 
seconds (50 frames, which include a judgment time and a 
lag response) to rate the first flicker visibility after a test
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                                                 (a)                                              (b) 
 
Fig. 5. Correlation coefficients between flicker visibility scores and object speeds (pixel/frame): (a) QP alternations and (b) flicker 
frequencies. Time runs from cool (beginning) to hot (end). The correlation coefficient is displayed above each plot. 

 

  

 

 
Bb BMX La Bb BMX La

 

 

 

 

 

 
Mr Rc Tr Mr Rc Tr

 (a) (b)  

 
Fig. 6. The average of accumulated gazes from all subjects: (a) Task 1, ‘‘follow the moving object and (b) Task 2, ‘‘free viewing.’’ 
 

video began, and the last 35 frames were shifted to match 
visibility scores, we excluded those duration for the 
analysis. When moving objects disappeared, no data for 
object speed existed, so we omitted that time. Frame 
intervals [51~208], [51~265], [51~265], [51~265], [51~209 
240~265], and [51~265] were used, respectively, from “Bb” 
to “Tr.” 

Fig. 5 represents the result of the correlation analysis 
for a wide variety of QP level changes and flicker 
frequencies. Each column indicates different content. In 
each plot, the y-axis is the flicker visibility score, and the x-
axis is the object speed. Frame numbers are rendered using a 
standard color map. For example, for “BMX,” frame 
number 51 is blue, and frame number 265 is red. Pearson’s 
linear correlation coefficient between flicker visibility and 
motion is displayed above each plot. Correlation coefficient 
magnitudes for “Bb” are greater than 0.83, which imply that 
motion has a definite impact on the visibility of flicker 
distortions. Despite distinct negative correlation in each 
sweep of the rider for “BMX” (e.g., QP alternation (QP38, 
QP26)), the single correlation coefficient does not capture 
the interaction between time (motion trajectory) and flicker 
visibility. When we segmented each sweep with a peak-to-
peak speed of motion, frame intervals were [51~76], 
[77~150], [151~209], and [210~265], and correlation 
coefficients were -0.9727, -0.6588, -0.9062, and -0.9305, 
respectively. Since the object speed changed fast repeatedly 

over a short time, subjects could not rate scores using a 
mouse as fast as they perceived flicker. Results of “La” and 
“Mr” clearly indicate that flicker visibility decreased as 
object speeds increased albeit the single correlation 
coefficient does not represent silencing. For video “Rc” 
containing the QP alternation (QP32, QP26), the correlation 
coefficient was -0.53, and for several other cases, the 
correlation coefficient was more than 0.8 in magnitude. This 
suggests that the reduction of flicker visibility from motion 
is less when the overall video quality is higher range of QP. 
One interesting observation is the positive correlation 
coefficient on the “Tr” at the QP alternation (QP44, QP26). 
We speculate that when the object speed of motion is slow 
and changes gradually in a poor quality video, the motion 
impact is weaker. Camera motion and zoom may modify the 
projected object speed unpredictably. Regarding the results 
of flicker frequencies, the impact of motion on flicker 
visibility was strong.    

All subjects followed the designated moving objects 
during Task 1. Fig. 6 illustrates the average of accumulated 
gazes from all subjects for each video. The gaze traces 
shown in Fig. 6(a) indicate that subjects correctly followed 
the moving object as instructed. The gaze traces in Task 2 
shown in Fig. 6(b) are wider than that from Task 1. In Task 
2, subjects usually started to watch videos at the center and 
followed the main moving object most of the time. When 
objects started to move, or when a new object appeared, or 
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when a large distortion occurred, the gazes were drawn to 
these events. On high quality video sequences, subjects 
tended to look primarily at the moving objects, and the 
motion impact was similar to the result of Task 1.   

In Task 2, “free viewing,” we first found the gaze 
positions on each frame, then computed the magnitude of 
the optical flow corresponding to the gaze, and then 
associated the speed of motion with the flicker visibility. 
Because gaze movements occurred much more quickly than 
the rating of flicker visibility using a mouse, it was difficult 
to analyze the impact of motion using the same method as in 
Task 1. However, we still noticed that the overall flicker 
visibility was more greatly reduced when subjects followed 
fast moving objects than slow motion.  

 
4. CONCLUSION  

 
We analyzed the impact of object motion on the visibility of 
flicker distortions in naturalistic videos. The results revealed 
that the visibility of flicker in natural videos strongly relies 
on the speed of motion. We found that less flicker was seen 
on fast-moving objects even if subjects held their gaze on 
the moving objects. Based on these observations and other 
recent evidence, we suggest that large coherent motions 
silence the awareness of flicker on naturalistic videos.  
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