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Abstract—We propose a highly unsupervised, training free, no
reference image quality assessment (IQA) model that is based on
the hypothesis that distorted images have certain latent charac-
teristics that differ from those of “natural” or “pristine” images.
These latent characteristics are uncovered by applying a “topic
model” to visual words extracted from an assortment of pristine
and distorted images. For the latent characteristics to be discrim-
inatory between pristine and distorted images, the choice of the
visual words is important. We extract quality-aware visual words
that are based on natural scene statistic features [1]. We show that
the similarity between the probability of occurrence of the different
topics in an unseen image and the distribution of latent topics av-
eraged over a large number of pristine natural images yields a
quality measure. This measure correlates well with human differ-
ence mean opinion scores on the LIVE IQA database [2].

Index Terms—Distortions, image quality, local artifact, pLSA,
topic model.

I. INTRODUCTION

T HE past decade has witnessed great advances in multi-
media technology with development of a great variety

of new handheld devices and smart phones. This has resulted
in considerable research to provide best quality-of-experience
(QoE) to the end-users.While conventional QoE algorithms pri-
marily focused on optimizing throughput, buffer-lengths, and
capacity of delivery networks, perceptual optimization of mul-
timedia services has also fast gained importance, especially in
an era of growing video traffic coupled with bandwidth paucity.
These perceptual approaches use objective measures of visual
quality to deliver the optimum QoE to the end-user.
Full reference (FR) image quality algorithms require both

the distorted image and the pristine image, based on which the
quality of the distorted image is assessed 1. No-reference algo-
rithms do not rely on the availability of pristine images. Cur-
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1By “pristine,” we mean an image that has not been subjected to any distor-
tions beyond those that normally occur during a quality photo shoot under good
conditions. However, no image is truly without distortions, which casts some
doubts on the basic assumptions of full reference algorithms [3].

rent state of art no-reference image quality assessment algo-
rithms can predict image quality without knowing the type of
distortion the images are afflicted with [1], [4]–[8]. However,
these algorithms do require auxiliary information in the form
of human opinion scores that are used for learning regression-
based models to predict the quality of distorted images. Simu-
lating different kinds of source and channel distortions, and then
obtaining human opinion scores is an expensive and time con-
suming procedure. Further, thesemethods are limited in applica-
tion by the distortions they are trained on. Towards this goal, we
propose a highly unsupervised image quality assessment model
that requires no training on human opinion scores. All that is
needed is a binary label for each image in our “training set” in-
dicating whether that image is pristine or not. Our approach is
based on the hypothesis that distorted images have “loadings”
or probabilities over latent “distortion aware” topics which we
refer to as “latent quality factors”(LQFs), that differ from the
“loadings” for “natural” or “pristine” images. Latent topics
are discovered by modeling images as distributions over rep-
resentative visual words extracted from an assortment of pris-
tine and distorted images. For the LQFs to be discriminatory
between pristine and distorted images, the choice of the vi-
sual words is important. We form the visual word vocabulary
by clustering “quality-aware” features that best describe local
image distortions [1]. To discover the LQFs, we employ prob-
abilistic latent semantic analysis (pLSA), which was first used
to discover meaningful topics that were latent in a large corpora
of text documents [9]. Sivic et al. [10] subsequently used this
model to discover latent object categories from real world im-
ages by modeling the images as distributions over visual words
in a vocabulary formed by clustering local appearance features
such as SIFT features [11]. Using the discovered latent charac-
teristics from pristine and distorted images, we propose a new
model of image quality which is based on computing how dif-
ferent the loadings found in an unseen image are when com-
pared to the loadings found in a separate set of pristine images.
We show that this quality measure correlates reasonably well
with difference mean opinion scores (DMOS) on the LIVE IQA
database [2].

II. PROPOSED APPROACH

A. Probabilistic Latent Semantic Analysis

We first briefly review the pLSA model of Hofmann [9],
which was first employed to discover latent topics embedded
within a collection of text documents in a corpus. In our sce-
nario, the corpus is an assortment of pristine and distorted im-
ages. Let be the total number of pristine and distorted images
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contained in the corpus. Every image in the corpus can be de-
scribed as an empirical distribution over “visual words” from a
“visual word vocabulary”. Let be the total number of distinct
visual words contained in the vocabulary. Let us suppose that
the th image in the corpus, , is comprised of words with
the th word denoted by . We further assume that there are
latent topics that pervade the collection of images in the corpus,
with the th topic denoted by the indicator variable . Every
image can be represented as a distribution over topics, with a
latent topic associated with every word in the image .
The conditional probability of observing a word given

an image is obtained by marginalizing over the latent topics
i.e., . Thus, the th

topic is represented by the W-dimensional vector , and
the loadings of image across the topics by K-dimensional
vector . The topics that pervade the collection of im-
ages, and their loadings given an image, can be inferred by
finding the model that best explains the probability distribution
of the visual words in the images. This is the maximum likeli-
hood estimate of the model parameters, which can be computed
using the expectation-maximization (EM) algorithm described
in [9]. Note that the pLSA framework uses the “bag of words”
approach as the spatial arrangement of word occurrences is not
taken into account.

B. Quality-Aware Features

While we do not use perceptually relevant human scores to
train our model, we do rely on natural scene statistic (NSS) fea-
tures to capture perceptually relevant scene properties. Specif-
ically, we use the NSS features introduced in the Blind/Refer-
enceless Image Spatial QUality Evaluator (BRISQUE) [1] to
compute features over every image patch. The principle behind
BRISQUE feature design is that natural images obey specific
regular statistical properties, which are disrupted by the pres-
ence of distortions [12]. Quantifying such deviations from reg-
ularity of natural scene statistics is quite useful for assessing the
perceptual quality of images [1], [4], [5], [7], [8], [13]. As shown
in [1], [4], [5], [7], [8], [13], such characterization is sufficient
not only to quantify naturalness, but also to identify the distor-
tions the images are afflicted with. The BRISQUE NSS features
naturally blend into the topic modeling framework where the
inferred topics emerge out as LQFs that are characteristic of
“pristineness” and of the artifacts induced by different distor-
tions.
The BRISQUE features represent statistics of normalized lu-

minance coefficients of images [1]. The BRISQUE features also
utilize a model for pair-wise products of neighboring (normal-
ized) luminance values. The BRISQUE feature vector computed
over each patch is a 36-dimensional vector.

C. Construction of Visual Vocabulary

The approach we take to build the visual word vocabulary is
similar to that described by Sivic et al. [10], the key and cru-
cial difference being the choice of features used to construct the
visual vocabulary—quality based [1] vs local appearance based
[11]. The visual words are formed by clustering features com-
puted from multiple patches across all the images in the col-
lection. Each image is divided into overlapping patches of size

Fig. 1. Examples of image patches assigned to three LQFs discovered by the
pLSA model.

Fig. 2. Examples of image patches assigned to six LQFs discovered by the
pLSA model.

64 64, with an overlap of 8 8 between neighboring patches,
and local BRISQUE features are computed over each patch. We
did not observe a significant difference in performance when
the patch size was changed to 32 32, with an overlap of 8 8
between neighboring patches. Feature vectors from all patches
across all images are clustered into visual words using
the -means clustering algorithm with the squared euclidean
distance metric. Again, we observed that 400 visual words were
sufficient and no improvement in performance was obtained
when the visual word count was increased to 1000. This is fol-
lowed by vector quantization, where every patch is assigned to
the nearest cluster center. This yields an empirical distribution
over the visual words. Note that the use of visual words has
been recently explored for assessing image quality by Ye and
Doerman [14]. However, in their approach, visual words were
formed using Gabor based local appearance descriptors as op-
posed to using “quality-aware” visual words. Also, Ye and Do-
erman used a supervised approach that involved training with
DMOS scores, while our approach is based on pLSA, which is
a completely unsupervised topic model.
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TABLE I
MEDIAN SROCC WITH ASSOCIATED STANDARD DEVIATION SCORES ACROSS 1000 TRAIN-TEST EXPERIMENTS ON THE LIVE IQA DATABASE

D. Image Quality Inference

The topic specific word distribution learned from
an existing collection of images comprising of both pristine
and distorted images via the model-fitting procedure (EM) is
used to infer the latent quality factors in a new image not con-
tained in the collection. When a new image is observed,
the can be computed using the “fold-in” heuristic
described in [9]. Essentially, for the new image , the empir-
ical visual word distribution, i.e., is first computed.
Then, the are sought such that the Kullback–Leibler
divergence between the empirical visual word distribution

and is
minimized. are again estimated by running EM, but
this time only the loadings are updated, while estimated
during the model fitting procedure is held fixed.
The vector of estimated loadings of the new image

(i.e., the estimated ) is now compared to the vector
of the estimated loadings of each pristine image in the existing
collection. The loadings of the pristine images in the existing
collection are obtained during the model fitting procedure
that was carried out to learn the topic-specific word distribu-
tion . The comparison is done by computing the dot
product between the two vectors. The average dot product
computed across all pristine images in the existing collection
is indicative of the image quality. Mathematically, this can be
represented as ,
where is the inferred quality of the new image,
is the transpose operator, and is the th pristine image
in the existing collection, which comprises of pristine
images. Due to the linearity of the dot product, we can write
this as . This
expression intuitively suggests that our quality measure can
be seen as an estimate of a measure of disruption relative to
an “anchor” point learned from pristine images, where the
“anchor” refers to the average loadings of the pristine images
given by .

III. EXPERIMENTS AND RESULTS

We have conducted our analysis of LQFs and image quality
inference on the LIVE IQA database [2], which contains 29
reference images and five distortion types—JPEG, JPEG 2000
(JP2K), Blur, White Noise and Fast Fading (FF). We performed
a 1000-fold validation experiment on the LIVE IQA database
[2], where in, in each run of the experiment, we randomly se-
lect six reference images and their associated distorted versions
for performance evaluation, and 23 (different) reference images
and their associated distorted versions for learning the LQFs.
This ensures that the two sets are completely disjoint and they

neither share content, nor do they share specific distortion sever-
ities. The EMmodel-fitting procedure in pLSA is sensitive to the
choice of the initial parameters, which are selected at random.
To ensure convergence to the best model during the learning
process, we ran EM 20 times, with each EM run initialized
with different parameters chosen randomly. We then picked the
model that yielded the highest log likelihood score. For the anal-
ysis of the LQFs and image quality inference, we experimented
with two, three, four, and six topics.

A. Analysis of Latent Quality Factors

We first analyzed the loadings that were learned from the pris-
tine and distorted image set. Fig. 1 illustrates examples of image
patches assigned to each discovered LQF when the number of
latent factors was fixed at 3. Each cluster of image patches in
Figs. 1 and 2 contains examples of image patches corresponding
to the most probable words in a topic. As can be seen from the
figure, the image patches that are most representative of each
LQF are different. For example, the set of patches prominent in
topic 1 appear to be afflicted with distortions that decrease the
energy of the pristine signal (at the same scale or in the same
band) due to a low-pass operation such as blur or JP2K, while
the set of patches in topic 2 seemingly belong to a set of dis-
tortions that increase the energy of the pristine signal, such as
white noise or JPEG blocking. Likewise, pristine image patches
are most prominent in topic 3. When the number of LQFs is in-
creased to 6, image patches that correspond to white noise and
JPEG blocking artifacts are assigned to different LQFs as illus-
trated by Fig. 2. Also, pristine patches begin to separate into
different topics. In contrast, patches with white noise and JPEG
blocking artifacts tend to combine with pristine patches when
number of topics is reduced to 2.

B. Image Quality Inference

Tables I and II list the median values along with the stan-
dard deviation of the Spearman rank ordered correlation coeffi-
cient (SROCC) and linear correlation coefficient (LCC), respec-
tively, for our new, completely unsupervised quality assessment
measure based on LQFs over 1000 trials for three, four, and six
topics. For comparison, we also show the median SROCC and
LCC values over 1000 trials for the peak signal to noise ratio
(PSNR) metric (a full reference IQAmetric), and the supervised
BRISQUE metric (a blind IQA metric). The results in Tables I
and II clearly show that the proposed quality measure correlates
reasonably well with human perception. Although this early
model does not yet compete with full reference IQA models
and IQA models that are trained on DMOS scores, these results
are very promising considering that there is no need to train on
DMOS scores thereby avoiding considerable expense.
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TABLE II
MEDIAN LCC WITH ASSOCIATED STANDARD DEVIATION SCORES ACROSS 1000 TRAIN-TEST EXPERIMENTS ON THE LIVE IQA DATABASE

TABLE III
MEDIAN SROCC AND LCC ACROSS 1000 TRAIN-TEST EXPERIMENTS USING
OUR PROPOSED APPROACH FOR THREE TOPICS ON LIVE IQA DATABASE

WITH NO JP2K DURING MODEL LEARNING

TABLE IV
MEDIAN SROCC AND LCC ACROSS 1000 TRAIN-TEST EXPERIMENTS

USING OUR PROPOSED APPROACH FOR THREE TOPICS ON
LIVE IQA DATABASE WITH SIFT FEATURES

Table III lists the median SROCC and LCC values when the
JP2K distortion category is left out while learning the LQFs.
These results are encouraging in that the proposed approach per-
forms well on JP2K images contained in the test set even though
they had not been seen previously. This can be attributed to the
fact that certain latent characteristics of JP2K, such as local blur-
ring, are uncovered due to patches from Gaussian blur images
that were used to form the visual words.

C. Importance of Quality-Aware Features

We also experimented by replacing our quality-aware, NSS
based BRISQUE features [1] with SIFT features [11] in the
pLSA framework. The SIFT features were computed at key
points, which were densely sampled at increments of patch size.
This resulted in feature computation within overlapping patches
of the same size as used in the computation of the BRISQUE
features. The SIFT features were clustered to yield a visual word
vocabulary comprising of 400 words and the number of topics
was set to 3. Table IV lists the median SROCC and LCC values
when the SIFT features were used instead of the BRISQUE
features. It is evident from Table IV that SIFT features do not
capture image quality well owing to a lack of distinction pro-
vided by SIFT features across pristine and distorted images. The
numbers in Table IV highlight the importance of using well de-
signed, NSS based quality-aware features such as the BRISQUE
features [1] for blind image quality assessment.

IV. CONCLUSION AND FUTURE WORK

We presented a completely novel way of determining percep-
tual image quality based on applying a topic model on image
patches represented in a suitable quality-aware space, and then
examining the topic distributions for each image. This method
obviates the manually intensive process of obtaining DMOS

scores. The resulting image quality model can be visualized as a
measure of disruption relative to an ’anchor’ point learned from
pristine images. We have shown that our quality model corre-
lates reasonably well with DMOS scores on the LIVE IQA data-
base [2].
Our future work will be focused on gaining a better under-

standing of the interplay between the number of topics and
inferred image quality. We have already experimented with
a more sophisticated topic model such as Latent Dirichlet
Allocation (LDA) [15] but the small size of the dataset led to
overfitting of hyperparameters yielding poorer performance
than pLSA. Future work would involve learning the framework
using LDA on a larger size simulated dataset, which will be
easy to prepare given that our algorithm does not require human
opinion scores.
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