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ABSTRACT
We develop a robust framework for natural scene statistic
(NSS) model based blind image quality assessment (IQA).
The robustified IQA model utilizes a robust statistics ap-
proach based on L-moments. Such robust statistics based
approaches are effective when natural or distorted images
deviate from assumed statistical models, and achieves better
prediction performance on distorted images relative to hu-
man subjective judgments. We also show how robustifying
the model makes IQA approach resilient against deviation in
model assumptions, small variations in the distortions and
amount of data the model is trained on.

Index Terms— Image quality assessment, BRISQUE,
spatial domain, robust statistics, L-moments

1. INTRODUCTION

Various quantitative measures of image quality have been pro-
posed under which different amounts of a priori information
is assumed to be available [1]. Generally, no reference or
blind IQA models seek to predict the quality of distorted im-
ages using learned natural and distorted scene knowledge but
without access to reference images [2–7].

We only consider NSS based no reference (NR) IQA mod-
els here. NR IQA algorithms are becoming well explored
[2–7]. These algorithms learn to predict image quality from
knowledge of anticipated distortions. Therefore, it is of inter-
est to study whether these algorithms are robust to deviation
in assumed statistical models and variations in the distortions
they are trained on, such as modified codecs for compression,
non Gaussian blur, or divergence from assumed noise charac-
teristics.

To study this issue, we subject a top performing NR IQA
index [2] to a variety of distortion perturbations. We also
introduce a new robust NR IQA algorithm that uses robust
statistical methods to estimate QA model parameters. We find
that the robustified approach, which uses sample L-moments
to estimate model parameters, is indeed robust to model and
distortion perturbations and hence is better able to respond to
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varations in NSS and to be more sensitive to distorted scene
statistics (DSS), resulting in ‘statistically’ better correlation
with human judgments of visual quality. Robustification pro-
cess makes the approach generic enough to handle a wide
variety of unanticipated distortions which might occur in real
world scenarios. Devices such as wireless routers, smart
phones and hand held devices could be programmed using
such approaches to supply visual quality feedback to enable
perceptual optimization in communication and surveillance
networks.

We also conduct experiments to simulate the scenarios
where only a small number of distorted images with asso-
ciated DMOS scores are available for training the model and
show that robust approaches fare better than model based ap-
proaches. Given that the procedure of obtaining human opin-
ion scores is very inconvenient, time and effort expensive, ro-
bust approaches provide a clear advantage.

Robust statistical approaches have been applied to stan-
dard problems in image processing like local image smooth-
ing [8], image reconstruction [9], blur classification [10], ro-
bust image denoising [11] but we are the first ones to explore
their potential for image quality asssessment applications.

2. PROPOSED APPROACH

We use the recently introduced NSS based Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) proposed in [2]
as a test IQA model to study its robustness against image
model assumptions and small variations in distortions. We
use the BRISQUE model because of its excellent predic-
tive performance, its computational simplicity, and the easy
way in which robust methods can be introduced. We modify
BRISQUE using L-moment based parameter estimators to
robustify the IQA model.

2.1. BRISQUE Features

The basic assumption underlying the BRISQUE approach
is that statistical regularities of natural images are disturbed
when distortions are introduced [2]. By assaying distortions
based on how the NSS are changed, this model can be used
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Fig. 1. shows the SVM based learning framework for quality
inference using model based/robust BRISQUE features.

to create algorithms that predict subjective image quality
accurately. Similar ideas have developed in [3, 4, 12–14].

BRISQUE uses classical spatial NSS model [15] that pre-
processes the image by local mean removal followed by divi-
sive normalization:

Î(i, j) =
I(i, j)− µ(i, j)

λ(i, j) + 1
(1)

where i ∈ {1, 2 . . .M}, j ∈ {1, 2 . . . N} are spatial indices,
M and N are the image dimensions, and

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lI(i+ k, j + l) (2)

λ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l[I(i+ k, j + l)− µ(i, j)]2 (3)

estimate the local mean and contrast, respectively, where
w = {wk,l|k = −K, . . . ,K, l = −L, . . . L} is a 2D
circularly-symmetric Gaussian weighting function sampled
out to 3 standard deviations (K = L = 3) and rescaled to unit
volume. A GGD (Generalized Gaussian Model) distribution
[16] is utilized as a model of the empirical distribution of the
MSCN coefficients of natural images and how they change
with distortion. The generalized Gaussian distribution (GGD)
with zero mean is given by:

f(x;α, σ2) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

)α)
(4)

where

β = σ

√
Γ(1/α)

Γ(3/α)
(5)

and Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt a > 0. (6)

The parameters of the GGD (α, σ2), can be reliably esti-
mated using the moment-matching based approach proposed
in [16]. The signs of the transformed image coefficients (1)
have been observed to follow a fairly regular structure. How-
ever, distortions disturb this correlation structure [2]. This
deviation can be captured by analyzing the sample distribu-
tion of the products of pairs of adjacent coefficients com-
puted along horizontal, vertical and diagonal orientations [2]:
Î(i, j)Î(i, j + 1), Î(i, j)Î(i+ 1, j), Î(i, j)Î(i+ 1, j + 1) and
Î(i, j)Î(i+1, j−1). The products of neighboring coefficients
are well-modeled as following a zero mode asymmetric gen-
eralized Gaussian distribution (AGGD) [17]:

f(x; γ, σ2
l , σ

2
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.

where
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) (9)

The parameters of the AGGD (γ, σ2
l , σ

2
r ) can be effi-

ciently estimated using the moment-matching based approach
in [17]. Mean of the distribution is also used as a feature:

η = (βr − βl)
Γ( 2

γ )

Γ( 1
γ )
. (10)

16 parameters are arrived by computing estimates (γ, σ2
l , σ

2
r ,

η) along the four orientations, yielding 18 overall features.
All features are computed at two scales to capture multiscale
behavior, by low pass filtering and downsampling by a factor
of 2, yielding a set of 36 features.

2.2. A Robust NR IQA index

L-moments [18–20] are useful for robustly estimating the pa-
rameters of distributions. These estimators are relatively un-
affected by small departures from model assumptions. We
have found that they can be used to make BRISQUE less
sensitive to empirical variations in NSS statistics and conse-
quently, more responsive to variations in DSS. Such varia-
tions can occur when encountering a slightly different codec,



non Gaussian blur, or unanticipated noise characteristics, or
even different distortions.

The L-moments of a sample Xi, i= 1, . . . N utilize prob-
ability weighted moments [21] of the order statistics [22, 23]
X(i), i= 1, . . . N of the sample:

b0 =

∑N
i=1X(i)

N
(11)

br =

∑N
i=r+1

(i−1)(i−2)...(i−r)
(n−1)(n−2)...(n−r)X(i)

N
(12)

The L-moments are then expressed as linear combinations
of the probability weighted moments:

l1 = b0 (13)

l2 = 2b1 − b0 (14)

l3 = 6b2 − 6b1 + b0 (15)

l4 = 20b3 − 30b2 + 12b1 − b0 (16)

We robustify the BRISQUE features using L-moment
based statistics. L-moments are closely related to L-estimators
extensively used in robust image filtering theory [22, 23]. The
second and fourth L-moments are computed from the point-
wise statistics of MSCN coefficients corresponding to (σ2, α).
Similarly, for each pairwise product of adjacent MSCN co-
efficients along four orientations, the first L-moment, second
L-moment using only negative products of pairwise MSCN
coeffients, second L-moment using only positive products
of pairwise MSCN coefficients and fourth L-moment corre-
sponding to (η, σ2

l , σ
2
r , γ) are estimated. Positive and negative

L-moments are handled separately since the AGGD model is
generally asymmetric. This procedure is performed over 2
scales, as is done in BRISQUE.

2.3. Image Quality Inference

A support vector machine regressor (SVR) [24] was used to
learn a mapping from feature space to quality scores where
two different regressors were trained using model based and
robust features respectively. SVRs previously have been used
with success for image quality assessment [2, 3]. We used
the LIBSVM package [25] to implement the SVR; the radial
basis function (RBF) kernel was used for regression. Fig. 1
shows the SVM based learning framework for quality infer-
ence using model based/robust BRISQUE features.

3. EXPERIMENTS

3.1. Robustness to Model Assumption

We used the LIVE IQA database [26] to study whether NSS
model based BRISQUE features can be robustified. The
database consists of 29 reference images together with 779
distorted images spanning five different kinds of distortions

- JPEG and JPEG2000 (JP2K) compression, additive white
Gaussian noise (WN), Gaussian blur (blur) and a Rayleigh
fast fading channel distortion (FF). Each image has an asso-
ciated difference mean opinion score (DMOS) indicative of
human judgments of visual quality.

As mentioned earlier, the BRISQUE approach and the
robust modification to image quality assessment are learn-
ing based. Hence the database needs to be split into train-
ing and test sets so that a mapping from features to quality
scores can be learned. To achieve this, the LIVE database
was divided into 2 randomly chosen subsets with 80% train-
ing and 20% test sets ensuring that no overlap existed be-
tween train and test content. To make the reported results
independent of the selection of training content, this proce-
dure of train-test split was repeated 1000 times and we report
the median of the performance scores. The performance mea-
sures used are Spearman’s rank ordered correlation coefficient
(SROCC) and Pearson linear correlation coefficient (LCC).
The results are tabulated in Tables 1 and 2. Clearly, robusti-
fication leads to better correlation with human judgments for
all distortions other than Gaussian blur. Robust statistics ap-
pear to work well when the distortion statistics deviate from
model assumptions.

3.2. Statistical Significance and Hypothesis Testing

Although there exist differences in the median correlations
between model based and robust BRISQUE algorithms (see
Table 1), these differences may not be statistically relevant.
To evaluate the same, we performed hypothesis testing based
on the t-test [27] on the SROCC values obtained from the
1000 train-test trials. The null hypothesis is that ‘the mean
correlation for the (row) algorithm is equal to mean correla-
tion for the (column) algorithm with a confidence of 95%’.
The alternate hypothesis is that the mean correlation of row is
greater than or lesser than the mean correlation of the column.
A value of ‘1’ in the table indicates that the row algorithm is
statically superior to the column algorithm, whereas a ‘-1’ in-
dicates that the row is statistically worse than the column. A
value of ‘0’ indicates that the row and column are statisti-
cally indistinguishable (or equivalent), i.e., we could not re-
ject the null hypothesis at the 95% confidence level. We found
that robust BRISQUE is statistically superior to model based
BRISQUE which suggests that robust BRISQUE is more re-
silient to deviation in model assumptions.

3.3. Robustness to amount of training data

This section addresses the question: How much resilience can
robust approaches provide when only a small amount of data
is available for training the framework. To conduct this exper-
iment, only 10% of the LIVE database was used for training
and 90% for testing, again ensuring that there is no overlap
between train and test content. Similar to previous exper-
iments, this procedure of train-test split was repeated 1000



Approach JPEG 2000 JPEG White Noise Gaussian Blur Fast fading Overall
Model Based 0.9098 0.9594 0.9786 0.9517 0.8832 0.9390

Robust 0.9297 0.9629 0.9818 0.9221 0.8885 0.9448

Table 1. SROCC of model based and robust approaches with average human opinion scores on LIVE IQA database.

Approach JPEG 2000 JPEG White Noise Gaussian Blur Fast fading Overall
Model based 0.9297 0.9734 0.9881 0.9577 0.9200 0.9438

Robust 0.9469 0.9777 0.9903 0.9386 0.9295 0.9500

Table 2. LCC of model based and robust approaches with average human opinion scores on LIVE IQA database.

Distortion type Model based Robust
Additive Gaussian noise 0.8142 0.8275

Additive noise in color components 0.7477 0.7693
High frequency noise 0.6749 0.7268

Impulse noise 0.6016 0.6498
Quantization noise 0.7147 0.7274

Gaussian blur 0.8760 0.8484
Image denoising 0.6431 0.6935

JPEG compression 0.9030 0.9284
JPEG2000 compression 0.9042 0.9030

Overall 0.7225 0.7087

Table 4. SROCC of model based and robust approaches
with average human opinion scores on TID database using
the model obtained by training using images from LIVE
database.

times and the median of the SROCC performance scores was
computed as shown in Table 3. Clearly, robust approaches
fare better in this scenario. This is a very useful result in the
spirit of time and money expenses required to obtain human
opinion scores.

3.4. Robustness to Distortion Variations

In this set of experiments, we show that robustification can
lead to better correlation with human judgements when the
IQA algorithm is tested on different but related distortions
than what it was trained on. We trained our model based
and robust approaches using the entire LIVE IQA database
[26] and then tested them on the distorted images in the TID
database [28]. The TID database consists of 25 reference im-
ages and 1700 distorted images over 17 distortion categories.
We only tested on distortions related to those in the LIVE
database - additive Gaussian noise, additive noise in color
components, high frequency noise, impulse noise, quantiza-
tion noise, Gaussian blur, image denoising, JPEG compres-
sion and JPEG2000 compression. Also, since our models are
based on NSS, we tested our approach only on the natural im-
ages in TID. The results of applying BRISQUE on TID are
tabulated using SROCC and LCC in Tables 4 and 5. The re-
sults indicate that robustification improves correlations with
human judgments for all distortions other than Gaussian blur.
A likely explanation for the slightly reduced performance on
Gaussian blur is that the DSS closely follow the model as-
sumptions, whereas the robust model tends to work well when

Distortion type Model Based Robust
Additive Gaussian noise 0.8042 0.8283

Additive noise in color components 0.7755 0.7847
High frequency noise 0.7066 0.7200

Impulse noise 0.6004 0.6521
Quantization noise 0.7144 0.7523

Gaussian blur 0.8765 0.8589
Image denoising 0.7366 0.7480

JPEG compression 0.9382 0.9622
JPEG2000 compression 0.9070 0.9077

Overall 0.7178 0.7460

Table 5. LCC of model based and robust approaches with av-
erage human opinion scores on TID database using the model
obtained by training using images from LIVE database.

the DSS deviate from them. Also, the performance improve-
ment is greater for distortions which are not present in the
LIVE database.

4. CONCLUSION AND FUTURE WORK

We proposed a method of robustification of model based ap-
proaches to image quality assessment using L-moments. Bet-
ter correlation with human judgments of image quality are
achieved when distortions deviate from natural scene statis-
tics models. However, model based approaches should be
used when it is known what distribution is induced by dis-
tortion. We also showed that robust methods perform better
when only small amount of training data is available for learn-
ing the framework. Also, robust methods can make an IQA
model robust to variations in the distortions.

Future work will involve a deeper robust analysis, us-
ing classical measures, such as efficiency, of robust methods
against model based approaches.
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