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ABSTRACT

In this paper, we propose a methodology for optimal image
transmission over a VSNs (Visual Sensor Networks) via cross-
layer optimization. Toward this goal, we control the compres-
sion ratio of a captured image and network parameters such
as source rate, flow rate and routing path. In particular, since
this scheme is based on distributed optimization, we can avoid
energy concentration in a specific node such as CH (Cluster
Head) which increases the network lifetime. In the simula-
tion, we demonstrate the network adaptation procedure over
a randomly deployed VSNs and evaluate the quality of the
transmitted image using the SSIM (Structural Similarity) in-
dex.

1. INTRODUCTION

Recently, the availability of inexpensive CMOS cameras has
led to the development of VSNs for industrial applications
such as environmental monitoring and ad-hoc surveillance [1]
[2]. In order to maximize the image quality with a limited
budget of bit-rate over VSNs, it is necessary to develop net-
work control and image compression techniques that operate
as functions of the residual energy in the manner of distributed
computation.

For energy efficient transmission in VSN, most of pa-
pers [8] [9] [10] [11] [12] concentrated on temporal and spa-
tial correlation by means of the background subtraction and
non-overlapping transmission among FoVs (Field of Views).
On the other hand, a few of them [8] [12] considered only
transmit energy for the optimization of the peer-to-peer net-
work without use of processing and receive energies.

In this paper, we propose a methodology for optimal trans-
mission of captured images over the network from the per-
spective of network optimization by controlling the major sys-
tem parameters including the compression ratio (quantization
ratio), the source rate, the flow rate and the routing path.
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2. PROBLEM DESCRIPTION

For simplicity, only intra-frame (I-frame) coding of H.264/AVC
is assumed. We use the CMU cam as the camera sensor node
and the CC2420 as the radio module in [2]. In addition, the
parameters related to power consumption and latency are ar-
ranged in Table 1. To describe each network node, let V be
the set of nodes (or vertices) and E be the set of directed links
(or edges) in a directed graph that describes the network de-
ployment.

For each time slot, we determine an optimal active du-
ration through scheduling for the synchronous MAC proto-
col. During the active time period, each camera sensor node
captures the scene, compresses the image, receives the traffic
from neighboring nodes and transmits the aggregated images
through the routing path.

The main objective is to maximize the image quality trans-
mitted over VSNs by controlling the quantization rate through
the network optimization based on the residual energy. When
the average SSIM index [3] [4] is employed as the image qual-
ity metric, the objective function is represented as

(ϑτ
i )

∗ = argmax
∑
i∈V

SSIM(Dτ
s,i, ϑ

τ
i ) (1)

where Dτ
s,i is the image captured at node i at time τ and ϑτ

i is
the compression ratio. The optimal solution could be obtained
by taking the differential of the objective function. However,
it is difficult to get a closed-form equation [4].

Here, we utilize the log utility function known for propor-
tional fairness [5] by∑

i∈V

log( gτi ) where gτi = ϑiDs,i, (2)

where gτi is the maximum available source rate of node i at
time τ which controls the compression ratio (ϑi) of the image
Ds,i. Using (2), it is possible to maintain the fairness of the
image quality over the network while satisfying the following
conditions.

Flow Conservation with Image Compression : The outgo-
ing rate is the result of the image compression.∑
j∈I(i)

fτ
(j,i) + gτi =

∑
j∈O(i)

fτ
(i,j) , i, j ∈ V, (i, j) ∈ E
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where O(i) and I(i) are sets of neighboring nodes of node i
for outgoing fτ

(i,j) and incoming fτ
(j,i) traffics. Thus, each

link between node i and one of the nodes in O(i) or I(i)
should be covered under coverage Rtx with a maximum trans-
mit power.

Rate Bound : the incoming and outgoing rates of node i
are bounded by the achievable energy Er,i. If we consider
the transmit, receive and capturing energies, we can set the
boundary for the incoming and outgoing rates of node i,

Pcap · tcap +
Prx

R

∑
j∈I(i)

fτ
(j,i) +

Ptx

R

∑
j∈O(i)

fτ
(i,j) ≤

Er,i

T
− c

−→
∑

j∈O(i)

fτ
(i,j) + γ

∑
j∈I(i)

fτ
(j,i) ≤ ρτi (3)

where T is the expected life time represented by the number
of time slots, c = Psptsp + Pwaketwake, γ =

(
Prx

Ptx

)
and

ρτi =
R(

Er,i
T −c−Pcap·tcap)

Ptx
.

In addition, the power and latency used in Eq.(3) are ar-
ranged in Table 1.

Table 1. Parameter Definition
Parameter Meaning value

Ptx transmit power 35 mW
Prx receive power 38 mW
Pcap capturing power 1165 mW
tcap capturing latency 132 mS
Psp sleep power 30 µ W
tsp sleep latency ≈ 1 time slot

Pwake wake-up power 33 mW
twake wake-up latency 0.2 mS
R data rate 240 Kbps

3. OPTIMIZATION SOLUTION

The problem of maximizing the utility of each camera sensor
node can be formulated

max
F,G

∑
i∈V

log( gτi ) (4)

subject to
∑

j∈I(i)

fτ
(j,i) + gτi =

∑
j∈O(i)

fτ
(i,j) ,∑

j∈O(i)

fτ
(i,j) + γ

∑
j∈I(i)

fτ
(j,i) ≤ ρτi ,

gτi , f
τ
(i,j), f

τ
(j,i) ≥ 0, i, j ∈ V,

fτ
(i,j) ∈ F, gτi ∈ G.

where F and G are vector expressions of the link flow and
source rates at time τ . The dual problem expressed in (4) is,
unfortunately, not strictly concave relative to F . To overcome

this difficulty, an approximation in [7] is used, whereby a reg-
ularization term is added: ϵ

∑
(i,j)∈V (f

τ
(i,j))

2.
Defining Lagrange multiplier vectors λ, µ = [λi] and [µi],

the Lagrangian function in (4) can be written

L(F,G, λ, µ) =
∑
i∈V

log( gτi )− ϵ
∑

(i,j)∈E

(fτ
(i,j))

2

−
∑
i∈V

λi

 ∑
j∈I(i)

fτ
(j,i) −

∑
j∈O(i)

fτ
(i,j) + gτi


−

∑
i∈V

µi

 ∑
j∈O(i)

fτ
(i,j) + γ

∑
j∈I(i)

fτ
(j,i) − ρτi

 .

.
Then the dual problem becomes

min D(λ, µ)

subject to µ ≽ 0

where ≽ denotes the component-wise inequality and the ob-
jective function can be expressed

D(λ, µ) = max
F,G

L(F,G, λ, µ).

Using the subgradient method, we construct the following
four steps towards finding the solution of the Lagrange dual
problem:

• Step 1: Initialization - Start with any point λi(1), µi(1)
as real-positive values, where λi(1) and µi(1) are the
initial values of λi(k) and µi(k) in the iteration. Choose
an infinite sequence of positive step-size values {αk}∞k=1

and {βk}∞k=1 for λi and µi. Set k = 1.

• Step 2: Supergradient - Find optimal solutions (F , G)
such that

F,G = argmax
F,G

{∑
i∈V

log( gτi )− ϵ
∑

(i,j)∈E

(fτ
(i,j))

2

−
∑
i∈V

λi(1)νi(F,G)−
∑
i∈V

µi(1)ωi(F )

}
,

where νi(F,G) =
∑

j∈I(i)

fτ
(j,i) −

∑
j∈O(i)

fτ
(i,j) + gτi ,

ωi(F ) =
∑

j∈O(i)

fτ
(i,j) + γ

∑
j∈I(i)

fτ
(j,i) − ρτi .

Since G and F are also optimal solutions of transport
and network layers, update them via

gτ∗i (k) =

[
1

λi(k)

]+
,

fτ∗
(i,j)(k) =

[
λj(k)− λi(k) + µi(k) + γ · µj(k)

−2ϵ

]+
.

Set νi := νi(F,G) and ωi := ωi(F ).
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• Step 3: Step-size - Compute the step-sizes αk and βk

from the step-size series.

• Step 4: Update the iteration - Set

λi(k + 1)←
[
λi(k) + αk

νi
∥νi∥

]
,

µi(k + 1)←
[
µi(k) + βk

ωi

∥ωi∥

]+
, k ← k + 1.

If ∥νi∥ ≤ δth and ∥ωi∥ ≤ δth, where δth is a small
stopping threshold, stop the searching procedure and
obtain the optimal solutions F and G. Otherwise, go to
Step 2.

In addition, we omit the proof that νi(F,G) and ωi(F ) are
the supergradients for the dual Lagrangian problem in Step 2,
because it is a well known result.

4. SIMULATION RESULTS

For the simulation, we utilize 16 camera sensor nodes de-
ployed over a parking area of 20m × 20m for surveillance as
shown in Fig. 1(a). In addition, each link between two nodes
is configured by using the maximum power as the transmit
power of each node in Fig. 1(a). When the time duration of
each slot is set to 60 sec and the available energy at time τ

is
Eτ

r,i

T = 300 mJ, ρτi is equal to 7.68 · R. The image size
captured at each node is 255× 176 and about 100 K bits.

Fig. 1(b) shows the routing path and the flow rates opti-
mized by the proposed solution. The generated traffic at each
node flows to the sink node via the CH of node 4 so that the
flow rate between the CH and the sink node becomes a bot-
tleneck of determining the rate of each node. The flow rate of
each node is determined after sharing the bottle-neck rate of
ρτi = 7.68 ·R between node 4 and the sink. Usually, the flow
rate is usually much lower than the bottle-neck rate. In par-
ticular, since node 4 is the most important node as the CH for
the transmission of all traffic in the VSNs, the overall perfor-
mance relies on the transmit flow of node 4. From Fig. 2(b),
the source rate of node 4 is largest compared to other nodes
based on the principle of the proportional fairness.

Figs. 2(a) and 2(b) show the convergence of the flow and
source rates using the subgradient algorithm and less than
100 iterations. Actually, an approximate solution can be ob-
tained in 50 iterations. By distributing the energy consump-
tion into the overall nodes, an efficient energy distribution can
be achieved.

Finally, when each node transmits their captured image
based on the source rate written in Fig. 2(b), the received
images at the sink are represented by SSIM scores in Fig. 3.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

 1 
 2 

 3 

 4 

 5  6 

 7 

 8 

 9 

10 11

12

13 14 15
16

(a) Deployment of camera sensor nodes
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(b) Optimal routing and flow rates

Fig. 1. Deployment of a VSNs on a parking lot and the opti-
mal routing paths

5. CONCLUSION

We proposed a methodology for optimal image transmission
over VSNs via cross-layer optimization. In particular, the op-
timal compression ratio should be determined using the opti-
mal source rate and the flow rate over the available energy. To
determine the network parameters, we employ a distributed
optimization scheme to distribute the network energy to each
node efficiently, which makes a contribution to the improve-
ment of the network lifetime. For the simulation, the SSIM in-
dex and intra-frame H.264/AVC coding are utilized. In addi-
tion, the CMU cam nodes equipped with CC2420 radio mod-
ule were employed. From the simulation results, it can be
seen that the CH node which delivers the network traffic to
the sink node becomes the bottleneck of the overall system
performance. In addition, the CH has the largest source rate
according to the principle of proportional fairness.
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