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Abstract— Accurate segmentation of magnetic resonance
(MR) images of the brain to differentiate features such as
soft tissue, tumor, edema and necrosis is critical for both
diagnosis and treatment purposes. Region-based formulations
of geometric active contour models are popular choices for
segmentation of MR and other medical images. Most of the tra-
ditional region-based formulations model local region intensity
by assuming a piecewise constant approximation. However, the
piecewise constant approximation rarely holds true for medical
images such as MR images due to the presence of noise and
bias field, which invariably results in a poor segmentation of
the image. To overcome this problem, we have developed a
probabilistic region-based active contour model for automatic
segmentation of MR images of the brain. In our approach, a
mixture of Gaussian distributions is used to accurately model
the arbitrarily shaped local region intensity distribution. Prior
spatial information derived from probabilistic atlases is also
integrated into the level set evolution framework for guiding the
segmentation process. Our experiments with a series of publicly
available brain MR images show that the proposed active
contour model gives stable and accurate segmentation results
when compared to the traditional region based formulations.

I. INTRODUCTION

Magnetic Resonance (MR) Imaging is routinely used to
image the anatomical structures within the brain and has the
ability to produce high contrast volumetric images. Accurate
segmentation of MR images to differentiate features such as
soft tissue, tumor, edema and necrosis is critical for both
diagnosis and treatment purposes. However, segmentation of
brain MR images is a challenging task given the variable
and complex nature of tumor presentation, the abundant
noise, and intensity inhomogeneities due to bias field. Nu-
merous image processing techniques have been proposed
for medical image segmentation with varying stability and
accuracy. Active contours, also known as ”snakes” are widely
employed for medical image segmentation and tracking.
Active contours are energy minimizing curves that iteratively
evolve until they overlay on an object boundary in the image.
The energy functional is usually composed of two terms:
an internal energy term, which defines local constraints on
smoothness and tautness of the curve, and an external energy
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term, which drives the evolution of the curve towards features
such as edges to delineate objects of interest.

Active contour models can be categorized into two main
types: parametric (explicit) and geometric (implicit). Para-
metric models are the classical snake models [1] defined
as C(s) = (x(s), y(s)) ∈ Ω, s ∈ [0, 1], where Ω is the
image domain and s is the parameterization defining the
coordinates of the curve. These classical snakes evolve using
a Lagrangian formulation until an object boundary is delin-
eated. However, these models have a major drawback that
they are highly dependent on the chosen parameterization
of the initial curve, which makes it crucial to obtain prior
knowledge and define a reasonable initial curve for the
model to give meaningful results. Geometric active contours
on the other hand, are based on level set theory of curve
initialization and evolution.

The underlying concept of geometric active contours is to
implicitly evolve a higher dimensional level set embedding
function Φ : Ω → R whose zero level set C : Φ = 0
represents dynamic shapes and surfaces [2]. The evolving
curve C partitions the image into two regions: Cin, which
is enclosed by Φ > 0 and Cout , which is the region
outside, i.e., where Φ < 0. The curve C evolves following
∂tC = F.N where F is derived from an energy functional
and signifies the speed of evolution, and N denotes the
exterior unit normal vector to the evolving curve C. To deal
with cusps, corners and automatic topological changes, curve
evolution can be handled using the level set method proposed
by Oshar and Sethian [3]. The associated evolution of the
level set function can then be represented by ∂tΦ = F. |∇Φ|.
Classical geometrical active contour models use the image
gradient to drive the evolution of the curve [1]. Unfortunately,
these models are highly sensitive to noise, which makes them
unsuitable for medical images as these images are usually
noisy and contain obscure, ill-defined boundaries.

To overcome these limitations, region based segmentation
models based on local region statistics have been proposed.
Most of these formulations are variants of the piecewise
constant Mumford-Shah functional [4]. One of the most
widely used region based models is that of Chan and Vese
[5], commonly known as active contours without edges.
Several variations of this model have been proposed with
impressive results. However, most of these models assume
piecewise-constant approximation (or in general, a Gaussian
distribution) for modeling local region image intensity. Such
an assumption of homogeneous intensity regions with dis-
tinct means is rarely accurate in brain MR images. Fur-



ther, these models use only intensity information for image
segmentation. For structures like the brain, the approximate
location of anatomical structures is very well defined a
priori and can be utilized to improve the segmentation
process. In this paper, we propose a new region-based active
contour model that uses a mixture of Gaussians to model the
intensity distribution in the image and integrates spatial prior
information obtained from probabilistic atlas maps into the
level set evolution framework.

II. DESCRIPTION OF THE MODEL

A. Mixture Model

Mixture models [6] are widely used due to their ability
to form smooth approximations and to model arbitrarily
shaped class densities. In the proposed approach, we model
the intensity distribution in the image partitions using a
Gaussian mixture model to form a close approximation
to the actual intensity distribution in the image [7]. A
Gaussian mixture model can be represented as a weighted
sum of M component Gaussian densities, P (X | λ) =∑M
i=1 wig(X | µi,Σi) where X = {x1, x2, ...xn} is a set

of N observations from a D dimensional space, wi, i =
1, ...,M , represent mixture weights or prior probabilities of
each component satisfying

∑M
i=1 wi = 1; g(xj | µj ,Σj) are

D-variate Gaussian components and denote the probability
of observation xj coming from the ith component. Each
Gaussian component can be represented as: g(xj | µi,Σi) =

1
(2π)D/2|Σi|1/2

exp{− 1
2 (xj−µi)′Σ−1

i (xj−µi)} where µi,Σi
are the mean and covariance matrices of the individual
components. Hence, the parameters of the mixture model
are given by λ = {wi, µi,Σi}, i = 1, ..,M . The model
parameters can be estimated by maximizing the overall
likelihood of the observations X coming from the model
λ. Maximum likelihood expression is a non-linear function
of the parameters λ and, therefore, a closed form solution
for direct maximization is not possible. However, Maximum
Likelihood (ML) parameter estimates can be found iteratively
using the popular Expectation Maximization (EM) algorithm
[8].

B. Active Contour

Let C denote the evolving curve on the image domain
Ω; Cin denote the image region bounded by C, and Cout
the image region outside C. In the proposed active contour
model, we minimize the following energy functional

F (C) = µ.Length(C) + v.Area(Cin) + Fext (1)

where, µ, v ≥ 0 are fixed parameters. The first two terms
are regularization terms that enforce local constraints on the
curve, while Fext denotes the external force on the curve
C. We define Fext via a Bayesian approach of minimizing
the expected loss incurred due to pixel misclassification. We
define a loss matrix L, where each element Lij corresponds
to the loss incurred if a pixel belonging to the ith class is
misclassified as that belonging to the jth class. In this paper,
we consider a two-class classification problem and the loss

matrix is defined as L =

[
L11 L12

L21 L22

]
. The expected loss is

defined as,

Fext = E[L] =
∑
k

∑
j

∫∫
(x,y)∈Cj

Lij × P ((x, y), Ck)dxdy

where Rj denotes an image region j. Therefore, for a two-
class classification problem (Cin = C1, Cout = C2),

Fext =∫∫
Cin

L21P ((x, y), Cout)dxdy +
∫∫
Cout

L12P ((x, y), Cin)dxdy

And, P ((xj , yj), Ck) = P ((xj , yj) | Ck)P (Ck), where
P (Ck) denotes the prior probability of class Ck obtained
from the probabilistic atlas maps, P ((xj , yj) | Ck) is the
probability that pixel (xj , yj) should belong to the class
Ck and is represented using the mixture model components
as P ((xj , yj) | Ck) =

∑M
i=1 wig((xj , yj) | µi,Σi), where

g((xj , yj) | µi,Σi) is a D-variate Gaussian distribution with
µi,Σi as the mean and the covariance matrix. The energy
functional (1) can be represented as

F (C, λ1, λ2) = µ.Length(C) + v.Area(Cin) +∫∫
(x,y)∈Cout

L12

M1∑
i=1

wig((x, y) | µi,Σi)P (Cin)dxdy +

∫∫
(x,y)∈Cin

L21

M2∑
j=1

wjg((x, y) | µj ,Σj)P (Cout)dxdy (2)

C. Level Set Formulation
In the level set formulation [3], a curve C defined on

the image domain Ω can be represented by the zero level
set Φ(x, y) = 0 of a higher dimensional function called a
Lipschitz function Φ : Ω→ R such that

Φ(x, y) =


= 0 at C
> 0 inside C, (x, y) ∈ Ω

< 0 outside C
(3)

Defining the level set function Φ(x, y) enables representation
of an unknown curve C, regions Cin and Cout in terms of the
evolving function Φ(x, y) [9]. Using the Heaviside function
H and Dirac delta function δ, defined as:

H(z) =

{
1 if z > 0
0 if z < 0

, δ(z) =
d

dz
H(z) (4)

the energy functional F (C, λ1, λ2) can now be represented
as a function of Φ, λ1, λ2 [10]:

F (Φ, λ1, λ2) = µ

∫
Ω

δ(Φ)|∇Φ|dxdy + v

∫
Ω

H(Φ)dxdy+

∫∫
Ω

L12

M1∑
i=1

wig((x, y)|µi,Σi)P (Cin)(1−H(Φ))dxdy+

∫∫
Ω

L21

M2∑
j=1

wjg((x, y)|µj ,Σj)P (Cout)(H(Φ))dxdy (5)



We use slightly regularized versions of Heaviside and
Dirac functions denoted as Hε and δε described in [9] for
computing the associated Euler-Lagrange equation. Let us
denote by Fε the associated regularized energy functional,
defined by

Fε(Φ, λ1, λ2) = µ

∫
Ω

δε(Φ)|∇Φ|dxdy + v

∫
Ω

Hε(Φ)dxdy+

∫∫
Ω

L12

M1∑
i=1

wig((x, y)|µi,Σi)P (Cin)(1−Hε(Φ))dxdy+

∫∫
Ω

L21

M2∑
j=1

wjg((x, y)|µj ,Σj)P (Cout)(Hε(Φ))dxdy (6)

Minimizing the regularized energy functional (6) with
respect to Φ gives the associated Euler-Lagrange equation.
Parametrization by an artificial time t ≥ 0 gives the following
update equation of Φ(x, y, t) in the descent direction:

∂Φ(x, y, t)

∂t
= δε(Φ)

[
µ · div

( ∇Φ

|∇Φ|

)
− v

+L12

M1∑
i=1

wig((x, y)|µiΣi)× P (Cin)

−L21

M2∑
j=1

wjg((x, y)|µj ,Σj)× P (Cout)
]

(7)

The initial contour is defined by Φ(x, y, 0) = Φ0(x, y).

D. Numerical Implementation

We used regularization of H(Φ) using C2(Ω̄) functions
for computing the associated Euler-Lagrange equation, as
proposed in [9],

Hε(z) =


1 if z > ε

0 if z < −ε
1
2

[
1 + z

ε + 1
π sin(πzε )

]
if |z| ≤ ε

To obtain a discrete form of the update equation (7) of
Φ(x, y, t), we use a finite difference implicit scheme for
discretization of the divergence operator as proposed in [11]
and then use an iterative process [12]. The principal steps of
the algorithm are:
• Initialize Φ0(x, y) at iteration n = 0.
• Compute mixture model parameters λ1, λ2 using the

EM algorithm.
• Solve (7) in Φn(x, y) to obtain Φn+1(x, y).
• Check for convergence, otherwise repeat for iteration =

n+1.
The loss matrix L was defined as a 2x2 matrix in which the

off-diagonal elements were assigned the same loss value of
1. However, for multi-class segmentation problems, L can be
defined such that the individual loss values are different and
this could depend upon the context in which the segmentation
is being performed.

Fig. 1. Histogram of the original white matter intensity distribution (blue
curve) and the modeled intensity distribution using mixture models with
M = 3 components (red curve)

III. EXPERIMENTAL VALIDATION

We tested the proposed model on a series of publicly avail-
able MR images. We used the International Consortium for
Brain Mapping (ICBM) atlases obtained from the Laboratory
of Neuro Imaging, University of California at Los Angeles
(LONI) as prior spatial probability atlas maps for this study
(http://www.loni.ucla.edu/Atlases). The probabilistic atlases
were registered to MR images using an elastic image regis-
tration algorithm as proposed in [13].

Fig. 1 illustrates the ability of the mixture models to
accurately model the local region intensity distribution. The
blue curve shows the original intensity distribution inside the
white matter region of the MR image (the original image is
illustrated in the first row of Fig 2) and the red curve shows
the modeled intensity distribution using M = 3 mixture
components. From Fig. 1, it is evident that the local region
intensity distribution may not be a Gaussian distribution,
and hence cannot be accurately modeled using a piecewise
constant approximation, resulting in pixel missclassification.

Fig. 2 illustrates the segmentation results of the gray
matter (2nd column) and white matter regions (3rd column)
obtained from our proposed model on three publicly available
MR images. We also show the comparison of our model with
the Chan and Vese piecewise constant model (4th column)
[5] in segmenting the white matter region. Qualitatively
speaking, from Fig. 2, it is evident that the proposed model
produces better segmentation results than the Chan and Vese
model [5].

IV. CONCLUSION

In this paper, we have proposed a model driven, prob-
abilistic active contour method for automatic segmentation
of brain MR images. The salient features of the proposed
model are the use of mixture models to accurately model
the local region intensity distributions in different parts of
the image, and the use of prior spatial information derived



Fig. 2. Segmentation results of the proposed active contour model on a set of MR images showing original image (1st column), segmented gray matter(2nd

column), and segmented white matter(3rd column). The 4th column shows the segmentation result obtained from the Chan-Vese model by assuming a
piece-wise constant approximation.

from probabilistic atlases to guide the segmentation process.
As compared with the piecewise constant region-based active
contour models, the proposed method results in stable and
more accurate segmentation results. The use of prior spatial
information from probabilistic atlases enables our model to
accurately segment low contrast brain structures from the
surrounding tissue. As a part of the future work, we plan
to use quantitative measures (such as the Jaccard similarity
coefficient) to evaluate the effectiveness of the proposed
model in accurately segmenting brain MR images on a larger
data set.
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