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ABSTRACT

We propose a no-reference algorithm to assess the com-
fort associated with viewing stereo images and videos. The
proposed measure of 3D quality of experience is shown to
correlate well with human perception of quality on a publicly
available dataset of 3D images/videos and human subjective
scores. The proposed measure extracts statistical features
from disparity and disparity gradient maps as well as indica-
tors of spatial activity from images. For videos, the measure
utilizes these spatial features along with motion compensated
disparity differences to predict quality of experience. To the
best of our knowledge the proposed approach is the first at-
tempt in algorithmically assessing the subjective quality of
experience on a publicly available dataset.

1. INTRODUCTION

We live in an age where emerging technologies gain industry
and consumer acceptance at an increasingly rapid pace. This
is especially true with incubating technologies such as three-
dimensional (3D) display devices. With Hollywood’s increas-
ing adoption of 3D technologies, 3D entertainment at home
looks promising. Further, with BSkyB’s Premiere League
Soccer broadcast, the first live 3D broadcast of NFL [1], col-
lege football games shown in theaters, the 2010 Sony open
golf tournament [2] and so on, 3D content is expected to make
the transition from movie theaters into living rooms by next
year. For example, ESPN 3D will launch its first television
network in 2011 with a World Cup soccer match and expects
to show at least 85 live sporting events during the first year
[3]. As many experts have noted, 3D is finally here to stay
[4, 5, 6].

Although there seems to be a buzz around 3D technolo-
gies, critics of the technology claim that 3D quality of expe-
rience (QoE) is unacceptable, especially during long viewing
sessions. Even with advanced capture and display technolo-
gies, many viewers of 3D films have labeled them as ‘un-
watchable’ and the discomfort associated with 3D technolo-
gies have been isolated as one of the major causes for its un-
popularity in the past [7]. Given that 3D QoE is one of the
most important factors in judging the palatability of visual

stimuli, it is imperative that researchers in the field of quality
assessment (QA) design automatic algorithms that are capa-
ble of predicting QoE of 3D stimuli. Once such automatic
quality prediction is achieved, one could imagine designing
algorithms that predict the optimal capture parameters given
a scene content so as to maximize QoE. In particular, we are
interested in predicting the optimal camera geometry in order
to maximize viewing comfort, given a particular scene. A di-
rect application of such a measure of palatability is in creation
of stereoscopic content.

Although 3D QA has generated some interest in recent
times [8, 9, 10, 11, 10, 12, 13, 14, 15], 3D QoE assessment al-
gorithm design remains relatively unexplored. Traditionally,
QA algorithms are classified as full-reference (FR), reduced-
reference (RR) and no-reference (NR) based on the amount
of information that is available to the algorithm. Since there
does not exist a pristine ‘reference’ 3D stimulus which can be
used as a baseline for comparison, 3D QoE algorithms are
NR in nature. Thus, the algorithm has access to only the
left and right views of a scene (and possibly the associated
depth/disparity map) and needs to produce an estimate of hu-
man QoE. Our focus here is the development of such an NR
3D QoE algorithm for images and videos. Before we proceed,
it is important to note that although one may continue to use
the term ‘quality’ in the 3D realm, the term is not exactly
applicable here as we do not have access to the 3 D visuo-
sensory experience (called the cyclopean image [16]) that the
human re-creates. Our algorithm has access only to the left
and right views (and possibly the depth/disparity), thus mak-
ing the problem of 3D QoE all the more challenging.

The rest of the paper is organized as follows: Section 2
explains details about the database we use and Section 3 de-
scribes the algorithm. In Section 4 we evaluate the proposed
approach on the described publicly available database [17, 18]
and demonstrate that simple statistical measures are sufficient
to predict perceived quality of experience with high corre-
lation with human perception and we conclude the paper in
Section 5.



Fig. 1. Example images from the EPFL 3D image quality of
experience dataset.

Fig. 2. Example frames from videos in the EPFL 3D video
quality of experience dataset.

2. DATABASES USED IN THIS STUDY

The datasets that we used for evaluating stereoscopic quality
of experience are those that have recently been made public
by researchers at EPFL [17, 18]. There are two databases –
one for images [17] and one for videos [18].

The EPFL 3D image database consists of stereoscopic im-
ages with a resolution of 1920× 1080 pixels. Each scene was
imaged with varying camera distances in the range 10 − 60
cm. Note that this distance is not distance to the scene, but
distance by which the camera was moved closer to the scene
starting at an arbitrary reference point. The database contains
10 scenes as seen in Fig. 1. For each scene, there are 6 differ-
ent camera distances to the scene being imaged. The actual
database consists of 9 different scenes (since one scene was
used for training human subjects) imaged at 6 depths leading
to a total of 54 scenes with each being associated with a left
and right view.

The EPFL 3D video database consists of videos imaged at
a resolution of 1920× 1080 pixels and a frame-rate of 25 fps
of length 10 seconds each. Each of these scenes were again
imaged at varying camera depths as described for the image
database. The video database contains 6 scenes as seen in
Fig. 2 imaged at 5 different camera depths. Again, the 3D
video streams contain a left view and a right view.

In order to gauge human perception of quality of expe-
rience as a function of camera depth, 17 non-expert subjects
participated and rated the stereoscopic images displayed on a
46” polarized stereoscopic display (Hyundai S465D) monitor
at a viewing distance of 2 m on a scale of 1 − 5 (bad, poor,
fair, good and excellent) as per ITU recommendations [19]. A
subjective study for 3D videos was also undertaken and con-
sisted of 20 subjects who rated the quality of videos on the
same 5-point scale.

Subjective opinion scores obtained from the above studies
were averaged across subjects (after subject rejection) to pro-
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Fig. 3. (a) Left view of a video frame, (b) associated disparity
map, (c) spatial activity and (d) Magnitude of motion

duce mean opinion scores (MOS) which are representative of
the perceived quality of 3D experience. Thus a total of 54 im-
ages and 30 videos with associated MOS scores are available
as part of the two datasets.

Our approach to no-reference (NR) QoE assessment in-
volves extracting relevant features from these visual stimuli
and regressing these features onto the MOS. In order to cali-
brate the regression process, we divide these datasets into var-
ious train-test combinations, train our regression module and
then test how well the learned features perform in assessing
the QoE.

3. ALGORITHMIC ASSESSMENT OF 3D QOE

3.1. Feature Extraction

Human stereo perception has been hypothesized to com-
pute depth information from stereo pairs that humans receive
through the two eyes [20] in order to form a cyclopean im-
age. Hence, we first extract depth information by computing
disparity between the left and right images [21]. Disparity is
computed using the algorithm described in [22]. Fig. 3 (a)
shows an example image and its associated disparity map is
seen in Fig. 3 (b).

Thus, we now have the left and right views as well as the
associated disparity maps for the stimuli in the dataset. Our
hypothesis is that natural 3D images have certain statistical
properties that are interpreted as ‘natural’ by the human ob-
server. Deviations from this ‘natural-ness’ may lead to dis-
comfort in the perception of visual stimuli thereby reducing
the quality of experience. We will attempt to capture this devi-
ation from natural-ness using simple statistical measures such
as the mean, variance, skew as well as indicators of shape of



the disparity distribution. Changes in camera distance will
change the statistical distributions of disparity and our hy-
pothesis is that these changes in disparity are related to the
perceived quality of experience. Apart from statistics com-
puted from the disparity maps, we also compute spatial statis-
tics from the left-right views in order to ensure that masking
effects due to content [23] which generally influence percep-
tion are being accounted for as well.

For each 3D image (left-right pair, Il, Ir + disparity map
D) we compute the following statistical features from the dis-
parity maps:

1. mean disparity µ = E[D],

2. median disparity med = median(D),

3. disparity standard deviation σ =
√
E[(D − µ)2]

4. kurtosis of disparity κ = E[(D−µ)4]/(E[(D−µ)2])2,

5. skewness of disparity skew = E[(D − µ)3]/(E[(D −
µ)2])(3/2),

6. mean differential disparity µd = E[δD],

7. differential disparity standard deviation
σd =

√
E[(δD − µd)2]

8. kurtosis of differential disparity
κd = E[(δD − µd)

4]/(E[(δD − µd)
2])2,

9. skewness of differential disparity
skewd = E[(δD − µd)

3]/(E[(δD − µd)
2])(3/2),

where the differential disparity (δD) was computed using a
Laplacian operator on the disparity map. Differential dispar-
ity statistics are computed in order to capture changes in depth
information [24].

To capture the nature of spatial content of the scene,
we compute spatial activity for Il and Ir from the left-right
pairs. The measure of spatial activity is a modified version
of the spatial indicator from [25]. Specifically, we compute
the gradient of the image and estimate the variance of non-
overlapping 8 × 8 blocks across the image. Fig. 3(c) shows
an example spatial activity map for the associated image.

From the map of spatial activity S so obtained, we com-
pute:

1. mean µs = E[S],

2. kurtosis κs = E[(S − µs)
4]/(E[(S − µs)

2])2,

3. skewness skews = E[(S−µs)
3]/(E[(S−µs)

2])(3/2),

Such computation is undertaken for both left and right im-
ages. One could imagine pooling these measures across the
two views, however, 3D perception is characterized by eye-
dominance effects [26] and hence we choose to retain these
individual statistics from the left-right views.

In order to evaluate the QoE of 3D videos, the above men-
tioned features for images are computed on a frame-by-frame
basis and then averaged across frames. Other temporal pool-
ing strategies remain interesting avenues of future research
[27]. Apart from these spatial features, videos are character-
ized by motion information. Motion information is important
for human perception and the human visual system devotes a
significant amount of processing to extract motion estimates
in area V5/MT of the primary visual cortex [28]. Here, we ex-
tract block motion estimates using the adaptive rood pattern
search (ARPS) algorithm [29]. Block motion estimates are
computed using 8× 8 blocks and are a coarse approximation
of the pixel-level optical flow [30]. Once block motion esti-
mates are obtained, the difference between each 8 × 8 block
of disparity in frame i and its motion-compensated block in
frame i− 1 is computed to form motion-compensated differ-
ences. A similar technique was applied to quality assessment
of videos with success recently [31].

Once these motion compensated disparity difference
maps are computed, they are pooled across each frame by
computing the coefficient of variation within the frame. We
note that the coefficient of variation has been used for pool-
ing quality scores within a frame with success [27]. Finally,
in order to pool these frame-level scores across the video,
the median, standard deviation, kurtosis and skewness of
these motion-compensated disparity differences are com-
puted across frames and are stacked together with the com-
puted spatial statistics. Such computation is performed twice
since flows are computed on both the left and right videos
separately.

Thus, for images, our feature space is 15 dimensional (5
disparity + 5 disparity gradient + 6 spatial activity), while for
videos it is 25 dimensional ( 5 disparity + 5 disparity gradient
+ 6 spatial activity + 10 motion compensated disparity differ-
ence).

3.2. Feature Selection

Since the number of features computed are high compared to
the size of the dataset, over-fitting is a possibility [32]. Hence,
we explore two techniques - (1) principal component analysis
(PCA) [33] and (2) forward feature selection (FFS) [34] for
dimensionality reduction. PCA was explored initially since it
provides an automated approach to dimensionality reduction,
however, it is not easy to gauge significance of individual fea-
tures in terms of predictive power using PCA, hence the need
to explore FFS.

In PCA the feature vectors are projected onto their first n
principal components where the number of principal compo-
nents are chosen by cross-validation such that the features ac-
count for at least 95% of the variance; captured by 2 principal
components for images and 1 principal component for videos
respectively (averaged across trials). In FFS, we first choose
that feature that correlates the best with subjective scores on



Method Mean Standard deviation
PCA 0.79 0.08
FFS 0.86 0.11

Table 1. 3D Image QoE: Spearman’s Rank Ordered Corre-
lation Coefficient (SROCC) values across 9C6 train-validate-
test trials.

the training set; then, that feature which correlates the best
with subjective data in conjunction with the first feature is
chosen and so on [34]. This process continues until a stop-
ping criterion is reached. In our implementation this criterion
is decided through cross-validation. Specifically, the final set
of features picked are those that are selected the most across
validation trials. The number of selected features is the me-
dian number of features selected across validation trials.

Thus, for both PCA and FFS, at the end of the training
stage, a set of features that predict the training/validation data
the best are chosen. In the case of PCA, test features are pro-
jected on to the space formed by the principal components
from the training set. For FFS, features selected from the test
set are the same as the ones obtained from FFS on the training
set.

In order to map the features onto subjective scores we
used a simple linear regression model for performance evalu-
ation:

y = ~xT~γ + η (1)

where ~x is the vector of features, ~γ is the weight vector whose
parameters need to be estimated and η is a constant which
needs to be estimated as well.

4. PERFORMANCE EVALUATION

4.1. 3D image quality of experience

Recall that the image dataset consists of 9 scenes imaged at
6 camera distances. We utilize 4(×6) images for training,
2(×6) images for validation and 3(×6) images for testing.
Since we wish to demonstrate that the proposed approach is
robust across contents, we used all possible combinations of
the dataset - 9C6 - to form the above mentioned training and
validation/test sets. Results reported in Table 1 are the mean
and standard deviation of Spearman’s rank ordered correla-
tion coefficient (SROCC) between the features regressed as
described above and the subjective opinion score across these
combinations on the test set for PCA and FFS. SROCC of
1 indicates a perfect correlation. It should be clear that the
proposed approach performs well in terms of correlation with
human perception.

Finally, our motivation for the use of FFS was that one
could intuit on which features are more relevant in predicting
quality of experience. Hence in Fig.4 we plot a histogram of
features selected across the 9C6 train and validate/test trials

Method Mean Standard deviation
PCA 0.76 0.25
FFS 0.68 0.28

Table 2. 3D video QoE: SROCC values across 6C4 train-
validate-test trials.

using FFS. One would conjecture that the mean and median
of disparity maps are of tremendous importance in gauging
quality of experience, however, they alone are not sufficient.

4.2. 3D video quality of experience

From the database of 6 videos imaged at 5 distances, we use
3(×5) videos for training, 1(×5) videos for validation (i.e.,
leave out one validation) and 2(×5) videos for testing. Again,
to ensure that all contents are evaluated, all possible combina-
tions - 6C4 - are used to produce train and validate/test sam-
ples. Mean and standard deviation of SROCC values across
these 6C4 combinations are reported in Table 2 for PCA and
FFS. Again, the statistical features seem to perform well in
terms of correlation with human perception across contents.

Fig.5 shows a histogram of features chosen across these
permutations for FFS. Again, the results are intuitive. Motion-
compensated disparity plays an important part in assessing
the quality of experience of 3D video. This result agrees
with psychovisual evidence of the importance of motion in-
formation [28] as well as evidence from 2D video quality
assessment [31].

It is interesting to note that even though both left and right
flow features are selected, only one of them has a significant
magnitude at a time (as observed by us), since the disparity
map already incorporates masking effects and flow compen-
sation need not be done twice.

5. CONCLUSION AND FUTURE WORK

We proposed a no-reference objective quality of experience
assessment model to evaluate the perceived quality of 3D ex-
perience for images and videos. We evaluated the proposed
approach on publicly available datasets for 3D quality of ex-
perience and demonstrated that the proposed algorithm cor-
relates well with human perception of quality. We observed
that the comfort associated with viewing stereoscopic stim-
uli reduces with increasing distances to the reference point
and that this effect is more pronounced in indoor scenes with
higher disparity gradients.

Future work would involve utilizing the proposed model
to predict the optimal depth distribution for specific scene
contents. One could imagine the proposed model being ap-
plied to gauge appropriate camera distances for capturing 3D
scenes using a parallel baseline setup. Also, exploring other
feature selection mechanisms such as step-wise variable se-
lection would be an interesting proposition.



Fig. 4. 3D Image QoE: Histogram of features chosen across 9C6 train and validate/test (4− 2− 3) trials using FFS. med, kurt,
skew, mu, sig = median, kurtosis, skewness, mean and standard deviation from disparity maps; kurtgr, skewgr, mugr, siggr =
mean, kurtosis, skewness and standard deviation from the differential disparity map. SAL = spatial activity from left image,
SAR = spatial activity from right image, SARmu/SALmu = mean spatial activity, SARskew/SALskew = skewness of spatial
activity, SALkurt/SARkurt = kurtosis of spatial activity.

Fig. 5. 3D video QoE: Histogram of features chosen across 6C4 train and validate/test(3 − 1 − 2) trials using FFS.med, kurt,
skew, mu, sig = median, kurtosis, skewness, mean and standard deviation from disparity maps; kurtgr, skewgr, mugr, siggr =
mean, kurtosis, skewness and standard deviation from the differential disparity map. SAL = spatial activity from left image,
SAR = spatial activity from right image, SARmu/SALmu = mean spatial activity, SARskew/SALskew = skewness of spatial
activity, SALkurt/SARkurt = kurtosis of spatial activity. The prefix ’fl’ refers to motion compensated disparity features and the
suffixes L and R represent the right and left streams.
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