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ABSTRACT

We propose an algorithm to detect salient regions for JPEG dis-

torted images for two tasks: quality assessment and free viewing.

The algorithm extracts low-level features such as contrast, lumi-

nance, quality and so on and uses a machine-learning framework

to predict salient regions in JPEG distorted images. We demonstrate

that the automatically predicted regions-of-interest highly correlate

with those from (human) ground truth saliency maps. Further, we

evaluate the relevance of extracted low-level features for saliency

prediction and analyze how incorporation of quality as a feature im-

proves prediction performance as a function of the distortion sever-

ity. Applications of such a saliency prediction framework include

developing novel pooling strategies for image quality assessment.

Index Terms— Bottom up, Eye movements, Image compres-

sion, Visual attention, Saliency Prediction, Quality Assessment,

Task-dependence

1. INTRODUCTION

Humans are constantly bombarded with a slew of visual informa-

tion which is rapidly processed in order to make inferences about

the environment as well as to perform quotidian tasks such as nav-

igation, interaction with objects and so on. While humans possess

a wide field of view, visual information is made available to the hu-

man visual system (HVS) with varying amounts of acuity – visual

acuity is highest at the fovea, and lowest at the periphery. In order

to reproduce the entire field of view at an uniform resolution, the

HVS utilizes a series of fixations which gather maximum informa-

tion from a scene, linked together by rapid ballistic eye movements

known as saccades, which gather little-to-no information [1]. Seem-

ingly, such a multi-resolution system with a dynamic system of ac-

tively scanning the scene results in efficient representation of visual

information.

Given the active scanning apparatus of the HVS, one would hy-

pothesize that certain regions in a scene have greater relevance for

the human observer and hence act as attractors of visual attention.

Researchers have classified gaze selection mechanisms into those

that are based on low-level features such as local luminance, con-

trast and so on – referred to as bottom-up cues – and those that are

based on higher-level abstractions of the scene such as faces, spatial

relationships of objects etc. – referred to as top-down cues [1]. Re-

searchers have suggested that initial regions of attention are driven

by low-level cues, while semantic information starts to play a greater

role over time [2]. While higher-level abstractions of the scene are

definitely of relevance, the sheer volume of data that needs to be

processed in order to make such a high-level inference suggests that

bottom-up cues may contribute significantly in attracting visual at-

tention, and hence we focus our attention on modeling such bottom-

up cues [1, 3, 4, 5].

One such low-level cue that possibly attracts visual attention is

the quality of the image. Researchers have observed that presence

of distortion in a scene draws visual attention [6, 7, 8, 9, 10, 11].

Miyala et al. conducted a subjective study to track gaze behavior of

human observers while viewing distorted images [7]. Blur, noise and

color shifts were used to degrade the images. They found that these

distortions had no affect on viewing strategies. Ninassi et al. [6]

introduced local distortions like JPEG2000 and JPEG compression

in images and concluded that for these distortions viewing strategies

were indeed affected by the presence of distortion, however, effects

of distortion severity was not taken in to consideration in the study.

Vu et al. performed a more comprehensive task dependent evalua-

tion of how different distortions (blur, noise, JPEG and JPEG2000

compression) and different levels distortion severities modify view-

ing strategies [8]. As Yarbus demonstrated in his pioneering work,

the task performed defines visual attention, and a change in the task

results in a different viewing strategy [1]. Indeed, researchers have

proposed different models to predict regions of visual attention con-

ditioned on the task [12]. In [8], two different tasks were considered

– free viewing and quality assessment. The authors concluded that

viewing strategies remain similar for both tasks in case of global

distortions such as blur and noise; however JPEG and JPEG2000

creates marked differences in viewing patterns across tasks as well

as across distortion severities. Earlier, we [10, 11] analyzed various

low level features at point of gaze for compressed videos at different

distortion severities and for two different tasks – quality assessment

task and summarization. We observed that there exist statistically

significant differences between low-level features at points-of-gaze

across tasks, as well as across distortion severities.

Having empirically observed significant differences in viewing

strategies in the presence of distortion, an obvious route to follow is

to try and model visual attention strategies of human observers, as a

function of the task as well as the distortion severity. Our contribu-

tion is an algorithm which predicts visual attention in static scenes,

subject to JPEG compression, as a function of the task – quality as-

sessment vs. free-viewing. Our approach to such automatic pre-

diction of visual attention in distorted images consists of extracting

low-level attractors of attention from the scene, ‘learning’ the rela-

tive importance of each of these attractors and then using this trained

model to predict attention in unseen images. Our work is similar in

nature to those in [3, 4, 5], which predict saliency and fixations in

natural images, however, our algorithm is geared towards such pre-

diction for distorted images, while those in [3, 4, 5] predict visual

attention in natural, undistorted, pristine images. Such automatic

prediction of visual attention in distorted images has many applica-

tions, including development of novel pooling strategies for image

quality assessment (IQA). In this paper, we motivate and describe

the various low-level features that we extract from the scene and our

training-based model for prediction of visual attention. We then un-

dertake a thorough evaluation of the algorithm and compare our au-

2011 Third International Workshop on Quality of Multimedia Experience

978-1-4577-1334-7/11/$26.00 ©2011 IEEE 195



tomatic prediction results with those from human observers using a

variety of performance measures and demonstrate that our approach

is capable of predicting visual attention with high correlation with

human perception.

2. AUTOMATIC PREDICTION OF VISUAL ATTENTION

In this section, we first describe the database that we are going to

use in order to evaluate our algorithm. We then describe the various

low-level features that we extract from the scene and detail how these

features are combined in order to create an algorithm which predicts

attention in distorted images.

2.1. Database Description

The database that we use in order to test our approach is the Tu

Delft database, proposed by researchers in [13]. In [13], the re-

searchers conducted a human study, where subjects viewed images

compressed by JPEG compression with 4 different compression

(quality) levels, while their eye-movement locations were recorded

using an IView X system eye tracker [14] with sampling rate 50 Hz.

The stimuli were displayed on a 17-inch CRT monitor at a resolution

of 1024 × 768 pixels and viewed at a distance of 60 cm from the

screen. Apart from varying distortion severity, the study also con-

sisted of two different tasks – quality assessment and free-viewing.

In the former, participants were required to examine the images

and rate them based on their quality; participants were allowed to

examine the image until they decided on the quality score. In the

latter, participants were asked to view the images in a casual manner

as if they were viewing a photo album and each image was displayed

for 8 seconds on the screen. The points of gaze from subjects were

then post-processed to produce saliency maps, which are represen-

tative of regions of visual interest. The Tu Delft database consists of

40 reference images, 160 distorted images and associated saliency

maps for each of these distorted images, where the images are of

resolution 600× 600 pixels and is available for download at [15].

Having described the database on which we perform our exper-

iments, we now describe the low-level features that we extract from

these static images and the motivation for their choice.

2.2. Feature Extraction

We first decompose the image using the steerable pyramid transfor-

mation [16], an over complete wavelet basis that has been success-

fully used in the past for a variety of applications, including texture

analysis [17], quality assessment [18] and so on. Such a wavelet de-

composition over multiple scales and orientations seeks is inspired

from the scale-space orientation decomposition that is hypothesized

to occur in area V1 of the primary visual cortex [19]. In our imple-

mentation, we first transform the color image into the perceptually

uniform, color opponent CIE-Lab color space [20] and then decom-

pose each of the L, a and b planes over 3 scales and 4 orientations.

Increasing the number of scales or orientations did not lead to any

tangible performance improvement.

The absolute value of the wavelet coefficient is normalized by

the mean of the absolute value in each sub band. Our first feature

at each pixel location is the local average value of this normalized

magnitude of wavelet coefficient, where the local average is com-

puted by centering a Gaussian filter the size of 1 degree of visual

angle (41 × 41 for our viewing distance) at that pixel. We sample

the Gaussian out to 3 standard deviations. Each wavelet sub band is

interpolated back to the image scale using bi cubic interpolation, and

hence at each pixel location, we have a total of 3 (scales) × 3 (orien-

tations) × 3 (color planes) = 36 features corresponding to band-pass

contrast. Selection of different interpolation schemes did not affect

the performance. Further, at each pixel, we also compute the local

average luminance and chrominance value from the 3 color planes.

Again, the local average luminance/chrominance is computed using

the above described Gaussian filter, leading to 3 additional features

at each pixel corresponding to the luminance in that region. These

bandpass and luminance features (total of 39) are collectively la-

beled as bandpass contrast and luminance (BPCL) features.

Since our goal is to predict visual attention in distorted images,

and our hypothesis is that degradations in visual quality are low-

level attractors of attention, we also include quality at each pixel in

our list of features. In order to automatically estimate quality, we

use the multi-scale structural similarity (MS-SSIM) index [21]. In

our implementation, the five scales of quality produced by the MS-

SSIM index are not combined into one quality score for the image

as in [21], since our goal is to provide a quality estimate at each

pixel location. Instead, we use bicubic interpolation to resample the

lower scales back to the image scale, so that at each pixel location we

have a 5-dimensional quality vector, corresponding to the 5 different

scales. Again, the feature is the average local quality value from

each of these scales, computed using the described Gaussian filter,

leading to a total of 5 quality features (Q) at each pixel.

Apart from low-level BPCL and Q features, we also compute

the distance of each pixel location to the center, in order to account

for the natural human bias towards the center when viewing a scene

[5]. This distance-to-center (D) forms our last feature.

2.3. Training the model

Once these features have been extracted, we use the saliency maps

from the database described above in order to learn a relationship be-

tween the features and the saliency. For this, we divide the database

into two sets, one for training and the other for testing, such that

there is no content overlap between the two sets. 80% of the dis-

torted images are used for training and the remaining 20% are used

for testing. Such a train-test methodology is performed for each of

the two tasks separately, i.e., a model is trained for the free-viewing

task and then tested on the free-viewing test images and similarly for

quality assessment. We also perform across-task evaluations, which

we explain in later sections. Further, such an evaluation is performed

over multiple (50) such randomly chosen train-test combinations, in

order to demonstrate the robustness of the model to various train-test

combinations.

We train a classifier to differentiate between salient and non-

salient regions. Salient regions are easily obtained from the saliency

maps. For this, the top x% salient locations of the human ground

truth saliency map are chosen and n salient locations are drawn uni-

formly at random from this set. In our implementation, x corre-

sponds to 0.5σ, where σ is the standard deviation of the saliency

map. Since each image has a different distribution of salient regions

(eg., a human rowing a boat vs. a crowded street scene), such use of

the standard deviation will capture this diversity.

In order to obtain non-salient locations, we utilize the strategy

proposed in [3], where random locations are not chosen uniformly

at random, but for each image the set of non-salient locations are

computed by applying the saliency map of another randomly chosen

image (different content) from the distorted images in the training

set. This ensures that while the non-salient locations are random, the

underlying search strategy that generated these regions of interest

have close correspondence with human search mechanisms. We also
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Fig. 1. Block diagram of saliency selection model. The solid ar-

rows walk through block diagram of training phase where quality,

band pass luminance & contrast and distance from center features

are computed for every training image and hence used for learning

the feature weights of the linear SVM classifier. The dotted lines

depict testing phase where same features are computed for a test im-

age and saliency is computed by using feature weights from trained

classifier.

ensure that the non-salient locations at least 1 degree of visual angle

away from the salient locations in the image, in order to minimize

overlap between them. For each image, n such non-salient locations

are selected. Through the rest of this paper, n is set to 12, since

varying the number of salient/non-salient regions between 8 − 24
did not affect performance much.

Feature vectors are extracted at each of the salient and non-

salient locations as described above, and these features are used to

train a classifier that once trained is capable of classifying an image

patch into a salient region vs. a non-salient one. Here, we use the

liblinear implementation of a support vector machine (SVM) with

a linear kernel [22]. Linear kernels have been shown to perform as

well as multiple kernel learning or radial bias kernels for fixation se-

lection [5], and training is much faster as well. Instead of using the

trained classifier as a simple binary classifier, in our implementation,

during the testing phase, we use the value of w
T
x + w0, which in-

dicates the degree of saliency at each pixel, where w corresponds to

the weights learned from the training phase for each feature and w0

corresponds to the offset.

The entire model is summarized by a block diagram in Fig. 1.

As an example, figures 2 and 3 show a set of sample JPEG

distorted images from the Tu Delft database, ground truth saliency

maps and predicted saliency maps for each of the two tasks – free

viewing and quality assessment – respectively.

3. PERFORMANCE EVALUATION

Having described the features extracted and the training procedure,

in this section we evaluate our model using two measures of per-

formance: (1) Location percentage thresholding based Receiver

Operating Characteristic (LPT-ROC) and (2) Saliency based thresh-

olding Receiver Operating Characteristic (SBT-ROC).

Fig. 2. Figure showing samples of JPEG distorted images from the

Tu Delft database on the left, ground truth saliency obtained in the

middle and predicted saliency maps on the right from the free view-

ing task.

Fig. 3. Figure showing samples of JPEG distorted images from the

Tu Delft database on the left, ground truth saliency obtained in the

middle and predicted saliency maps on the right from the quality

assessment task.
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Location percentage thresholding based Receiver Operating

Characteristic (LPT-ROC):

For every test image, pixel values of the predicted and ground

truth saliency maps (values between 0 and 1) are sorted in the de-

scending order of saliency, and recall and precision are computed as

described in [5]. Specifically, we compute:

CumF (i) =

i∑

k=1

F (k) i = 1, ....N (1)

CumNF (i) =

i∑

k=1

(1− F (k)) i = 1, ....N (2)

Precision(i) =
CumF (i)
∑

N

k=1
F (k)

(3)

Recall(i) =
CumNF (i)

∑
N

k=1
(1− F (k))

(4)

Since each test trial consists of multiple such test images, we

compute the area under ROC curve (AUC) for each image in the test

set as:

AUC(l) =

∑
N

k=1
Precision(k)

N
l = 1, ....L (5)

The average Area under ROC curve (AAUC) across test images

in a single trial is then computed as:

AAUC(t) =

∑
N

k=1
Precision(k)

N
t = 1, ....T (6)

Finally, the AAUC averaged across trials is computed as:

TAAUC =

∑
T

k=1
AAUC(k)

T
(7)

where N is the total number of pixels in the test image, F rep-

resents the saliency map and L denotes the number of test images in

a single trial and T denotes the number of trials.

The final performance measure is then the ratio of the TAAUC

between the predicted map and ground truth saliency map.

Saliency based thresholding Receiver Operating Character-

istic (SBT-ROC):

Since we only have access to the saliency map, we first binarize

this map into salient and non-salient regions. As before, this is done

by thresholding the saliency map at 0.5σ, where σ is the standard

deviation of the saliency map. Once such a binary ground-truth is

obtained, the SBT-ROC can be computed by the traditional thresh-

olding of the predicted saliency maps as a function of saliency [23].

The ROC curve is sampled uniformly at 20 such saliency thresholds

and for each such threshold, a point on the ROC is obtained. The

performance measure is then the traditional area under the ROC

curve (AUC).

We note that both ROC measures are complementary to each

other. The first measure compares the overall saliency distribution

of the predicted and ground truth maps while the second measure

compares just the top salient locations between the two maps.

Having described our performance measures, we now perform a

series of experiments in order to evaluate the proposed approach for

automatic prediction of visual attention in JPEG distorted images.
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Fig. 4. Figure shows the average LPT-ROC curve for (a) free view-

ing and (b) quality assessment task across 50 trials using different

set of features. BPCL denotes band pass contrast and luminance, Q

denotes quality and D denotes distance from center.

3.1. Effect of Feature Type

In Tab. 1, we tabulate the mean AUCs for the LPT-ROC and SBT-

ROC performance measures and the associated standard deviation

across 50 train-test trials for each of the two tasks – free viewing

(FV) and quality assessment (QA) – that we consider here, as a

function of the type of features used. We evaluate if the addition

of quality (Q) and distance from center (D) features improve per-

formance of the approach over the base bandpass contrast and lumi-

nance (BPCL) features. In the table, a higher AUC indicates better

performance.

As Tab. 1 indicates, addition of quality and distance from center

improves the prediction performance of the algorithm when the LPT-

ROC AUC is used as a performance measure. This improvement is

observed visually as well, in the LPT-ROC plots in Fig. 4. This result

is intuitive, and keeps in line with our hypothesis that poor quality re-

gions will attract visual attention. However, such an improvement is

not seen in the SBT-ROC AUC measure, which seemingly indicates

that while the overall saliency distribution changes (as indicated by

the LPT-ROC AUC), the top salient locations are still governed by

the bandpass contrast and luminance, and not as much by quality.
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Task LPT-ROC SBT-ROC

BPCL BPCL + Q BPCL + Q + D BPCL BPCL + Q BPCL + Q+ D

FV 0.76 (0.068) 0.79 (0.060) 0.83 (0.063) 0.67 (0.088) 0.59 (0.059) 0.60 (0.076)

QA 0.75 (0.063) 0.79 (0.059) 0.84 (0.065) 0.61 (0.077) 0.59 (0.031) 0.60 (0.041)

Table 1. Table reports the LPT-ROC and SBT-ROC AUC values across 50 train-test trials and their standard deviation in parenthesis for free

viewing (FV) and quality assessment (QA) task using different sets of features.

3.2. Distortion Severity and Performance

Our previous observation regarding the drop in performance of the

SBT-ROC AUC leads us to believe that the AUC should be evalu-

ated as a function of quality. One would hypothesize that as dis-

tortion severity increases, quality starts to become important as an

attractor, as compared to the baseline contrast and luminance fea-

tures. To evaluate this, we cluster the images in each task using

k-means, based on their quality scores obtained using the MS-SSIM

index [21], where k is set to 5 – corresponding to bad, poor, fair,

good, and excellent quality.

For each distortion-severity (quality-level) a train-test procedure

as described above is undertaken with 80% of the images used for

training and 20% used for testing. The mean AUC across 50 such

train-test trials is tabulated in Tab. 2, along with the standard devia-

tions across these trials. The results validate our hypothesis that the

use of quality as a feature for predicting saliency gains greater trac-

tion with increasing levels of distortion, while at high quality levels,

quality does not govern viewing strategies as much; although such

an effect is not as pronounced in the free-viewing case.

3.3. Task-dependence of Trained Model

This section addresses the question: How well would our model per-

form if the ground saliency maps from one task are used to train

the model which then attempts to predict saliency for the other task.

Such an analysis would evaluate how task-dependent the model actu-

ally is. However, before such an analysis can be performed, one must

gauge if the human saliency maps are significantly different across

tasks. In our evaluation no significant difference was observed, when

ground truth from the quality assessment task was used as a model to

predict attention for the free-viewing task vs. when the actual ground

truth (i.e., from the free viewing task) was used as a model, and

hence this case is not of interest. However, when the free-viewing

ground truth was used as a model to test the quality saliency maps,

significant differences were observed as compared to when the ac-

tual ground truth (i.e., quality task) was used. We draw the reader’s

attention to the fact, that owing to our testing methodology (as de-

scribed above) such cross-model predictions are not symmetric.

Hence, we train our model using the ground truth saliency maps

from the free-viewing task and attempt to predict viewing strategies

for the quality assessment task. The performance of such a model is

tabulated in Tab. 3, as a function of quality. A comparison of tables

2 and 3 shows that training the model using the wrong task leads to

a reduced performance, indicating that training the model based on

the task at hand is indeed important.

3.4. Model Robustness with Amount of Training Data

We evaluated if the amount of training data used varies the perfor-

mance of the predictor and in Fig. 5, we plot the TAAUC ratio of

predicted to ground truth saliency as a function of the percentage

of training data used for quality assessment task. The results from

Fig. 5 clearly indicate the model is robust to the amount of training

Image Quality LPT-ROC SBT-ROC

BPCL + Q + D BPCL + Q + D

Bad 0.79(0.074) 0.53(0.070)

Poor 0.69(0.063) 0.53(0.056)

Fair 0.76(0.062) 0.58(0.040)

Good 0.67(0.065) 0.57(0.031)

Excellent 0.74(0.056) 0.59(0.035)

Table 3. Table reports the LPT-ROC TAAUC ratio and average SBT-

ROC AUC values across 50 train-test trials and their standard devi-

ation when trained on free viewing (FV) and tested on quality as-

sessment (QA) task.
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Fig. 5. Variation of LPT-ROC TAAUC ratio values of predicted and

ground truth saliency as a function of percentage of training data

used.

samples, leading to a slight decrement in performance with reducing

training samples.

4. CONCLUSION AND FUTURE WORK

We proposed an algorithm to automatically predict salient regions

in a JPEG distorted image using low-level features for two different

tasks – quality assessment and free-viewing. We demonstrated that

the proposed algorithm is capable of predicting visual attention with

high accuracy across tasks. We also demonstrated that the model

remains robust with the amount of training data used, indicating that

the choice of features is well suited to the task at hand.

Since only average gaze maps were available as part of the

database used, we were unable to perform an eccentricity-based

analysis as in [3]. Future work will involve incorporating such a

model along with the features extracted here. Influence of higher-

level features such as context and semantic information remains of

interest, as does increasing the number of distortions in the set.
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Task Image Quality LPT-ROC SBT-ROC

BPCL BPCL + Q BPCL + Q + D BPCL BPCL + Q BPCL + Q + D

QA

Bad 0.68(0.066) 0.72(0.044) 0.81(0.050) 0.54(0.066) 0.58(0.022) 0.64(0.057)

Poor 0.74(0.051) 0.77(0.055) 0.77(0.065) 0.58(0.053) 0.58(0.031) 0.58(0.032)

Fair 0.76(0.060) 0.78(0.065) 0.80(0.071) 0.62(0.081) 0.60(0.068) 0.62(0.078)

Good 0.77(0.040) 0.78(0.055) 0.77(0.063) 0.67(0.051) 0.60(0.069) 0.59(0.061)

Excellent 0.77(0.053) 0.78(0.062) 0.79(0.069) 0.63(0.076) 0.55(0.046) 0.55(0.052)

FV

Bad 0.72(0.071) 0.76(0.050) 0.74(0.070) 0.60(0.073) 0.58(0.032) 0.57(0.033)

Poor 0.79(0.067) 0.81(0.062) 0.81(0.071) 0.70(0.091) 0.61(0.063) 0.60(0.062)

Fair 0.75(0.063) 0.79(0.061) 0.84(0.050) 0.65(0.063) 0.59(0.056) 0.62(0.076)

Good 0.77(0.038) 0.76(0.064) 0.77(0.064) 0.69(0.048) 0.60(0.072) 0.61(0.076)

Excellent 0.73(0.071) 0.74(0.079) 0.78(0.074) 0.65(0.087) 0.53(0.050) 0.53(0.078)

Table 2. Table reports the LPT-ROC TAAUC ratio and average SBT-ROC AUC values across 50 train-test trials and their standard deviation

in parenthesis for free viewing (FV) and quality assessment (QA) task using different sets of features as a function of the quality.
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