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ABSTRACT

We propose a natural scene statistic based Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) which extracts
the point wise statistics of local normalized luminance sig-
nals and measures image naturalness (or lack there of) based
on measured deviations from a natural image model. We
also model the distribution of pairwise statistics of adjacent
normalized luminance signals which provides distortion ori-
entation information. Although multi scale, the model uses
easy to compute features making it computationally fast and
time efficient. The frame work is shown to perform statisti-
cally better than other proposed no reference algorithms and
full reference structural similarity index (SSIM) .

1. INTRODUCTION

Personal digital assistants (PDA), hand held displays and
smart phones capable of connecting with internet have
brought a revolution in communication and networking
technologies. This has invited new challenges for service
providers to optimize networks with respect to structured
multimedia data such as text, images and videos given lim-
ited bandwidth. Traditional delivery methods have mainly
focused on optimizing throughput, buffer lengths and capac-
ity. While these approaches have shown great performance,
one would expect that accounting for the nature of multime-
dia data and modeling the behaviour of the end consumer
could lead to appreciable gains in performance. This suggests
the idea of using human perception models for service qual-
ity optimization. With this application mindset, we propose
a model based approach to predict visual quality of distorted
images. It is a blind/no reference approach that does not
require any reference image to compare the quality of, dis-
torted image against. While auxiliary information about a
reference certainly is helpful and makes the problem much
simpler, sending that information over the network causes an
additional bandwidth overhead and this information may be
difficult to retrieve in real scenarios. Also, assumptions on
the presence of a pristine reference is questionable [1] since
all captured images are afflicted with distortions normally
occuring during a quality photo shoot.

The preliminary work in the area of no reference quality
assessment started by modeling blur, noise or compression
artifacts to address the blurriness, graininess, blockiness and
ringing in images [4, 10, 19, 13, 3, 18]. However, it is of great
interest to develop dual approaches which model the statis-
tics of natural images (or lack there of). In this way, it may
be possible to avoid detailed modeling of distortions, mak-
ing possible approaches that are independent from the distor-
tions images are afflicted with. Two recently developed algo-
rithms BLind Image Notator using DCT Statistics (BLIINDS)
- II [12] and the Distortion Identification-based Image Verity
and INtegrity Evaluation (DIIVINE) were developed along
these lines, making no assumption on the kind of distortion
medium image is passed through. These proposed algorithms
have some associated pitfalls however, that might make them
ineffective for some applications. DIIVINE [9] is expensive
since it involves the computation of a relatively large number
of features. BLINDS-II [12], computes the block statistics of
discrete cosine transform coefficients which is also time con-
suming. Both DIIVINE and BLIINDS-II deliver top NR QA
performance (to date), but it is of interest to consider whether
purely spatial NR QA algorithms not requiring local trans-
forms can be developed towards performance and computa-
tional efficiency.

In this paper, we explain a model which makes use of nor-
malized luminance coefficients in the spatial domain, as well
as pairwise products of adjacent normalized luminance coeffi-
cients which provides distortion orientation information. We
then demonstrate how parameterizing the respective distribu-
tions of these coefficients can be used as statistical features
that correlate well with human judgements of image qual-
ity. These features are used for distortion identification and
distortion specific quality assessment, which when combined
produces a distortion independent measure of image quality.

2. NATURAL SCENE STATISTICS MODEL IN THE
SPATIAL DOMAIN

Our approach is built on a foundation of models of statisti-
cal regularities observed in natural scenes. ‘Natural’ scenes
subsumes any image taken using an optical camera with no
artificial processing. Thus, natural images are not necessar-



ily images of outdoor environments such as trees or skies.
Natural scene statistics (NSS) have been analysed by psycho-
physicists in both the spatial domain [11], and the wavelet
domain [17]. In the present development, we concentrate on
spatial domain statistics. Ruderman observed that local mean
subtraction and variance normalization on log-contrast values
[11] produces decorrelated coefficients which follow gaussian
like distributions. This process is similar to center surround
mechanism followed by adaptive gain control. Given a lumi-
nance image I , we compute:

Î(i, j) =
I(i, j)− µ(i, j)
σ(i, j) + C

(1)

where, i ∈ 1, 2 . . .M , j ∈ 1, 2 . . . N are the spatial indices,
M,N are the image height and width respectively, C = 1 is
a constant that is used to prevent instabilities from occurring
when the denominator tends to zero (eg., in the case of an
image patch corresponding to the plain sky) and

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lYk,l(i, j) (2)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

wk,l(Yk,l(i, j)− µ(i, j))2 (3)

and w = {wk,l|k = −K, . . . ,K, l = −L, . . . L} is a
circularly-symmetric Gaussian filter sampled out to 3 stan-
dard deviations. In our implementation, K = L = 3. Varia-
tion in these values between 2−4 did not have much effect on
performance. In our algorithm, such normalized luminance
coefficients (eq. 1) are referred to as mean subtracted contrast
normalized (MSCN) coefficients, and are used for all further
processing.

Our model is based on the premise that MSCN coeffi-
cients have characteristic statistical properties that are per-
turbed in the presence of distortion [7] and that modeling
these coefficients makes it possible to predict the type and
perceptual severity of distortions [9]. Fig. 1 illustrates how
MSCN coefficient distributions change with distortion type.
An important observation is how pristine images exhibit
Gaussian-like statistical properties as shown by Ruderman
[11]. By contrast, each distortion modifies natural scene
statistics in a unique way. For instance, blocking and blurring
artifacts produced by JPEG induce Laplacian-like statistics as
compared with grainy artifacts caused by white noise, which
increases the variance of the distribution.

To quantify the statistics of natural images and how they
change with distortion, we utilize an AGGD (Asymmetric
Generalized Gaussian Model) distribution to fit the MSCN
statistics from pristine as well as distorted images. For each
image, we estimate 2 parameters (α, (σ2

l + σ2
r )/2) from the

AGGD fit of MSCN coefficients, forming our first set of fea-
tures.
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Fig. 1. Histogram of MSCN coefficients for a natural undis-
torted image and various distorted versions. Distortions from
the LIVE IQA database [15] – JPEG2000 (Jp2K) and JPEG
compression, additive white Gaussian noise (WN), Gaussian
blur (blur), and a Rayleigh fast-fading channel simulation
(FF).

While MSCN coefficients are definitely more homoge-
nous, the signs of the coefficients exhibit a regular structure
[16]. In order to quantify this dependency between neighbors,
we model directional relationships via pairwise products be-
tween adjacent MSCN coefficients at a distance of 1 pixel,
along four orientations – horizontal (Hz), vertical (V t), main-
diagonal (Dg1) and secondary-diagonal (Dg2).

Hz(i, j) =MSCN(i, j)MSCN(i, (j + 1)modN) (4)

V t(i, j) =MSCN(i, j)MSCN((i+ 1)modM, j) (5)

Dg1(i, j) =MSCN(i, j)MSCN((i+1)modM, (j+1)modN)
(6)

Dg2(i, j) =MSCN(i, j)MSCN((i+1)modM, (j−1)modN)
(7)

∀i ∈ 1, 2 . . .M and ∀j ∈ 1, 2 . . . N .
Fig. 2 shows how the paired products along each of the

four orientations vary in the presence of distortion for the ref-
erence image and each of its distorted versions.

The paired product distributions are also parameterized
using the AGGD which effectively captures the asymmetry
in their distributions as observed in Fig. 2. Hence, apart from
the parameters of the AGGD (α, σ2

l , σ
2
r ), we also compute the

mean of the paired product distribution to account for it. For
an AGGD, the mean is given by:

µ = (βr − βl)
γ( 2

α )

γ( 1
α )

(8)

Thus for each paired product, (α, σ2
l , σ

2
r , µ) are computed,

and these 16 parameters (4 parameters/orientation × 4 ori-
entations) form another set of features. Owing to the in-
herent multiscale nature of images and distortions affecting
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Fig. 2. Histograms of paired-products of MSCN coeffi-
cients for a natural undistorted image and its various distorted
versions. (a) Horizontal, (b) Vertical, (c) Main-diagonal,
(d) Secondary-diagonal. Distortions from the LIVE IQA
database [15] – JPEG2000 (Jp2k) and JPEG compression, ad-
ditive white Gaussian noise (WN), Gaussian blur (blur), and
a Rayleigh fast-fading channel simulation (FF).

image structure across scales, we compute BRISQUE fea-
tures across multiple scales. Further, it has been shown by
researchers that multiscale QA algorithms perform well in
terms of correlation with human perception [21, 12]. We ob-
served that increasing the number of scales beyond 2 did not
improve the performance. Thus, we have a total of 36 features
– 18 at each scale.

3. ASYMMETRIC GENERALIZED GAUSSIAN
MODEL

The AGGD with zero mode is given by:

fX(x;α, σ2
l , σ

2
r) =

{
α

(βl+βr)γ(
1
α )

exp(−(−xβl )
α) x < 0

α
(βl+βr)γ(

1
α )

exp(−( xβr )
α) x ≥ 0

(9)
where α is a shape parameter and σl and σr are scale param-
eters

βl = σl

√
γ( 1

α )

γ( 3
α )

(10)

βr = σr

√
γ( 1

α )

γ( 3
α )

(11)

γ(·) is the gamma function:

γ(a) =

∫ ∞
0

ta−1e−tdt a > 0 (12)

α governs ‘shape’ of the distribution and σ2
l and σ2

r deter-
mine the left and right variances (about the mode) respec-
tively. The AGGD subsumes the generalized Gaussian distri-
bution (GGD) [14] when left and right variance are equal. Re-
searchers have utilized this asymmetric distribution to model
skewed and heavy-tailed distributions for the analysis of tex-
ture [6]. The moment based method proposed in [6] was used
to estimate the parameters of the AGGD (α, σ2

l , σ
2
r ).

4. TWO-STAGE QUALITY ASSESSMENT
FRAMEWORK

Once we have these features, a 2 stage framework similar to
DIVIINE [9] is used for quality inference. First, the computed
features are used to train a probabilistic support vector clas-
sification (SVC) to find the probability of occurence of each
distortion in the image, followed by evaluation of distortion
specific image quality using trained support vector regression
(SVR) functions for each distortion. Once we have quality
from each regressor, we compute dot product of the distor-
tion probability vector and the distortion quality vector. We
have used the LIBSVM package [2] to implement the SVM
and SVR and the radial bias function (RBF) kernel for both
classification and regression.

The motivation behind this framework is that each dis-
tortion afflicts natural images in a different way. Therefore,
a different set of features are important for every distortion.
We use a generic feature set to represent the ‘naturalness’
of images. Although the features do not model any specific
artifacts such as blur, ringing or blocking, they still capture
the characteristics of diverse distortions making it possible to
train a classifier which can map deviations of the model pa-
rameters to the type of distortion the image is afflicted with.

5. PERFORMANCE EVALUATION

The performance of quality assessment algorithms is gauged
by correlation with human perception, where human opin-
ions on visual quality are usually obtained from large-scale
human studies, using a large number of distorted (and pos-
sibly reference) signals that are rated by human observers.
The mean opinion scores (MOS) or differential mean opinion
score (DMOS) is obtained by averaging across humans for
each of the visual signals in the study. Resulting MOS/DMOS
is representative of the perceptual quality of the visual signal.
The goal of quality assessment (QA) algorithms is to emulate
quality scores for these signals so that they correlate well with
human opinion on quality (MOS/DMOS).



JP2k JPEG WN Blur FF All
PSNR 0.8947 0.9191 0.9536 0.8357 0.8964 0.8873
SSIM 0.9461 0.9547 0.9679 0.9321 0.9393 0.9201

MSSSIM 0.9632 0.9773 0.9786 0.9607 0.9464 0.9550
Anisotropy 0.2931 0.1519 0.7286 0.6929 0.5929 0.3614
BLIINDS-II 0.9270 0.9376 0.9565 0.8902 0.8409 0.9123

DIIVINE 0.9114 0.9213 0.9818 0.9386 0.8732 0.9265
BRISQUE 0.8999 0.9467 0.9849 0.9435 0.8861 0.9314

Table 1. Median spearman rank ordered correlation coef-
ficient (SROCC) across 1000 train-test combination on the
LIVE IQA database. Italics indicate no-reference algorithms.

5.1. Correlation with Human Perception

We used the LIVE IQA database [15] to test the performance
of our algorithm. It consists of 29 reference images with
779 distorted images which span five different distortion cat-
egories - JPEG and JPEG 2000 compression, white noise,
Gaussian blur and a Rayleigh fast fading channel distortion
where each distorted image has an associated difference mean
opinion score (DMOS). A classifer is trained to predict the oc-
curence of each distortion and a regression function is learned
corresponding to each distortion. Quality is computed using
this information as explained earlier.

We divide the dataset into 80% training and 20% testing
ensuring that there is no overlap between train and test con-
tent. To make sure that the reported results do not depend on
the selection of spatial content used to train the framework,
we randomly pick 80% of the spatial content for training and
the remaining 20% to test and repeated this standard cross
validation procedure 1000 times on the LIVE database. We
report the median of the scores across iterations. 1.

The performance measures used are Spearman’s rank or-
dered correlation coefficient (SROCC) and Pearson’s linear
correlation coefficient (PLCC) between the predicted algo-
rithm scores and DMOS. Before computing PLCC, algorithm
scores are mapped to DMOS using a logistic non-linearity as
described in [15]. A value close to 1 for SROCC and PLCC
indicate good performance in terms of correlation with human
opinion. These performance indices are tabulated in Tables 1
and 2 respectively.

We tabulated the performance of the full-reference in-
dices: peak-signal-to-noise ratio (PSNR) and structural simi-
larity index (SSIM) [20] and several no-reference algorithms:
Anisotropy based NR IQA [5], BLind Image Notator us-
ing DCT Statistics (BLIINDS) - II [12] and the Distortion
Identification-based Image Verity and INtegrity Evaluation
(DIIVINE) index [9] for comparison.

1Performance was evaluated using the realigned DMOS scores as recom-
mended in [15] only on the distorted images, as in [15] . Further, note that
due to the random 1000 trials, there may be a slight discrepancy between re-
sults reported here and elsewhere, however, these differences in correlations
would not be statistically significant, and are simply an artifact of the random
train-test sampling.

JP2k JPEG WN Blur FF All
PSNR 0.9044 0.9375 0.8981 0.8490 0.9119 0.8866
SSIM 0.9575 0.9630 0.9887 0.9395 0.9644 0.9110

MSSSIM 0.9795 0.9357 0.9919 0.9762 0.9689 0.9529
Anisotropy 0.2235 0.1351 0.5855 0.5631 0.5290 0.2332
BLIINDS-II 0.9329 0.9386 0.9674 0.8944 0.8665 0.9145

DIIVINE 0.9225 0.9363 0.9869 0.9383 0.8938 0.9283
BRISQUE 0.9090 0.9551 0.9903 0.9498 0.9148 0.9377

Table 2. Median pearson’s linear correlation coefficient
(PLCC) across 1000 train-test combination on the LIVE IQA
database. Italics indicate no-reference algorithms.

JP2k JPEG WN Blur FF All
Accuracy (%) 82.9 88.9 100.0 96.7 83.3 88.6

Table 3. Median classification accuracy across 1000 train-test
trials.

As seen from Tables 1 and 2, BRISQUE performs quite
well in terms of correlation with human perception, beating
present-day full-reference and no-reference image quality as-
sessment indices.

5.2. Classification Accuracy

Although a probabilistic framework is used for distortion
identification, we also show how our features are useful for
explicit distortion-identification [8]. We report the median
classification accuracy of the classifier for each of the distor-
tions in the LIVE database, as well as across all distortions in
Table 3.

6. CONCLUSION

We proposed a fast, simple spatial domain based natural
scene statistics based model for no reference image quality
assessment and demonstrated that not only does it give supe-
rior performance compared to existing NR IQA approaches,
but it also performs better than the full-reference peak signal-
to-noise-ratio (PSNR) and the structural similarity index
(SSIM). BRISQUE may be easily extended beyond the distor-
tions considered here making it suitable for a general-purpose
blind IQA problems. Furthermore, BRISQUE is computa-
tionally quite efficient making it an attractive option for use in
practical applications such as image restortation and quality
evaluation in networks.

7. REFERENCES

[1] A.C. Bovik. Perceptual image processing: Seeing the
future. IEEE, 98(11):1799–1803, 2010.

[2] C.C. Chang and C.J. Lin. LIBSVM: A library for sup-
port vector machines. 2001.



[3] J. Chen, Y. Zhang, L. Liang, S. Ma, R. Wang, and
W. Gao. A no-reference blocking artifacts metric using
selective gradient and plainness measures. Proceedings
of Pacific Rim Conference on Multimedia: Advances
in Multimedia Information Processing, pages 894–897,
2008.

[4] R. Ferzli and L.J. Karam. A no-reference objective im-
age sharpness metric based on the notion of just notice-
able blur (JNB). IEEE Transactions on Image Process-
ing, 18(4):717–728, 2009.

[5] S. Gabarda and G. Cristóbal. Blind image quality as-
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