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Statistical Modeling of 3-D Natural Scenes With
Application to Bayesian Stereopsis
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Abstract—We studied the empirical distributions of luminance,
range and disparity wavelet coefficients using a coregistered data-
base of luminance and range images. The marginal distributions
of range and disparity are observed to have high peaks and heavy
tails, similar to the well-known properties of luminance wavelet co-
efficients. However, we found that the kurtosis of range and dis-
parity coefficients is significantly larger than that of luminance co-
efficients. We used generalized Gaussian models to fit the empirical
marginal distributions. We found that the marginal distribution of
luminance coefficients have a shape parameter � between 0.6 and
0.8, while range and disparity coefficients have much smaller pa-
rameters � � ����, corresponding to a much higher peak. We also
examined the conditional distributions of luminance, range and
disparity coefficients. The magnitudes of luminance and range (dis-
parity) coefficients show a clear positive correlation, which means,
at a location with larger luminance variation, there is a higher
probability of a larger range (disparity) variation. We also used
generalized Gaussians to model the conditional distributions of lu-
minance and range (disparity) coefficients. The values of the two
shape parameters ��� �� reflect the observed luminance-range (dis-
parity) dependency. As an example of the usefulness of luminance
statistics conditioned on range statistics, we modified a well-known
Bayesian stereo ranging algorithm using our natural scene statis-
tics models, which improved its performance.

Index Terms—Binocular vision, disparity, natural scene statis-
tics (NSS), wavelets.

I. INTRODUCTION

T HE human vision system (HVS) is binocular. The two
frontally placed, horizontally separated eyes receive two

different retinal images nearly all the time. The angular differ-
ence between the two retinal images of a scene point is de-
fined to be the binocular disparity. Given disparity and many
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other visual cues, the geometry of the 3-D visual space is re-
constructed so quickly, effortlessly and seamlessly that a normal
person never feels how difficult and ill-posed this problem can
be. Biological vision systems achieve this ability by millions
of years of natural selection in visual environments. The sta-
tistical properties of natural scenes have driven the evolution
of biological eyes, and have also inspired scientific and engi-
neering studies to understand and simulate visual perception by
designing artificial visual systems. Here, we explain a series of
statistical studies that we have conducted on luminance, range,
and disparity in natural scenes. We discuss the potential signifi-
cance of these results for better understanding depth perception,
as well as their relevance to engineering applications.

Although the statistical properties of natural images are not
yet well understood, we do know that the high-dimensional
structure of natural images obeys statistical laws. The statistical
nature of natural images has certainly been exploited by biolog-
ical visual systems as they have evolved. Likewise, statistical
models of natural images have proven to be quite useful in
many areas of image processing and machine vision. Furthering
and refining these models is likely to prove quite fruitful.

Early engineering efforts on natural image modeling were
made by television engineers (see [1] for a review). Their work
was based on a simple observation: nearby pixels have similar
intensities. Multidimensional Gaussian distributions were used
to model the correlations between pixels. This simple model was
a natural choice given little prior knowledge other than empir-
ical image correlations.

However, subsequent research has shown that the distribu-
tion of natural images is not Gaussian [1]–[4]. The main dis-
covery showed that the univariate distributions of bandpass im-
ages (wavelet coefficients) typically have a high peak at zero,
with heavier tails than Gaussian distributions having the same
mean and variance. The informal explanation is that the peak
near zero corresponds to smooth regions in images, while the
heavy tails are caused by abrupt changes such as edges and
corners, which are rich in natural images. These observations
motivated the search for more precise image models. Several
reasonably successful models have been proposed in the last
two decades. One popular approach is to model the distributions
using a generalized Gaussian (or stretched exponential) distri-
bution:

(1)

where is a normalizing constant to force the integral
of to be 1. The parameter controls the shape of the
function: is Gaussian when , and Laplacian when
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. In general, decreasing causes a higher center peak and
longer tails. For wavelet coefficients of natural images, typi-
cally lies in the range [0.4, 0.8] [5], [6]. The parameter controls
the scale of the density function, and hence the variance of the
distribution. Maximum likelihood estimation of and yields
very good fits between empirical histograms and the model. The
model has proved to be quite useful in the design of image com-
pression [6] and image denoising [5], [7] algorithms.

The first-order distribution models developed to date, while
useful, are too simple to guide many complicated image
processing applications. Although the wavelet coefficients
of natural images are generally approximately decorrelated,
higher order dependencies still exist. This can be visually
observed by looking at the subbands of wavelet coefficients,
where clusters of large coefficients concentrate on structural
image features such as lines, edges, and corners. A locally
adaptive statistical model called the Gaussian scale mixture
(GSM) was adapted to capture the spatial dependencies be-
tween neighboring image wavelet coefficients. In this model,
a neighborhood of a wavelet coefficient is expressed as the
product of a zero-mean Gaussian vector , and an independent
positive scalar random variable :

(2)

Estimating and is more complex than estimating the param-
eters of a generalized Gaussian model. However, the model (2)
more specifically accesses the local structure of images and has
been shown to significantly improve algorithms for image de-
noising [5], [7]–[10], and texture analysis/synthesis [11]. Other
influential properties of natural image statistics are studied in
[12] and [13].

The aforementioned statistical modeling of natural images
has been limited to 2-D monocular intensity images. Although
monocular images contain a certain amount of depth related in-
formation, in the absence of motion, binocular images are es-
sential for accurate depth perception. In the last decade, sev-
eral researchers have studied the prior distribution of distance
in natural scenes using laser scanners [14]–[17]. Huang, Lee,
and Mumford measured the first-order and second-order statis-
tics of range maps and (Haar basis) wavelet coefficients [14].
Their results verified the intuitive assumption that range maps
are more regular than luminance images, since abrupt changes
of illumination, shadow, and texture are more common in lumi-
nance images, and arise from more diverse phenomena. Yang
and Purves [15] acquired range images of forest scenes. They
found that the 3-D geometry of the scenes in their database is
quite rough, has a characteristic anisotropic topography, and is
approximately scale invariant. In another paper [18], they tried
to explain several phenomena in depth perception by using the
distribution of physical distances from the same dataset.

Potetz and Lee [17] studied the important question of the
bivariate statistical behavior of coregistered range and lumi-
nance images. The Riegl LMS-Z360 scanner they used had the
ability (that the previous instruments lacked) to simultaneously
measure and register range and luminance with good precision.
Using 50 rural and urban image pairs (luminance and range),
they found a negative range–luminance correlation, suggesting

that nearer objects tend to appear brighter than far objects, on
average. They also deployed a few convex range filters, selected
for specific structural properties relevant to computer vision,
which were used to filter both the range and luminance images.
Using a canonical correlation analysis, the authors found a rela-
tively low degree of (strictly linear) correlation between the fil-
tered luminance and range patches. The use of shape functions,
of course, presupposes that the shapes selected are relevant to
the relationship between luminance and range. Moreover, only
linear relationships, analyzed at a single scale, between spe-
cific shape functions were considered. In a later study on the
same dataset, Potetz and Lee [19] examined the relationship be-
tween luminance and range over multiscales and applied their
results to shape-from-shading problems. Roth and Black [20]
studied the statistics of optical flow in natural temporal scenes,
by adopting a method similar to ours. They used coregistered
luminance–range maps to study the distribution of optical flow
patterns.

The HVS has very fine stereo acuity; under the best condi-
tions, the stereo acuity falls between 2 arcsec to 6 arcsec [21].
The HVS also has a large upper disparity limit. Blakemore [22]
reported that the upper limit is 7 for crossed disparities, and
12 for uncrossed disparities. The broad operating range and ex-
cellent acuity of stereopsis indicate that disparity is extensively
used for depth perception. In a previous effort, we studied the
disparity distributions of natural scenes [23] by converting forest
range maps to disparity maps. We found that the disparity distri-
butions at eye level are centered at zero, are non-Gaussian (but
well modeled as generalized Gaussian), and span about 5 . A
similar study on indoor range maps showed similar results. In an
effort to correlate disparity sensitivity with naturally available
disparities, we cast our findings using both outdoor and indoor
data against physiological data from two prior studies on the
distributions of disparity tuning of disparity-tuned V1 neurons,
[24]–[26]. The proportion of near- and far-tuned disparity dis-
tributions qualitatively agrees with the distribution of disparity
tuning neurons in V1. But the span (about 5 ) of natural dispari-
ties is larger than the operational range of the narrowly tuned V1
neurons (about 2 ). This suggests that larger disparities might
be encoded and represented by other visual areas, because the
HVS can make disparity judgments above chance at rather large
disparities (about 7 –12 ) (for more details, see [21]).

According to a study on disparity tuned area MT neurons
[27], the coding range of MT neurons is about 4.7 , which
agrees well with natural disparities. However, far more (61%)
of the MT neurons are tuned to near disparities, compared to
the almost symmetric distribution of natural disparities. We
also conducted a study on the elevation dependency of disparity
distributions and found that the Helmholtz shear of binocular
correspondence correlates with mean disparity along the ver-
tical median plane [28]. Helmholtz shear is the property that
empirically corresponding points along the vertical meridian
are not geometrically corresponding points on the two retinas
of a human binocular vision system. Helmholtz proposed that
the shear of empirically corresponding points may help us in
walking.

Depth perception involves multiple visual cues. The cues can
be classified into monocular cues and binocular cues. Motion
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parallax, familiar size, relative size, shading, aerial perspective,
and occlusion are all monocular cues. Binocular cues include
disparity and convergence. All these cues are likely combined
in the brain in a probabilistic manner to infer depth. Several
methods have been proposed to explain the weighting of dif-
ferent visual cues [29]–[33], but oversimplified stimuli were
used to test these models, owing to a lack of knowledge re-
garding accurate distributions of these cues in natural scenes.
Accurate scene statistics obtained from coregistered luminance,
range, and disparity images of natural environments have the
potential to improve these algorithms and to deepen our un-
derstanding of depth perception. Likewise, to enrich our under-
standing of visual neurophysiology, accurate statistical models
of the disparity processing of simple and complex neurons are
also needed [34], [35].

Our work utilized the coregistered luminance–range dataset
from [17]. We derived disparity maps from the range maps by
assuming that a human observer is viewing a scene with two
eyes (cameras) that are parallel, and that fixate at infinity. We
then decomposed the luminance, range, and disparity maps into
multiresolution and multioriented subbands of wavelet coeffi-
cients. We discuss the nature of these in detail in Section II.
We describe marginal, joint and conditional distributions of lu-
minance, range, and disparity in Sections III–VI. In order to
show the potential applications of these results both in vision
science and computer vision, we applied our results to a clas-
sical problem in both areas: stereo correspondence. The stereo
correspondence problem is formalized into a Bayesian frame-
work, and the statistical relationships we learned from the coreg-
istered luminance–range guide our algorithm. The details on our
implementation and the results and analysis of the algorithm are
in Section VII. Finally, Section VIII summarizes the results and
discusses potential applications both in vision science and in en-
gineering.

II. DATASET

We used the coregistered range maps and color images from
[17]. The authors used a Riegl LMS-Z360 terrestrial scanner,
which has a maximum range of 200 m and an accuracy of 12
mm. The original color images were converted to 8 bit gray-
scale light intensity images. There are several regions that do
not yield valid distances. Usually, these regions include highly
reflective surfaces such as water and glass, or places that are out
of range, like the sky. In [17], these patches containing invalid
pixels were excluded from analysis (It is easy because the sky
pixels are labeled as 0 s in the range maps). Because we are in-
terested in the statistics of wavelet coefficients, we first assigned
all pixels of sky 1000 m distance in order to be able to compute
valid wavelet transforms on range maps. Later, we carefully ex-
cluded all coefficients contaminated by the sky pixels in all sub-
bands in our analysis.

We adopted the same method as we used in [23] to convert
distance to disparity. A pixel of a range map that describes
the distance of a visual direction in a scene is denoted
by , assuming that the 3-D coordi-
nate system is centered at the scanner’s location. The azimuth
and elevation of the visual direction from the scanner are rep-

Fig. 1. Binocular vision system in natural scenes. Assuming two eyes are fix-
ating at infinity, the disparity of a physical point � can be calculated easily from
the coordinates of � and a simplified eye model.

resented by and , respectively. As Fig. 1 shows, we as-
sumed an observer located at the coordinate center , with his
two eyes (interocular distance 6.5 cm) at and

. With the values of a physical point
specified, we can derive the geometrical relationship between
the two retinal projections and . In Fig. 1, and are the
nodal points of the left eye and right eye, respectively. and
are the foveal centers of the two eyes. We assumed that the two
visual axes and are parallel. The four points , ,

, and are located on the horizontal median plane, which
cut the two eyeballs in the middle and parallel to the ground.
The perpendicular projections of and on the horizontal
median plane are and . The two angles and

can be easily calculated. We then defined the hori-
zontal disparity to be:

(3)

Thus, we obtained a disparity map once every distance
in the range map was converted. There are several points
that need to be emphasized regarding range to disparity conver-
sion:

1) We treated a range map with coregistered luminance image
as a cloud of particles. Each particle has its posi-
tion, and its luminance specified. While this is not a com-
plete description of the 3-D scene, these data simply and
accurately represent the local 3-D scene at the position of
the terrestrial scanner.

2) We assumed that all points are visible for both eyes. Natu-
rally, there could be some half occluded points that are only
visible to one eye, but occluded in the other eye. However,
given the large scene distance and small interocular dis-
tance (or the baseline distance in the language of compu-
tational stereo matching), half occlusions may be regarded
as generally neglectable.
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Fig. 2. Luminance, range, and disparity of a natural scene are shown in (a), (b), and (c). Brighter pixels represent larger values. Notice the sky (the white region)
pixels in the range map are assigned 1000 m uniformly. Interestingly, the large, prominent range discontinuity between the sky and the building are not represented
in the disparity map. Instead, the nearer steps in the range map are more observable in the disparity map than the farther steps. This illustrates the effect wherein
relative disparity scales with distances.

Fig. 3. Bandpass luminance, range, and disparity histograms and their generalized Gaussian fits of one subband. The solid lines are the empirical histograms. The
dashed lines are the best fitting generalized Gaussian. The isolated dots occur where the corresponding histogram bins contain some elements, but the neighboring
bins contain zero elements.

3) The unit of disparity used is degrees, which is equivalent
to disparity in pixels.

For each natural scene, we acquired three kinds of informa-
tion: , , and . All of the following analysis
is based on multiresolution wavelet decompositions of the three
scene properties. Fig. 2 shows the three images of luminance,
range, and disparity of the same scene. In the range and disparity
maps of Fig. 2, the magnitudes increase from dark to bright.
One obvious observation is that most of the large disparities are
below eye level, which is caused by the nearer ground plane.
Several images in our database contain ground planes in the
lower half and the sky in the upper half. This dependency of dis-
parity distribution on elevations caused a shearing of the corre-
sponding positions of retinal points along the vertical meridian.
This is known as the Helmholtz shear, which Helmholtz first no-
ticed [36]. He explained it by assuming that the HVS utilizes the
shear for walking.

III. MARGINAL DISTRIBUTIONS

We decomposed , , and into a wavelet
pyramid of three scales and six orientations using the steerable
filterbank designed by Simoncelli [37]. To be consistent with
luminance perception of the HVS and the convention of nat-
ural scene analysis [17], [38], the wavelet decomposition was
performed on the logarithm of luminance and the logarithm of
distance.

The distributions of the wavelet coefficients of natural pho-
tographic images are generally known to be non-Gaussian, to
have a high peak and heavy tails. Many researchers have used
a generalized Gaussian to fit the distribution. The parameters of

the generalized Gaussian can be derived easily either through
maximum likelihood methods, or by simply fitting the mean and
variance of the distribution. Huang and Mumford [14] modeled
Haar coefficients of range maps. However, the wavelet coeffi-
cients of disparity have not been deeply modeled. In our pre-
vious study on disparity statistics, which is based on the range
dataset from [15], we addressed the non-Gaussianity of disparity
distributions and simply pointed out that a Laplacian model (a
special case of the generalized Gaussian model with ) is a
better fit than Gaussian distribution. Mumford et al. studied and
modeled bandpass luminances and ranges in combination [12],
[14], [39]. However, no serious model has been proposed for the
bandpass disparities of natural scenes.

Without loss of generality, we chose the second scale, hori-
zontal subbands of luminance, range, and disparity coefficients
to be fitted using the generalized Gaussian model (see Fig. 3).
The generalized Gaussian distribution fitting of other subbands
with different scales and orientations are very similar to Fig. 3.
There have been many methods proposed to estimate the pa-
rameters of the generalized Gaussian distribution [4], [40]–[45].
We used a simple one that only involves estimating the first
and second moments using the sample mean and sample vari-
ance [4], [45]. The solid plots in Fig. 3 show the normalized
histogram of wavelet coefficients using 200 bins evenly spaced
between the maximum value and the minimum value of all co-
efficients, and the dashed plots show the generalized Gaussians
with fitted parameters. The left, center, and right panels of Fig. 3
represent bandpass luminance, bandpass range, and bandpass
disparity. We found that range and disparity coefficients have
much larger kurtosis (94.3 for bandpass range and 849 for band-
pass disparity) than those of luminance coefficients (about 11).
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TABLE I
SHAPE PARAMETER � OF LUMINANCE WAVELET MARGINALS

TABLE II
SHAPE PARAMETER � OF RANGE WAVELET MARGINALS

TABLE III
SHAPE PARAMETER � OF DISPARITY WAVELET MARGINALS

This indicates that the distributions of range and disparity coef-
ficients have much sharper peaks and heavier tails than those
of luminance coefficients. This corresponds well to a simple
fact: significant, sharp luminance variations are more common
than similar range variations. The disparity distributions have
even larger kurtosis, because the distance-to-disparity conver-
sion greatly attenuates larger distances, which means the dis-
parity map contains even more small values. The scale invari-
ance can be observed by the uniform goodness of the fits and the
similar shapes observed at different scales. We listed the shape
parameter of all subbands of three scales and six orientations
of luminance, range, and disparity in Tables I–III, respectively.
Bandpass luminance generally has a large from 0.66 to 0.8.
It is larger than the shape parameter of bandpass range and
bandpass disparity, which is typically between 0.2 and 0.3.

IV. JOINT DISTRIBUTIONS

Julesz [46] showed that humans can perceive depth from
random dot stereograms, largely separating the perception of
depth structure from that of luminance structure. However, we
do not live in a random world but a world obeying physical
laws. Many visual cues may contribute to depth perception.
The statistical relationships between these visual cues in nat-
ural scenes are essential for probing the mechanism of depth
perception.

We use a simple method to show that even the coarsest fea-
tures of luminance and range are not independent.

Figs. 4(a) and (b) show the contour plots of the joint his-
tograms of coregistered luminance–range, and luminance–dis-
parity (similar to ) of the wavelet coefficients in a single
subband. The isoprobability contours are roughly symmetric
about the horizontal and vertical axes. Fig. 4(c) and (d) show
the contour plots of the joint histograms of independent lu-
minance–range, and luminance–disparity by independently
drawing samples from the luminance, range, and disparity
coefficients (similar to ). There are subtle differences
between the histograms of the coregistered data and that of the

Fig. 4. (a), (b) show the isoprobability (logarithm) contours of the joint his-
tograms of luminance coefficients (LC) and range coefficients (RC), the joint
histograms of luminance coefficients (LC) and disparity coefficients (DC). (c),
(d) show the joint histograms of independent LC-RC, LC-DC by breaking up the
coregistered relationship in (a), (b), respectively. A simple interpretation is that
the top row shows the joint probability � ��� ��, while the bottom row shows
the product of two marginals � ���� ���.

independent data. For example, if luminance coefficients were
independent of range coefficients, the isoprobability contours
would have the star-like shape that characterizes the product of
two highly peaked, generalized Gaussian probability density
functions [as in Fig. 4(c)], rather than a leaf-like shape seen
in Fig. 4(a). These differences indicate that there exists higher
order ( 2), nonlinear statistical dependencies between lumi-
nance and range. As we will show in later sections (see Fig. 7),
the correlations between magnitude of bandpass luminance
and that of bandpass range/disparity are weakly positive across
all scales and all orientations. This suggests that bandpass
luminance and bandpass range/disparity are not independent.

V. CONDITIONAL DISTRIBUTIONS

In this section, we explain our studies of the conditional dis-
tributions of range, luminance, and disparity coefficients. Pre-
vious work on wavelet coefficient distributions of luminance im-
ages has indicated that there exist interesting dependencies be-
tween neighboring coefficients at different scales, orientations,
and spatial positions [5]. If a wavelet coefficient has a large mag-
nitude, then the distribution of its neighbors will often have a
large variance. This observation strongly motivates a multiscale
analysis of the relationship between luminance and range.

Human depth perception is not totally damaged if we lose
one eye. That means that stereopsis is not the sole source of
depth information in the brain. There are many monocular visual
cues contributing to depth perception. Since the brain is well
modeled as performing multichannel decompositions of natural
scenes, we are interested in the following question: At a location
in 3-D natural scene, if we know the magnitude of its bandpass
luminance from one monocular image, what can we expect of
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Fig. 5. (a), (b), (c) are the mean conditional magnitudes of range coefficients given the magnitudes of luminance coefficients in all six subbands at three scales
((a)–(c): from the finest to the coarsest scale). (d), (e), (f) show the mean conditional magnitudes of luminance coefficients given the magnitudes of range coefficients
((d)–(f): from the finest to the coarsest scale). All these plots are monotonic.

the bandpass range (disparity), or vice versa? We tried to answer
this question by analyzing the dependency between luminance
wavelet coefficient and range (disparity) coefficient in the same
spatial location (coordinate) of the same subband (orientation
and scale).

Specifically, we studied the conditional histograms of lumi-
nance coefficients that are conditioned on the magnitudes of
range/disparity coefficients, and the conditional histograms of
range/disparity coefficients conditioned on the magnitudes of
luminance coefficients. Overall, we found that the magnitudes
of luminance coefficients and the magnitudes of range (dis-
parity) coefficients have a significant positive correlation, and
the positive correlations are stronger at coarser scales.

Denote luminance coefficient, range coefficient, and disparity
coefficient as , , and . The conditional expectation of a
range coefficient given a luminance coefficient can be expressed
as , and the conditional expec-
tation of a luminance coefficient given a range coefficient is

, where represents wavelet
magnitude.

To estimate , we set evenly
spaced bins between the maximum and the minimum of all lu-
minance coefficients, then we computed the mean magnitude
and 95% confidence interval of the range coefficients whose
coregistered luminance coefficients’ magnitudes fall in each lu-
minance bin:

(4)

Similarly, we can also bin the range coefficients according to
their magnitudes and compute the mean magnitude of lumi-
nance coefficients as:

(5)

The same analysis also goes for the conditional expectation of
luminance coefficients conditioned on disparity coefficients,
and vice versa.

In Fig. 5(a)–(c), we plotted the conditional mean magnitude
of bandpass range given the mean magnitudes of bandpass
luminance, in 15 bins of luminance coefficients in all subbands
of three scales, with (a)–(c) representing the finest scale to
the coarsest scale, respectively. It is obvious that the mean
magnitude of bandpass range increases with the magnitude of
bandpass luminance. Fig. 5(d)–(f) show the conditional mean
magnitudes of bandpass luminance given bandpass range.
There exists a notable difference between the curves of con-
ditional mean bandpass range in Fig. 5(a)–(c)
and the curves of conditional mean bandpass luminance

in Fig. 5(d)–(f). The conditional bandpass lu-
minance is also monotonic, but saturates faster
than conditional bandpass range , as shown in
Fig. 5(a)–(c). The monotonic trend suggests that smooth sur-
faces generally create small luminance variations, while rough
surfaces contain large luminance variations. Furthermore, the
saturation suggests that the magnitudes of luminance changes
at different range changes stabilize at a certain level when the
range changes are large enough.
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Fig. 6. (a), (b), (c) are the mean conditional magnitudes of disparity coefficients given the magnitudes of luminance coefficients in all six subbands at three scales
((a)–(c): from the finest to the coarsest scale). (d), (e), (f) show the mean conditional magnitudes of luminance coefficients given the magnitudes of disparity
coefficients ((d)–(f): from the finest to the coarsest scale). Similar to Fig. 5, all these plots are monotonic.

Fig. 7. (a) Shows the correlation coefficients between the magnitudes of coregistered bandpass luminance and those of bandpass range at all six orientations,
and all three scales of subbands; (b) shows the correlation between coregistered bandpass luminance and bandpass disparity. All these plots suggest that: (1) the
magnitudes of bandpass luminance and of bandpass range (disparity) have a positive correlation; and (2) the correlation gets stronger at coarser scales. Applying
the �-test of significance of these positive correlations, we found that all the � values to be � �� . The weakly positive correlations represented by these plots
are statistically significant.

Likewise, Fig. 6 shows the conditional mean magnitudes of
bandpass disparity , given the magnitudes of band-
pass luminance in (a)–(c), and the mean magnitudes of bandpass
luminance conditioned on bandpass disparity in
(d)–(f). The curves show a clear positive correlation between

and . We also notice the saturation of bandpass lumi-
nance conditioned on bandpass disparity .

We plotted the correlation coefficients between and bandpass
range (disparity ) in Fig. 7. As expected from Figs. 5
and 6, and display positive correlations across
all scales and orientations. Most of the correlation coefficients

fall between 0.05 and 0.3. The positive correlation is significant
given the large number of coefficients. For example, there are
about 330,000 coefficients at the coarsest scale. The -test of the
significance of these correlations yielded a very small values

because of the large degree of freedom.
Most importantly, we observed a consistent tendency:

and have stronger positive correlations at coarser
scales. This monotonic relationship between correlation and
scale implies that luminance variations over a larger scale are
more strongly correlated with large scale range variat ions. We
attempt to explain this observation as follows.
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Fig. 8. Generalized Gaussian fits of (a) histograms of luminance coefficients at different range coefficients, and (b) range coefficients, given specific luminance
coefficients. Larger magnitudes of range coefficients indicate a larger variance of the luminance coefficient distribution, and vice versa.

Generally, a 3-D natural scene contains piecewise continuous
surfaces and range discontinuities. Luminance changes occur al-
most surely at range discontinuities but depend on many factors
(surface reflectance, shadow, illumination, etc.) on continuous
surfaces. The range boundaries (discontinuities) and their asso-
ciated luminance boundaries tend to be larger in scale, and more
regular in shape, which are well captured by coarser scale sub-
bands, and yield stronger positive correlations. Conversely, the
luminance variations within object surfaces tend to be smaller
in scale, and more irregular in shape, which are more likely to
be captured by finer scale subbands. In this case, the correlation
between luminance variation and range variation is weak, be-
cause range variations are mostly small within a smooth surface.
Consider a frequent experience in daily life: one can clearly
see the outline (luminance change coinciding with a large scale
range change) of a bill board 500 meters away when driving on
a highway but can only read the print (luminance change not
coinciding with a small scale range change) on the bill board at
30 m.

The findings in Figs. 5–7 have many important implications.
In binocular stereopsis, two monocular luminance images
are the starting point for all subsequent cortical computations.
Likewise, many computational stereo algorithms use luminance
edges or luminance wavelet coefficients as primitives for stereo
correspondence. From the earlier analysis, it seems that monoc-
ular bandpass luminance contains strong information regarding
the behavior of range and disparity. Since the ultimate purpose
of depth perception is to correctly measure distances using
every available piece of sensory information, it is interesting to
speculate how the brain may utilize the notable relationship in
Figs. 5–7 combined with stereopsis, to reach its goal. Corre-
spondingly, it is of great interest to wonder if the relationship
might be used to improve the state-of-the-art of computational
stereo ranging algorithms. For example, luminance cues might
be used to predict range, or at least serve as a consistency check
in stochastic approaches to stereo disambiguation.

VI. MODELING CONDITIONAL DISTRIBUTIONS

We studied the histograms of mutual luminance and range
(disparity) coefficient conditioning, and used generalized Gaus-
sians to model the conditional histograms.

First, we investigated the histogram of range coefficients of
a particular orientation and scale subband, conditioning on lu-
minance coefficients at the same location of the same subband.
We found the maximum value of luminance coefficients ,
and the minimum value of luminance coefficients . We set

evenly spaced bins between and , where
, where the bin is ,

and . The histograms of the range
coefficients in each bin are conditional histograms. We found
that all conditional histograms are well modeled as generalized
Gaussian with different parameters. We did a thorough analysis
over all orientations and all scales and found that generalized
Gaussian fitting is robust over all scales and orientations. The
shape parameters of the fitted generalized Gaussians of scene
features from one domain, conditioned on features from another
domain (luminance, range, or disparity), exhibits certain depen-
dencies. In short, it is consistent with the observed magnitude
dependencies depicted in Figs. 5 and 6.

Fig. 8(a) shows the conditional distributions (generalized
Gaussian fits) of luminance coefficients from one subband,
given different magnitudes of range coefficients. For visual
clarity, we only display the conditionals in three range coeffi-
cient bins, corresponding to second, fifth, and eighth decentiles,
respectively. The curves represent the generalized Gaussian
fits to the normalized conditional histograms (200 bins) of
luminance coefficients. The solid, dashed, and dotted curves
are the fitted generalized Gaussian probabilities ,
when all of the following: ,

and .
It is visually obvious that larger range coefficient magni-

tudes have lower peaks at zeros and higher probabilities for
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Fig. 9. We used generalized Gaussians to model � � ������, the conditional distribution of range coefficients given luminance coefficients. As shown in Fig. 8, the
dependency between the shapes of the fitted generalized Gaussians are kept in the shape parameters � and �. (a) is the scatter plot of � and the magnitudes of
luminance coefficients, and (b) shows the scatter plots of � and magnitudes of luminance coefficients. Each panel shows � or � and their associated luminance
coefficients from the 6 oriented subbands within a scale. From left to right, the scale goes from the finest to the coarsest.

TABLE IV
CORRELATION COEFFICIENTS BETWEEN SHAPE PARAMETER ��� �� AND ����

IN � � ��������

larger luminance coefficient magnitudes. The differences in the
curves fit by generalized Gaussians are expressed by the shape
parameters.

The conditionals of range coefficients given lumi-
nance coefficients are plotted in Fig. 8(b). We observe similar
behavior as in Fig. 8(a): The shapes of show a strong
dependence on bandpass luminance . Larger luminance coef-
ficients yield a lower peak and heavier tails. We also observed
very similar behavior of and , which are not
plotted for brevity.

We visualized the and of in Fig. 9(a) and (b),
respectively. Each panel in Fig. 9 displays the scatter plots of
the shape parameters of against in all six orienta-
tion subbands of one scale. It is obvious that both and have
a very strong positive correlation with . Table IV lists the
correlation coefficients between and , and those between

and .
Similarly, the conditional distribution of disparity coefficients

given luminance coefficients, is also modeled as gener-
alized Gaussian, with shape parameters and that depend on
the magnitudes of the disparity coefficients . Fig. 10 shows
the scatter plots of and against the magnitudes of bandpass

luminance . Again, there are strong positive correlations be-
tween and , and between and . We list these corre-
lation coefficients in Table V.

We also performed the same analysis on the conditional
distribution of luminance coefficient and .
Fig. 11 shows the scatter plots of the shape parameters of

against , and Fig. 12 shows the scatter plots of
the shape parameters of against . All these plots
clearly show the positive correlation between the shape parame-
ters and bandpass range (disparity). These positive correlations
are consistent over all orientations and all scales. We list the
correlation coefficients in Tables VI and VII. We performed the
-test of significance of the correlations in Tables IV–VII. We

found that all of the values satisfied 0.001, indicating strong
positive correlations.

With this newly gained knowledge on the statistical depen-
dencies between 2-D and 3-D scene features in natural scenes,
we believe that the human vision system uses these existing
statistical regularities to solve problems in depth perception.
Toward this end, we use these conditional natural scene sta-
tistics (NSS) models to explore one of most fundamental and
extensively studied problems to computer vision, visual psy-
chophysics, and visual neuroscience: stereo correspondence.

VII. APPLICATION TO COMPUTED STEREOPSIS

A. Motivation and Scope

Stereo correspondence has been one of the most important
questions in computational vision for more than three decades.
The history of research on the neuronal mechanisms of biolog-
ical stereopsis is much longer. Great progress has been made
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Fig. 10. Shape parameters of generalized Gaussian fits of � � ������, the conditional distribution of disparity coefficients, are plotted against the magnitudes of
luminance coefficients. (a) Shows the scatter plots of � and the magnitudes of luminance coefficients and (b) shows the scatter plots of � and magnitudes of
luminance coefficients. Each panel shows � or � and their associated luminance coefficients from 6 oriented subbands within a scale. From left to right, the scale
goes from the finest to the coarsest.

TABLE V
CORRELATION COEFFICIENTS BETWEEN SHAPE PARAMETERS ��� ��

AND ���� IN � � ��������

in understanding disparity tuning of simple and complex neu-
rons in cortical area V1, but our current knowledge is still local
and isolated and does not explain the underlying organization
of larger populations of binocular neurons located over many
levels of cortical areas and layers [47]. Regarding stereo cor-
respondence, visual neuroscientists and computer scientists de-
ploy different methodologies to approach this question. Neuro-
scientists won’t sway from known properties of binocular neu-
rons. Their interest is to explain their experimental findings on
single unit recording, or fMRI, usually given simple and unam-
biguous binocular stimuli. The building blocks of their stereo
correspondence algorithm are models of binocular neurons [34],
[48]. Because we have only limited knowledge on the encoding
and representation of complicated 3-D natural scenes in the
brain, most of the stereo correspondence algorithms designed by
visual neuroscientists are not comparable in performance with
state-of-the-art stereo algorithms designed by computer scien-
tists. Computer scientists enjoy the freedom to fine-tune their al-
gorithms, regardless of biological compatibility, which is an ad-
vantage when dealing with complex, cluttered, and sometimes
ambiguous natural scenes. It is beyond our scope here to re-
view a lot of stereo matching algorithms (for this purpose, see
[49], [50]). Our implementation is closely related to methods

that define and optimize a global energy (cost) function to solve
the stereo problem. The energy functions can often be given a
Bayesian interpretation of the luminance and depth interaction
and depth priors. Generally, these models are based on Markov
random field models [51]–[53]. Some methods also provide spe-
cific handlings of difficult regions such as occlusions and depth
discontinuities [52], [54], or by varying smoothness terms ac-
cording to color gradients [55]. These methods are indeed close
to our approach as they share a Bayesian framework with sim-
ilarly defined probabilities. However, our approach is rooted in
direct and accurate measurements of luminance and range from
natural scenes without making a priori assumptions on the prob-
abilistic definitions.

In our study, we try to bridge the gap between biologically
compatible, neuroscience-based algorithms and heuristic,
performance-tuned, artificial algorithms. We assume that the
human brain has internal models of visual space. Furthermore,
the internal models should be consistent with the statistical
properties of natural environments. We hypothesize that rele-
vant and optimal solutions can be achieved by formulating the
stereo correspondence problem within a Bayesian framework.
Since we have developed quantitative models of luminance
and disparity in the previous sections, our aim is to apply our
probability models of 3-D natural scenes to Bayesian stereo
correspondence. Our goal is to demonstrate the utility of the
newly found statistical regularities of 3-D natural scenes using a
simple formulation, rather than to compare our results with the
most complex and sophisticated stereo matching algorithms.
However, we did upload our results to the Middlebury Stereo
online evaluation Web site, which can be found at (see http://vi-
sion.middlebury.edu/stereo/submit/). Our results ranked 71st
among 94 algorithms on the evaluation page.
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Fig. 11. Shape parameters of generalized Gaussian fits of � ���� ���, the conditional distribution of luminance coefficients, are plotted against the magnitudes of
range coefficients. (a) Shows the scatter plots of � and the magnitudes of �� and (b) shows the scatter plots of � and magnitudes of ��. Each panel shows � or � and
their associated �� from 6 oriented subbands within a scale. From left to right, the scale goes from the finest to the coarsest.

Fig. 12. Shape parameters of generalized Gaussian fittings of � ���� ���, the conditional distribution of luminance coefficients are plotted against the magnitudes
of disparity coefficients. (a) is the scatter plot of � and the magnitudes of �� and (b) shows the scatter plots of � and the magnitudes of �� from 6 oriented subbands
within a scale. From left to right, the scale goes from the finest to the coarsest.

TABLE VI
CORRELATION COEFFICIENTS BETWEEN SHAPE PARAMETERS ��� �� AND � ���

IN � ����� ����

TABLE VII
CORRELATION COEFFICIENTS BETWEEN SHAPE PARAMETERS ��� �� AND � ���

IN � ����� ����

B. Method

We denoted the left image , the right image , and the dis-
parity map . Many global stereo correspondence algorithms
define an energy function [49], [56]. The solution in disparity
space that minimizes the energy function is the final disparity
map. For example, Barnard [57] defined the energy function as:

(6)

where is a photometric constraint that assumes two cor-
rectly matched pixels are similar. is a smoothness con-
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straint that penalizes large changes in local surface neighbor-
hood, and balances the contributions from the two terms.
These heuristic definitions are generally valid, since they im-
plicitly match the properties of natural scenes: mutually visible
points have similar luminance in the left and right image, and
the 3-D space is piecewise continuous.

In a Bayesian formulation, Belhumeur [58] showed that
equals the likelihood of interocular luminance differ-

ence, and equals disparity prior. We adopt Belhumeur’s
Bayesian framework and modify the likelihood and prior to
accommodate our natural scene models.

Suppose the reference image is , then we may assume from
what we have learned from our coregistered range-luminance
study that contains information about its disparity map . De-
note a subband of wavelet decomposition of as . We know
that can be modeled as generalized Gaussian. In order
to try to solve the problem in the wavelet domain, we write the
posterior probability of finding the disparity map given the two
images as

(7)

We assume

We make the same Gaussian assumption as in Belhumeur
[58].

(8)

To further simplify the problem, we assume that bandpass dis-
parities are spatially independent. This is a rather strong as-
sumption, which is not necessarily supported by real distribu-
tions of natural scenes. We make this assumption to make this
problem tractable. Under the independence assumption.

(9)

The stereo correspondence problem is formulated as an opti-
mization problem.

(10)
where

(11)

Fig. 13. We used a linear model to estimate the relationship between � and
bandpass luminance ����. (a) Shows the linear fit of � against ���� and (b) shows
the linear fit of ��� ��� against ����.

Fig. 14. Left to right: one sample image, the map of shape parameter �, the
map of shape parameter �. Both � and � are estimated from one orientation sub-
band (diagonal). It is apparent that at large luminance changes along diagonal
directions, � and � also tend to be large. In our implementation, we use a four
orientation decomposition.

Given (10), we deploy simulated annealing as in Barnard [57]
to solve the optimization. The major difference between our
method and Barnard's method is in the definition of the term

. In our approach, we modify the penalty on disparity
changes adaptively by changing the shape parameters and .
Given the strong positive correlation between and band-
pass luminance , at regions with large , the parameters
and are set such that the penalty on large disparity changes are
attenuated. But at regions having small luminance variations,
the values of and intensify the penalty on large disparity
changes.

By observing the plots in Fig. 11, we use a linear model to es-
timate from bandpass luminance at a location

. We also model and as linear by observing
the scatter plot. Fig. 13 shows the linear fits and the scatter plots
at one scale. The spatially variant shape parameters are
displayed as images in Fig. 14. The values of and are esti-
mated from the finest scale.
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Fig. 15. Left to right: the reference images, the ground truth disparity maps, the computed disparity maps using NSS modeling and the computed disparity maps
with energy function defined as in (10).

C. Implementation and Results

The objective function (10) is defined on one subband. To
optimize over all subbands, we sum (10) over all bands and
minimize:

(12)

where is the subband orientation, and is the subband scale.
We adapted the simulated annealing implementation algorithm
from the Middlebury stereo dataset [50] to implement our
energy function defined in (12) based on 3-D natural scene
statistics.

We set the initial temperature at 200, and the maximum iter-
ation to 5000. We tested our algorithm on four stereo pairs with
ground truth from the Middlebury stereo dataset [50]. For com-
parison, we also ran the simulation using the classical energy
definition [as in (10)] developed by Barnard [57].

Another important parameter is : the relative weight be-
tween and . We know that is actually the vari-
ance of the interocular difference between matched pixels from
(20). We want to emphasize that it is “matched” pixels, rather
than “mutually visible” pixels. In Belhumeur’s World I defini-
tion [58], all the “matched” pixels are actually “mutually vis-
ible,” which means there are no occlusions or disparity discon-

tinuities. In Belhumeur’s case, the interocular difference be-
tween two mutually visible pixels is very small, and depends
on the differences between two optical imaging processes and
the orientation differences of the reflectance of a spatial point in
space. However, there are many occluded areas in the four test
stereo pairs (also in natural environments). Because our algo-
rithm does not have occlusion detection, all of the pixels in the
reference images are matched with pixels in the other images
without distinction. The variance of interocular difference be-
tween two matched pixels depends on the scene content: more
occluded areas yield larger variance, and more mutually visible
areas yield smaller variances. Since there is no easy way to find
the best theoretically, we tested a few values of ( , 5,
10, 50, 100, 500), to generally illustrate the results.

Fig. 15 shows the reference (left) images of each stereo
pair, the ground truth disparity maps, the computed disparity
maps with generalized Gaussian modeling of , and
the computed disparity maps using Barnard’s basic energy
definition [57]. It is visually obvious that our algorithm yields
much better disparity maps than the original energy function
definition in (6). Using the evaluation criteria included with the
Middlebury stereo software [50], our approach significantly
improved the Belhumeur algorithm in terms of “bad pixel rate”

. On the stereo pairs Tsukuba,
Venus, Cones, and Teddy using the energy definition (10)
the error rates were 18%, 24%, 29%, and 43%, whereas our
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algorithm improved the bad pixel rates to 4.7%, 3.7%, 8.3%,
and 12.7%, respectively.

We believe that this experiment demonstrates the validity
of utilizing monocular luminance–disparity dependencies that
occur in the natural environment for helping to resolve stereo
correspondences. Other related and complementary work has
yielded similar conclusions.

For example, in an elegant framework, Scharstein and Pal
[59] use machine learning techniques to learn conditional
random fields from a different set of calibrated ground truth
disparity maps computed via structured-light methods. The
authors report good results. Their work differences from ours in
that we deploy closed-form parametric models of conditional
distributions in wavelet space to describe luminance–range
relationships, which, if accurate, leads to simpler development
and algorithm design. Our results suggest that our conditional
models are quite accurate.

The development of new ground truth stereo databases is
timely, especially in view of the ascendant popularity of 3-D
displays and presentations. Two factors are relevant here: larger
databases (more stereo pairs with ground truth), thus reducing
the possibility of “training” ones algorithm (inadvertently or
otherwise) to achieve optimal performance specific to a partic-
ular data set, and better ground truth, arrived at by a modern
sensor, such as a lidar-based terrestrial scanner.

VIII. CONCLUSION

Using a public coregistered database of luminance and range
natural images, we examined the priors and conditional distri-
butions of low level, fundamental image features such as lumi-
nance, disparity, and distance. Similar to the well-known prop-
erties of wavelet subband histograms of luminance images, the
distributions of range and disparity subband coefficients tend to
have much higher kurtosis than luminance coefficients, owing
to a greater degree of regularity in range and disparity maps as
compared to luminance images. Generalized Gaussians gener-
ally give good fits to marginal distributions of luminance, range,
and disparity wavelet coefficients, but the shape parameter
associated with marginal luminance distributions ( [0.6, 0.8])
tends to be significantly larger than those for marginal range and
disparity distributions ( [0.2, 0.3]).

We found that the conditional magnitudes of luminance and
range (disparity) coefficients mutually depend on each others’
magnitudes. Generally, regions with larger luminance variation
tend to have larger range (disparity) variation and vice versa.
Our analysis also shows that the correlations between bandpass
luminance and bandpass range (disparity) are stronger in coarser
scales. The shape parameters of the conditionals display a
clear dependency on the scene features that are conditioned on.

We developed a stereo correspondence algorithm based on
our statistical models of 3-D natural scenes. Using a Bayesian
framework, we showed that adaptively changing the smooth-
ness cost at different luminance variation can improve the
quality of the computed disparity maps. We believe that statis-
tics of this type will also prove useful in other 3-D vision and
image processing applications, such as shape-from-X (shading,

texture, etc), 3-D recognition, and 3-D (stereo) image quality
assessment.
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