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Abstract—Cross-layer optimization for efficient multimedia
communications is an important emerging issue towards pro-
viding better quality-of-service (QoS) over capacity-limited
wireless channels. This paper presents a cross-layer optimization
approach that operates between the application and physical
layers to achieve high fidelity downlink video transmission by
optimizing with respect to a quality criterion termed “visual
entropy” using Lagrangian relaxation. By utilizing the natural
layered structure of wavelet coding, an optimal level of power
allocation is determined, which permits the throughput of visual
entropy to be maximized over a multi-cell environment. A the-
oretical approach to optimization using the Shannon capacity
and the Karush-Kuhn-Tucker (KKT) conditions is explored when
coupling the application with the physical layers. Simulations
show that the throughput gain for cross-layer optimization by
visual entropy is increased by nearly 80% at the cell boundary as
compared with peak signal-to-noise ratio (PSNR).

Index Terms—Cross-layer optimization, downlink wavelet
video, power allocation, visual entropy, wavelet coding.

I. INTRODUCTION

I T is hoped that the rapid anticipated growth in wireless mul-
timedia demand over the next few years will be matched

by corresponding substantial increases in wireless channel ca-
pacity via the use of broader bandwidths. In parallel with ex-
tensive research on video compression and transmission cen-
tered on the standard series of Joint Photographic Experts Group
(JPEG), Moving Picture Experts Group (MPEG), and H.264
codecs, considerable effort has been applied to the development
of more efficient radio resource utilization over wireless chan-
nels. In order to better control multimedia wireless transmis-
sion, quality-of-service (QoS) parameters, such as transmission
delay, bit error rate, and delay jitter, are widely utilized to char-
acterize multimedia traffic at the physical layer.
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Recent efforts have highlighted issues of cross-layer op-
timization for achieving a better QoS over capacity-limited
wireless channels. In [1], a modified MPEG-4 coding scheme
was employed for progressive data transmission by controlling
the number of subcarriers over a multi-carrier system. In [2],
a framework was presented for joint source-channel coding
and power adaptation. Error resilient source coding, channel
coding, and transmission power adaptation were jointly de-
signed to optimize video quality given constraints on the total
transmission energy and delay for each video frame. In [3],
video quality expressed as minimum total expected mean
square error (MSE) was controlled using constraints on trans-
mission cost and delay in a lossy network environment. In [4],
the benefits of characterizing video quality by the variance of
the end-to-end distortion was explored, when allocating limited
source and channel resources. However, the focus of these and
other cross-layer approaches has mostly been fixed on the joint
source-channel coding schemes, where the source encoding
rate is moderated by the rate adaptation. The main contribution
in [5] was to propose a distortion aware scheduling scheme
for packet-based video transmission over wireless networks. It
would be quite useful for resource management if information
regarding the incoming video quality and other utility data
were made available to the physical layer. Another difficulty
is a lack of utility and quality criteria for evaluating perfor-
mance gains afforded by the use of cross-layer processing. The
most widely-used quality criteria is the peak signal-to-noise
ratio (PSNR), although it is widely known to correlate poorly
with perceptual video quality. This is a common problem for
resource management when deciding which bitstream to serve
first, when several bitstreams have the same number of bits
and arrive simultaneously. Current radio resource control algo-
rithms depend on the PSNR [5], [6] to improve video quality
and therefore do not adequately capture perceptual quality, nor
account for visual importance.

Fig. 4 illustrates the poor performance of PSNR in this regard.
Although the PSNR values shown for Fig. 4(a)–(c) are approxi-
mately the same as those shown in Fig. 4(d)– (f), the perceptual
quality of these two groups of images are significantly different,
since the PSNR criterion does not capture perceptual image er-
rors. In this and other senses, the PSNR as a quality assess-
ment device poorly predicts subjective visual quality [7]. While
PSNR remains widely used, a variety of much more powerful
image and video quality indices have recently been introduced
[8]–[10]. Currently, the Structural SIMilarity (SSIM) index de-
scribed in [8], and the Visual Information Fidelity (VIF) index
described in [9] and [10] are the most competitive, yet none of
these have been applied to the cross-layer problem. However,
both PSNR and SSIM are full-reference quality metrics, and
therefore require reference images or videos for comparison.
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What is needed in this context is a quality index that does not
require a reference. In this direction, we have previously defined
“visual entropy” as the expected number of bits required to rep-
resent image information mapped onto foveated human visual
coordinates [11]. Using visual entropy, a new quality metric,
termed the foveal signal-to-noise ratio (FSNR) was defined and
used to optimize a video coding algorithm [12]. Visual entropy
was also defined over the wavelet domain in [13] and [14], while
[15] was an attempt to apply visual entropy to resource man-
agement over wireless networks. Visual entropy has also been
deployed in a multiple-input multiple-output (MIMO) system
in [16], and in a modified, standard-compliant H.264/advanced
video coding (AVC) algorithm in [17] and [18]. In that work,
visual entropy was used to estimate the data rate for a bitstream
transmitted over a wireless network. One attractive advantage of
visual entropy lies in the quantification of visual gain as a con-
crete quantity such as a bit. Thus visual gain can be displayed as
an index to aid resource management in video communications.

In this paper, we explore a theoretical approach to cross-
layer optimization between the application and physical layers,
using a quality criterion expressed in terms of visual entropy
[19]–[21]. The main contributions in this paper are itemized
as follows: First, visual entropy is defined as a perceptually
relevant utility function or index of visual quality, represented
as bits. Second, a novel approach to closely couple the appli-
cation and physical layers is provided, using a reliable infor-
mation-passing protocol for quality control in diverse environ-
ments, such as orthogonal frequency division multiple access
(OFDMA)-based network, MIMO transmission, and multi-hop
communication. Third, A new method for reducing inter cell
interference (ICI) that may occur in real multi-cell scenario is
presented.

II. OVERVIEW

Here we will use “slice” to represent an independent decod-
able unit obtained by scanning naturally layered wavelet coef-
ficients based on a wavelet video coding scheme. In general, it
can be assumed that the video service accesses each video se-
quence in the form of multiple slices.

A. Optimization Based on Channel Feedback

Two critical parameters, i.e., channel quality and visual
weight, are utilized in cross-layer optimization. The visual
weight of each slice is encapsulated in the header of each
packet, while the channel quality is obtained by using periodic
channel feedback from all of the mobile stations (MSs) served
by the base station (BSs). During the channel update period,
the cross-layer optimization is accomplished as follows.

• 1st Step: each MS served reports the channel quality to the
BS.

• 2nd Step: the BS determines an optimal power to each
packet, using channel quality information from the MSs.

• 3rd Step: the BS transmits video packets using the optimal
power allocation mechanism.

• 4th Step: each MS periodically reports its varying channel
quality to the BS.

• 5th Step: the procedures of the 3rd and 4th steps are con-
ducted until the channel quality is updated.

We follow the downlink signal flow based on the specifications
of OFDMA-based network services [22].

B. Packetization Including the Visual Weights

Using a progressive wavelet video encoder such as set
partitioning in hierarchical trees (SPIHT) [20] or embedded
block coding with optimized truncation (EBCOT) [23], each
slice can be constructed by scanning the wavelet coefficients.
Each wavelet coefficient can be assigned a different visual
importance weighting. After summing the visual weights over
each slice, the value can be included in the packet header.
Since quality of motion is critical to subjective video quality,
the visual weight of motion vectors may be significantly larger
than certain wavelet coefficients.

C. Visual Weight-Based Scheduling

If the source coding rate is larger than the channel capacity,
the optimization scheme reduces the source coding rate to a
threshold level so that the channel coding error probability is
optimally reduced relative to the reconstructed visual quality.
It may be assumed that the bitstreams are constructed in the
streaming server before streaming service. When a service is
invoked from a client, packets are generated from the bitstream
and transmitted to the BS. The BS scheduler then examines
the incoming packets, and executes unequal error protection ac-
cording to the importance of each packet in order to prioritize
scheduling for more important packets and to provide the best
effort for less important packets.

D. Error Concealment of Wavelet Coding

In general, transmission errors can occur due to packet loss
or bit error over the wireless channel, or to packet dropping
from the transmission queue. The quality degradation in the re-
constructed video can be mitigated using an error concealment
technique by exploited the spatial and temporal correlations in
video data. Lost slices can be estimated based on the received
slices of the current frame, or on the previous frames. Naturally,
the error concealment technique used should rely on the type of
picture. For an “I-frame”, if a previous frame is not available,
then the frame must be constructed using received data only.
The remaining part of an erroneous slice is discarded after the
first transmission error. Due to the hierarchical structure of the
wavelet decomposition, the distortion is not localized as com-
pared to discrete cosine transform (DCT)-based video coding. If
a highly correlated previous frame is available, then error con-
cealment may be applied.

III. VISUAL ENTROPY FOR WAVELET VIDEO CODING

A. Definition of Visual Entropy

Visual entropy is defined as the expected number of bits that
are required to represent image information that is mapped
onto visual coordinates [13]–[15]. The visual weight
is characterized by two visual components: spatial domain
weights and frequency domain weights as depicted
in Fig. 1. When spatial information of interest, such as an
object or objects, are identified, models of the non-uniform
foveated sampling process of the human eye can be used to
obtain over the spatial domain. Likewise, visual sensitivity
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Fig. 1. Depiction of visual entropy defined over the wavelet domain. (a)
Wavelet decomposition. (b) Spatial domain � weighting. (c) Frequency do-
main � weighting. (d) Total wavelet domain � weighting. The brightness
represents the level of visual importance.

can be characterized by over the frequency domain by
modeling the contrast sensitivity function (CSF) of the human
eye. The total weight over the two domains may be expressed

. In layered video coding based on frequency
division without foveation, the weight for each layer becomes

. In region-based, object-based, or foveation-based
video coding without a layered structure, the weight simplifies
to . However, in hybrid video coding methods
using object-based layered mechanisms, applying weights
over both the spatial and frequency domains proves effective.
Details regarding the definition and are discussed in
[13]–[15]. The distribution of wavelet coefficients from “I- and
P-frames” exhibits first-order statistical behavior that is well
modeled by a Laplacian distribution [24]. The entropy, which
is defined in the wavelet domain, for each frame then becomes

, where is the wavelet
coefficient, is the index ( , the total number
of coefficients), is the variance, and is the base of the
natural logarithm.

Let and be the variances of coefficients for I- and
P-frames, respectively. Visual entropy is then obtained by

(1)

where for the I-frame and for the
P-frame (which means the residual information’s variance value
for processing the P-frame).

B. Consideration of Temporal Activity

Since the HVS is relatively insensitive to distortions in fast-
moving regions, the visual weights for I-frames and P-frames
may be modified according to the local temporal activity of the
video. This can be computed as the mean value of the motion
vectors in the frame. The authors in [25] proposed a quality
metric for video quality assessment using the amplitude of mo-
tion vectors, and compared it with subjective scoring of the

videos. The temporal activity of the th frame can be ex-
pressed

(2)

where and are the mean values of the
horizontal and vertical components of the motion vector at spa-
tial coordinate in the th frame, and and are the
width and height of the video sequence, respectively. The vi-
sual weights can be redefined to reflect temporal activity as

(3)

where , , and are empirical constants taking values “2.5”,
“5”, and “30” in [25].

C. Localization Region of Interests (ROI)

Simple interactive methods that are effective for determining
areas of visual importance include the use of a mouse or a touch
screen. For images or video that do not change rapidly, “fix-
ating” using these devices can be easily learned, although they
are of limited utility in more generic applications. In controlled
applications containing objects of known characteristics, such
as faces, the focusing point or region can be automatically
chosen and traced by detecting and recognizing the facial
shape, color, or motion. Very sophisticated mechanical eye
trackers have become commercially available that accurately
track the direction of gaze of a human observer by detecting
the motions of the eye, either through infrared (IR) reflection or
by detecting the pupil. These devices are effective in situations
where the user is located in front of a terminal or other display
device and within a prescribed or expected physical location.
Object recognition and “saliency” detection can also be used.
Various approaches for saliency detection have been presented
in [26]–[28].

IV. PROPOSED SYSTEM MODEL

A. Stepwise Power Allocation

In OFDM-based cellular networks, a frequency reuse factor
(FRF) of 1 is desirable for greater channel throughput and ease
of deployment. The main advantage of an FRF of 1 is the sub-
stantial increase in user capacity per unit bandwidth compared
to other FRFs. In spite of this advantage, however, the channel
throughput at the cell boundary rapidly decreases due to ICI. In
such multi-cell environments, the ICI is a major factor leading
to throughput degradation. The signal-to-interference and noise
ratio (SINR) and the channel throughput of an MS decreases
with distance from the BS [29].

In order to prevent quality degradation as a function of the lo-
cation of the MSs, it is necessary to develop an interference miti-
gation technique, e.g., by controlling the power amplitude levels
over the broadband. One strategy to achieve a higher FRF is to
divide the frequency band into separate subbands as it is done
in traditional CDMA systems, which are then assigned to each
cell to avoid frequency overlap. By exploiting higher FRFs, it
is possible to significantly reduce interference. However, each
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cell is then able to use only a fraction of the available band-
width, and so a decrease in frequency utilization and channel
throughput is inevitable. The proposed power allocation scheme
uses a stepwise power pattern, where the frequency band is sub-
divided into subbands and a power level allocated to each sub-
band. However, the band corresponding to the greatest power in
one cell is switched by employing an FRF of 7. In such a step-
wise power pattern, each band will have reduced interference
compared to the ordinary power allocation case, and therefore,
ICI of the home cell would also decrease and the throughput in-
crease.

The band that is allocated the largest amount of power has a
relatively high channel gain owing to the reduced ICI, while the
band allocated the smallest power is severely interfered with rel-
ative other bands. Thus, if a non-uniform channel quality index
is efficiently utilized to transmit data having non-uniform vi-
sual entropies generated from the layered wavelet coding mech-
anism, a higher gain in visual throughput should be achievable.
For example, the SPIHT and EBCOT codecs use this concept to
generate embedded progressive video. After extracting the co-
efficients from the first sorting and refinement pass, visual en-
tropy of these data is obtained. Using visual entropy, the trans-
mitted power is allocated to the first band while the video data
is loaded to it. The data extracted from the next pass is loaded to
the second band with power allocation similar to the first step.
This procedure is repeated through the last sorting and refine-
ment pass.

To measure the summation of visual entropy after the
sorting and refinement pass, the empirical model for the selected
coefficient is defined by

(4)
where is the selected coefficient on the th pass, is the
set of coefficients along the th pass, and , , and are the
constants and the quantization step, respectively. The method to
obtain the constants and is described in our recent papers
[13]–[18]. Therefore, the quantized bitstream after the th pass
becomes

(5)

and visual entropy for this bitstream also becomes

(6)

where represents the visual importance con-
tained in the bitstream, which is obtained by adding the visual
weights of the coefficients in [13]–[18].

B. SINR at the Multi-Carrier-Based Cellular System

Without any loss of generality, hereafter let an MS be lo-
cated at in the th cell (home cell). The pathloss between the
MS and the th BS is given by ,
where is the distance between in the th BS, and
is a Gaussian distributed random variable with zero mean and
standard deviation representing shadowing over the th BS [30].
Typically, the mean of is zero, and its standard deviation is in

the range of 6–10 dB for signals from adjacent BSs and 2–2.5 dB
for signals from the home BS. For frequency-selective fading,
the baseband impulse response of a multipath channel can be
expressed as

(7)

where is the wide sense stationary channel of the user at the
th position and the th multipath, is the maximum number of

resolvable multipath components, and is the excess delay of
the th multipath component. Using (7), the frequency response
at the th subcarrier of the user can be expressed

(8)

where is the total number of subcarriers. Based on both large-
scale and frequency-selective fading the SINR of the th user at
the th subcarrier is given by

(9)

where is the maximum transmit power of each BS and
is the interference and noise power. For simplicity, assume that

; hence, . The normalized
channel gain is then

(10)

The normalized channel gain can be modeled as an exponen-
tial distribution with mean [31]

(11)

The ICI is given by

(12)

where is an index of the adjacent BS, is the number of
neighbor cells ( in 2 tiers. In general, the SINR for
the th MS at in the th cell without any power allocation is
(we omit the index based on the assumption that the th user
is assigned the th subcarrier)

(13)

where is the pathloss between the MS and the home BS,
is the intra cell interference ( ),
is the power spectral density of additive white Gaussian

noise (AWGN), is the normalized number of carriers of the
th user in the th BS, known as the code portion, and is

the total bandwidth. The energy per bit to noise power spectral
density ratio then becomes , where
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Fig. 2. Depiction of the parameters used.

is the data rate [30], [32]. If each subcarrier is perfectly or-
thogonal to the others, as in a general OFDM scheme, then
becomes 1.

C. Throughput of Visual Entropy With Stepwise
Power Allocation

Assume that each cell has a different power pattern, with a
periodic power circulation with an FRF of 7, as shown in Fig. 2.
Under this system model, the SINR for the th band of the th
MS at position is

(14)

where is the maximum transmit power for the th band or
the th subcarrier (i.e., ) of the th MS, is the
bandwidth for the th band, is the normalized channel gain
of the th band or the th subcarrier over the th BS,

, and .
To describe the power allocation mechanism, the following

parameters are defined:

strength of the downlink power allocated to the th
band in the th cell;
transmitted power for the th band of the th MS;

link gain for the th band of the th MS, which is a
function of the path loss, the mean shadowing, and
the ICI.

Under the assumption , the formula in (14)
can be rewritten

(15)

where and
. For brevity, denote

(16)

The data rate for the th band of the th user is obtained using
the Shannon capacity formula for the Guassian channel as

(17)

To reduce the gap between the Shannon capacity and the real ca-
pacity, a scaling factor is introduced. The scaled
data rate for the realistic system then becomes

(18)

In terms of link capacity, the numerical formula in (18) gives
a more strict upper bound. In view of implementation, a more
achievable rate for the system would be obtained using a coding
technique such as turbo code, which nearly achieves Shannon
capacity [5]. The scaled data rate in (18) can be interpreted as
the average number of bits in a packet to be transmitted for a
given bit error probability (BER). When -quadrature ampli-
tude modulation (QAM) is used, the BER of becomes

(19)

where , is the Q-function,
and is the number of bits per symbol. The packet error proba-
bility (PER) of then becomes

(20)
where is the coefficient from the th pass extraction
for the th MS and is the number of bits per
packet. The equation above is based on the assumption that each
transmitted packet contains the bitstream of (5) from the th pass
extraction and the during the packet transmission time
is a constant. If the packet propagation time is shorter than the
transmission interval, the average number of transmitted bits

in the packet can be obtained by

(21)

and we can consider as the number of bits in the th trans-
mitted packet for the th MS.

The Shannon capacity in (17) is the upper bound of the scaled
data rate in (18). In addition, we can make a tight bound by
using the scaled data rate, as long as it is always higher than the
number of transmitted bits in (21)

(22)

An appropriate scaling factor can be obtained when the
first equality holds in (22), as follows:

(23)

However, obtained by (23) varies with position, be-
cause it is a function of . We need to fix the value of
regardless of position, while keeping the relation in (22). The
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smaller the value of is, the closer the scaled data rate
comes to the average number of transmitted bits. To choose an
optimal which leads the scaled data rate to the tight bound
of the average number of transmitted bits, the following algo-
rithm is applied:

Step 1. Obtain for all points using the equality in(23)

Step 2. Screen according to the condition(22)

For

If

Step 3. Find the minimal scaling factor

Once the optimal scaling factor is obtained, the scaled
data rate is exploited as a tight upper bound of in (22) When
each packet which contains the bitstream from the th pass is
transmitted over the th band, we can treat the index as the
same as the index . The sum of transmitted visual entropy,
which is the weighted version of the bits transmitted via each
packet is then obtained as

(24)

V. OPTIMAL DOWNLINK POWER SET

A. Main Goal of Optimization

The proposed optimization is intended to transmit video data
more reliably. Previous authors have developed methods for
maximizing the PSNR, or equivalently to minimizing the MSE
[5], [33], [34]. In this paper, visual entropy is considered as a
weighted data rate, where the weight is calculated based on a
model of human visual system. If the weight is uniform, an
equivalently optimal solution is obtained by maximizing the
PSNR. Thus, in the final analysis, optimization using visual en-
tropy is a general form of optimization, and maximizing vi-
sual entropy is generally equivalent to maximizing a visually-
weighted quality metric.

B. Problem Formulation Using Lagrangian Relaxation

It is assumed that the proposed system employs Automatic
Repeat-reQuest (ARQ) and forward error correction (FEC)
schemes. It is also assumed that the transmitted rate reflects
the header information using the scaling factor in (18). To

maximize the throughput of visual entropy, an optimization
problem for transmitting the information of each frame can be
formulated:

(25)

where is the total transmit power w.r.t. all bands and is the
number of divided bands.

Since is the average visual weight for the packet, the
problem of maximally transmitting visual entropy can be solved
using this header information. The solution of the optimization
problem (25) is an optimal power set,
for the MS. Because is the function of ( and ), and

is assumed not to change with varying , (25) is a convex
problem, which has an optimal solution with respect to .

Formulate a Lagrangian relaxation

(26)

where is a nonnegative Lagrangian multiplier. Using (22), the
Lagrangian function can be written as

(27)

The new Lagrangian function of (27) yields an optimal solution
of the power set that is equivalent to the solution of (25), when
the equality condition in (22) holds. Therefore, the solution of
(27) becomes equivalent to (25) when the total number of trans-
mitted bits is the same as the upper bound of the Shannon ca-
pacity. Taking derivatives with respect to and , respectively
yields the Karush-Kuhn-Tucker (KKT) conditions:

(28)

(29)

(30)

From (28) and (29), if the power is allocated to band
(that is, ), then the complementary slackness condition
is satisfied:

(31)



LEE et al.: CROSS-LAYER OPTIMIZATION FOR DOWNLINK WAVELET VIDEO TRANSMISSION 819

In addition, the optimal values of and its multiplier are
given by

(32)

(33)

C. Throughput Gain of the Proposed Scheme

To validate the optimal solution in (32) and to measure the
benefit produced by the proposed scheme, the throughput gain
is measured in terms of visual entropy. The maximum number
of bits transmitted to each MS is expressed using for the
proposed method and for the test method, as follows:

(34)

(35)

The test method measures the volume of transmitted data
using the MSE rather than visual entropy [5], [33], [34]. In other
words, the PSNR criterion is used for the test method. A mod-
ified SPIHT in [21] is employed as the encoding scheme for
both methods. The transmitted visual entropy for the proposed
and test methods can be expressed

(36)

(37)

where can be used for any kind of weights w.r.t the purpose
of comparison. For a given capacity , the attained gain for
the stepwise allocation scheme is obtained using (36) and (37):

(38)

D. Extended Environments and Applications

Although we focus on cross-layer optimization over a multi-
cell environment (25), the optimization approach can be ex-
tended to various realistic situations with some manipulations.
In [16], a power allocation method for singular value decompo-
sition (SVD)-based MIMO systems was presented. In the opti-
mization, (25) can be changed into

(39)

TABLE I
SIMULATION PARAMETERS

where is the divided channel after SVD, is the total par-
allel decomposed channels, and is the eigen value of the
th channel. Moreover, this method can also be extended to

multi-hop transmission where the extension of (25) is obtained
as

(40)

where is the link index composing the multi-hop links and
is the entire set of links.

In the downlink video sequence transmission, it is necessary
to update the power pattern along the temporal axis by relying
on the statistical behavior of the visual traffic. To simplify the
optimization problem, the power pattern is assumed to be up-
dated according to the frame rate of the video sequence. Thus,
an optimal power set is determined having the same frame rate.
In addition, it is assumed that the obtained power set for the
home cell does not affect the solution of other cells. In other
words, the magnitude of ICI is set to an average value over a
long duration of temporal power allocation.

VI. SIMULATION RESULTS

The parameters used for the simulation can be found in
Table I, and pathloss, zero-mean shadowing, and frequency
flat fading over a subband, to which the power is allocated,
are embedded in the channel model as defined in Section IV.
Each packet containing encoded data is carried over one frame
(frame length = 5 ms), and the round trip time is assumed to 15
ms. The next packet is not transmitted until an acknowledge-
ment (ACK) signal for the previous packet is received by the
transmitter. Since the packet propagation time in a typical wire-
less environment is shorter than the transmission interval, it is
assumed that the ACK or negative ACK (NACK) signal arrives
in the transmitter before the next slot becomes available. Thus,
the transmitter can retransmit the current packet in the next
slot whenever channel errors occur in the current packet. The
retransmission (a delay constraint) is limited by a maximum
queueing delay bound (50 ms). Since the data is transmitted
using a packet, the channel throughput can be calculated using
the packet error probability which is a function of the SINR,
the modulation order, the packet size, and so on.

As described in Section IV-B, (9) is the channel model used
in this paper. For ease of analysis, it is assumed that the width
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Fig. 3. Comparison between the throughput in (21) and in (34) and the average
number of transmitted bits as a function of the normalized distance.

of each divided band for each MS is a constant. Fig. 3 com-
pares the Shannon capacity obtained by (17) and the average
number of transmitted bits obtained theoretically by (21) and
obtained by simulations with 1 000 000 iteration times. Never-
theless, there exists a gap between the Shannon capacity and the
data rate in Fig. 3. To obtain a tighter upper bound, we intro-
duce a scaling factor to reflect the realistic system environment
in (18). As shown in Fig. 3, the scaling factor is
obtained by the algorithm in Section IV-C and is applied in the
following numerical analyses.

Fig. 4 depicts the differences obtained using the PSNR and
visual entropy. The figure pairs ((a), (b)), ((c), (d)), and ((e), (f))
compare the differences in visual quality under the same PSNR
value. Clearly, in these examples, visual entropy correlates more
highly with visual quality than does PSNR. Quality distortions
due to transmission errors over the error-prone wireless channel
can be expected. Using an appropriate quality metric, we are
able to demonstrate the performance of the cross-layer opti-
mization relative to the PSNR.

In the simulation, it is assumed that the image “Lena” is
used to measure performance on I-frames. The video sequence
“Stefan” is used to measure performance on I-frames and
P-frames. The simulation is executed by using the modified
SPIHT coder described in [21], which provides pre-processing
to obtain weights on the encoder side. We modulate the vi-
sual weight using in (3) as the pre-processing weight.
To demonstrate the improved performance of the proposed
method, the resource allocation method in [5], [33], and [34] is
used as a benchmark. The authors of [5], [33], and [34] defined
the utility of each packet when it is transmitted. The utility of
the packet is measured as the difference between the values of
the PSNR when it is transmitted with errors, against when it is
transmitted without errors. In other words, the utility represents
the average loss of PSNR caused by the missing packets. The
weight of the utility-based method is then obtained by

(41)

where is the spatial value from the inverse wavelet
transform of , is the maximum
value of PSNR, and is the spatial value from the inverse
wavelet transform without data , respectively. In the

Fig. 4. Quality assessment using PSNR (in dB) versus visual entropy (in bits).

case of the “Lena” image, the weights in (41) becomes

and we utilize as in (37) in the following numerical
experiments instead of the visual weight. For fair comparison,
three different power allocation schemes are conducted to
measure performance in view of throughput: stepwise, equal,
and utility-based power schemes.

A. Performance Measurement for an I-Frame

Table II shows an optimal power set obtained by (32), which
is the solution of (27). For the optimal set, it is assumed that
one packet is allocated to each band. Although each band de-
livers the same volume of data, each bitstream has a different
visual importance. Since the band contains the most signifi-
cant perceptual information, the highest power is allocated to it.
The power patterns for the rest of the bands are determined to
minimize ICI.

Fig. 5 shows throughput attained by the stepwise power allo-
cation as compared to equal power in (a), utility-based power
allocations in (b) over a multi-cell environment. Throughput
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TABLE II
OPTIMAL POWER SET

Fig. 5. Throughput for stepwise power allocation, equal power allocation, and
utility-based power allocation against a normalized distance. (a) Stepwise power
versus equal power. (b) Utility-based power allocations.

as given in (34) is plotted for the stepwise allocation scheme,
and throughput as given in (35) is plotted for the equal power
and utility-based schemes, as a function of the normalized dis-
tance from the BS. The findings show that an increase in the
throughput of the 1st band at the edge of the cells results in
an improvement in throughput, as shown in Fig. 5. Since the
visual weight is largest here among the bands, it is expected
that a much higher throughput of visual entropy can be ob-
tained by the stepwise power allocation. By contrast, a decrease
in throughput is obtained at the higher frequency bands (the
4th, 5th, 6th, and 7th bands). Even though the result of the
utility-based scheme shows similar behavior as the stepwise
power scheme, the throughput of the utility-based scheme is not
higher than the proposed scheme.

Fig. 6(a) shows the total throughput [using (34) and (35)] and
Fig. 6(b) shows the total sum of visual entropy [using (36) and
(37)] along the normalized distance. The channel throughput of
both equal and utility-based power allocation is higher than that
of stepwise allocation in the middle region of the cell, but higher

Fig. 6. Transmitted bits versus visual entropy against normalized distance.

visual entropy is achieved using the stepwise allocation, partic-
ularly near the cell boundary. As shown in Fig. 6(b), although
the proposed method entails a certain loss of transmitted bits in
the middle region of the cell, the throughput gains in terms of
visual entropy at the cell boundary are increased by as much as
80% and 70% compared to equal and utility-based power allo-
cations.

Fig. 7 shows the relative visual qualities of the reconstructed
image using stepwise power allocation of the image “Lena”
[Fig. 7(a)], the reconstructed image using equal power alloca-
tion [Fig. 7(b)], and the reconstructed image using utility-based
power allocation at the cell boundary [Fig. 7(c)]. At the cell
boundary, the visual quality using the proposed scheme is appar-
ently much better than obtained using the other quality mecha-
nism. To measure the subjective visual qualities of Fig. 7(a)–(c),
too, we put the SSIM indices for each figure.

B. Performance Measurement for a P-Frame

Similar to the I-frame performance measurement, the solu-
tion of the optimization problem for the “Stefan” sequence can
be obtained using (32). In the first step, the optimal I-frame so-
lution is obtained on the first frame of “Stefan”. Using the re-
constructed frame, the visual quality of the next P-frame can
be obtained from the second frame of the video sequence. The
optimal power set, , is
obtained using the average visual weight for P-frames.
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Fig. 7. (a) Reconstructed image (SSIM index = 0.9863) using the stepwise
power allocation. (b) Reconstructed image using the equal power allocation
(SSIM index = 0.9241). (c) Reconstructed image (SSIM index = 0.9364) using
the utility-based power allocation for an MS located at the cell boundary.

Fig. 8. Throughput for stepwise power allocation, equal power allocation, and
utility-based power allocation against a normalized distance. (a) Stepwisepower
versus equal power. (b) Utility-based power allocations.

Fig. 8 shows throughput attained by the stepwise power allo-
cation as compared to equal power in (a), utility-based power al-
locations in (b) over a multi-cell environment. Results generally
show the quite similar tendencies with results in Section IV-A.
Similar to the I-frame analysis, visual gain is obtained although
a loss of transmitted bits occurs over the middle region of the
cell as shown in Fig. 9.

VII. CONCLUSION

In this paper, a theoretical approach to cross-layer opti-
mization between multimedia and wireless network layers was
explored for downlink video transmission. The reference-free

Fig. 9. Visual entropy against normalized distance.

quality criterion visual entropy was utilized for cross-layer
optimization to deliver maximal visual information by con-
trolling the power levels in the downlink cellular network.
While seeking to maximize visual entropy, the optimal power
allocation set was obtained utilizing Lagrangian relaxation.
The optimal solution makes it possible to transmit maximum
visual information while mitigating ICI.
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