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Abstract 

We conducted eye tracking experiments on naturalistic stereo 
images presented through a haploscope, and found that fixated 
luminance contrast and luminance gradient were generally higher 
than randomly selected luminance contrast and luminance gra-
dient, which agrees with previous literatures. However we also 
found that the fixated disparity contrast and disparity gradient 
were generally lower than randomly selected disparity contrast 
and disparity gradient. We discuss the implications of this re-
markable result. 
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1 Introduction / Overview 

Many studies have shown that several low level luminance fea-
tures at human fixations are significantly different from those at 
other areas. Reinagel and Zador [1999] found that the regions 
around human fixations tend to higher spatial contrasts and spatial 
entropies than random fixation regions, which suggests that the 
human visual system may try to select image regions that help 
maximize the information content transmitted to the visual cortex, 
by minimizing the redundancy in the image representation. By 
varying the patch sizes around the fixations, Parkhurst and Niebur 
[2003] found that the largest difference between the luminance 
contrast of fixated regions and that of image shuffled (pseudo-
random) regions is observed when the patch size is 1 degree. In a 
recent study [Rajashekar et al. 2007], fixated image patches were 
foveated using an eccentricity-based model. Higher order statis-
tics were analyzed than in prior studies. They found that bandpass 
contrast showed a notably larger difference between fixations and 
random patches than other higher-order statistics. Other features 
found to attract fixations (in decreasing order of attractiveness) 
included bandpass luminance, RMS contrast, and luminance. This 
data was subsequently used to develop an image processing “fixa-
tion predictor” [Rajashekar et al. 2008].  

The body of literature on visual fixations on 2D luminance images 
appears to be largely consistent across the studies. However, there 
has been very little work done on analyzing the nature or statistics 
of images and scenes at the point of gaze in three dimensions. 
Certainly the three dimensional attributes of the world affect the 
way we interact with it both visually and physically. Moreover, 
the 3D statistics of the natural world have likely played a role in  

 

 

 

 

the adaptation of the visual system [Liu et al. 2008]. One reason 
for the lack of studies on fixations in 3D space has been the dearth 
of 3D ground truth natural scene data. The few databases of natu-
ralistic stereo images do not adequately fulfill this need, since 
what is needed are dense disparity maps for each scene. One very 
recent study [Jansen et al., 2009] used natural scenes with ground 
truth disparity map acquired from laser scanning. They found that 
disparity appears to be a salient feature that affects eye move-
ments. In particular, they found that the presence of disparity 
information may affect saccade length, but not duration; that dis-
parity appears not to affect the saliency of luminance features; and 
that subjects tend to fixate nearer objects earlier than more dis-
tance objects. A reasonable agreement with intuition may be 
found in each of the results. The authors also found that in 3D 
noise images, subjects tended to fixate depth discontinuities more 
frequently than smooth depth regions. One might view this result 
as intuitive also; as with luminance images, such locations might 
be deemed interesting. 

2 Stereo Eyetracking 

2.1 Observers 

Three male observers participated in this study. Their stereo abili-
ty was tested to be normal by presenting them random dot stereo-
grams. Observer LKC has extensive experience in psychophysical 
studies, and knew the purpose of the experiment. Observers JSL 
and CHY were naïve.  

2.2 Stimulus 

We manually selected 48 grayscale stereoscopic outdoor scenes 
[Hoyer & Hyvärinen, 2000] that contained mountains, trees, wa-
ter, rocks, bushes, etc., but avoided manmade objects.  We didn’t 
have the ground truth disparity data from these scenes.  Instead, 
we relied on a local correlation method which is simple yet bio-
logical inspired to solve this issue. Models of binocular complex 
neurons [Anzai et al. 1999; Fleet et al. 1996; Ohzawa et al. 1990; 
Qian, 1994] commonly contain a cross correlation term in their 
response function. 

The simple correspondence algorithm was defined as follows. 
Given a pixel (xr,yr) in the right image, we defined a 161×5 
(3.2°×0.1°) search window centered on the same pixel location 
(preferring zero disparity) in the left image. Given a 1°×1° patch 
in the right image centered on the pixel (xr,yr), the algorithm com-
puted the cross correlation between the right patch and a candi-
date 1°×1° left patch centered on each pixel in the 161×5 search 
window. The left patch yielding the largest cross correlation was 
deemed to be the matched patch. The location (xl, yl) correspond-
ing the center of the patch was deemed the matched pixel for the 
right pixel (xr,yr), hence the horizontal disparity of (xr,yr) was 
taken to be D(xr,yr) = xr-xl. 
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It could be argued that, since we are only interested in local scene 
statistics, why not record the movements of both eyes, and use the 
disparity between the recorded left and right fixations to find the 
correct match? There are several reasons why this wasn’t  practic-
al. First, there are fixation disparities that occur between the right 
eye and the left eyes.  Most people have a fixation disparity that is 
less than 6 arcmin, but can be as large as 20 arcmin with peripher-
al visual targets [Wick, 1985].  When fixation disparity occurs, 
the image of an object point that a person is trying to fixate do not 
fall on exactly corresponding points. Secondly, each Purkinje eye 
tracker has an accuracy about 7 acrmin (the median offset from 
real fixations); hence the error between two eye trackers is about 
14 arcmin, which corresponds to about 12 pixels. This is quite a 
large error, considering that the stereo images are only 800×600.  
Thirdly, the fixation detection algorithm (associated with eye-
tracking) of the two eye paths can also introduce unwanted noise 
into the corresponding fixation locations; registered stereoscopic 
eyetracking is difficult to accomplish in practice. Lastly, since we 
are interested in disparity features within neighborhoods (not just 
points) of the fixations, a dense disparity map is required for all 
points in the neighborhood. Hence, local processing of the type 
that our disparity algorithm accomplishes would be required any-
way. 

2.3 Equipments 

Stereo images were displayed on two 17 inch, gamma calibrated 
monitors.  The distance between the monitors and the observer 
was 124 cm. Each monitor’s screen resolution was set at 800×600 
pixels, corresponding to about 50 pixels per degree of visual an-
gle. The total spatial extent of each display was thus about 16◦ × 
12◦ of visual angle. 

A haploscope was placed between the two monitors and the ob-
servers to completely separate the displays from the left and right 
monitor. Eye movements were recorded by a SRI Generation V 
Dual Purkinje eye tracker. This eye tracker has an accuracy of < 
10′ of arc, a response time of under 1 ms, and bandwidth of DC to 
> 400Hz. The output of the eye tracker (horizontal and vertical 
eye position signals) was low-pass filtered in the hardware and 
then sampled at 200 hHz by a National Instruments data acquisi-
tion board in a Pentium IV host computer, where the data were 
stored for offline data analysis. The observers used a bite bar and 
a forehead rest to restrict their head movements. 

A viewing session was composed of 48 viewed stereo image 
pairs. At the beginning of each session, a 0.3°×0.3° crosshair was 
displayed on the centers of both monitors to help the observers to 
fuse by fixating on it. When the correct binocular fixation  (the 
crosshair was perceived single) was achieved, the observer 
pressed a button to start the calibration. Two 3×3 calibration grids 
were displayed on the monitors respectively. After the observers 
visited all 9 dots, a linear interpolation was then done to establish 
the transformation between the output voltages of the eye tracker 
and the position of the subject’s gaze on each computer display. 
The calibration also accounted for crosstalk between the horizon-
tal and vertical voltage measurements. After correct calibration, a 
0.3°×0.3° crosshair was displayed on the centers to force all ob-
servers to start from the same center position. The stereo images 
were displayed on two monitors for 10 seconds during which the 
eye movements were recorded. Between two consecutive image 
pairs, two identical Gaussian noise images were displayed for 3 
seconds on both monitors to help suppress after-images corres-
ponding to the previous stereo pairs that may otherwise have at-
tracted fixations. Then a 0.3°×0.3° crosshair was displayed on the 

centers of both monitors to help the observers to fuse before the 
presentation of the next stereo pair. 

This calibration routine was repeated compulsorily every 10 im-
ages, and a calibration test run every 5 images. This was achieved 
by requiring that the observer fixate for 500ms within a 5s time 
limit on a central square region (0.3◦ ×0.3◦) prior to progressing to 
the next image in the stimulus collection. If the calibration had 
drifted, the observer would be unable to satisfy this test, and the 
full calibration procedure was re-run.  

Observers who became uncomfortable during the experiment 
were allowed to take a break of any duration they desired.  

The ambient illumination in the experiment room was kept con-
stant for all observers, with a minimum of 5 minutes luminance 
adaptation provided while the eye-tracker was calibrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Analysis  

3.1 Computation of scene statistics 

Denote the right image as I, and the dense disparity map as D We 

computed the luminance gradient map: 
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and the disparity gradient map: 
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Luminance Disparity 

Luminance gradient Disparity gradient 

Luminance contrast Disparity contrast 

Figure 1. The luminance and disparity features 
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using the Matlab function gradient(X). Here we define luminance 

contrast as the RMS contrast of a luminance patch: 


� � � �
��� ∑ ������

� � ������ , 

and likewise, disparity contrast as 


� � � �
��� ∑ ��� � ��������   

which is the standard deviation of a disparity patch. All of the 

following analysis is based on these four scene features: lumin-

ance contrast, disparity contrast, luminance gradient, and disparity 

gradient. Figure 1 depicts these scene features for one example 

stereo pair. 

3.2 Random locations 

Suppose an observer made �� fixations for the ��� image.  Then, 
the total number of fixations that the observer made during a ses-
sion is   ∑ �� !� . We assume that a random observer also made the 
same number of fixations as the subject did. That is, for the ��� 
image, the random observer selected �� fixations uniformly distri-
buted on the image plane too. For each human observer, we as-
sume that there are 100 random observers each making the same 
number of fixations in each image as the human observer. For 
example, the overall fixation that subject LKC made is 486 fixa-
tions in 48 images, so each random observer selected 486 random 
locations too. The total number of random locations is 48,600. We 
wanted to know whether or not there is a statistically significant 
difference between image features at fixations and those at ran-
domly selected locations by comparing the human observer’s data 
and the 100 random observers’ data. 

3.3 Fixation/Random ratios 

For the ��� image, we computed the mean luminance contrast at 
the �� fixations as: 


�� � ∑ 
��"#,%�# &#� ��'   

where �"# , &#� is the location of the (�� fixation, and 
� is the lu-
minance contrast map. 

We also computed the mean luminance contrast at the �� random 
locations as: 


)�� � ∑ 
��*#,%�# +#� ��'   

 
where �*# , +#� is the location of the (�� random location.  

We defined patch luminance gradient as the mean gradient of the 
patch: 

��� � ∑ ���",�� &� ,⁄ , 

where  �� is the luminance gradient map. Similarly, we computed 
the mean patch luminance gradient of the �� fixations for the ��� 
image as: 

��� � ∑ ��� �"#,%�# &#� ��'   

where �"# , &#� is the location of the (�� fixation. 

We also computed the mean patch gradient of the �� random loca-
tions the ��� image as: 

�)�� � ∑ ��� �*#,%�# +#� ��'   

where �*# , +#� is the location of the (�� random location.  

For each image, we then defined the fixation-to-random lumin-
ance contrast ratio .
� � 
��/
)��  and the fixation-to-random lu-
minance gradient ratio .�� � ���/�)�� . If .
� 0 1, it means that 
the fixated patches generally have a larger luminance contrast 
than randomly selected patches on the image being considered. If .
� 2 1, then the meaning is reversed. The same meaning applies 
to the luminance gradient ratio. 

The same analysis method that was used on the luminance con-
trast and luminance gradient was also applied to for the analysis 
of disparity. We calculated the mean disparity contrast 
��  on the 
fixated patches, and the same quantity 
)��   on the randomly se-
lected patches. The ratio of disparity contrast between the fixated 
patches and the randomly selected patches is defined as .
� � 
�� /
)�� .  

The mean patch disparity gradient at the fixated patches (��� ) and 
the randomly selected patches (�)�� � was also calculated. The ratio 
of the disparity gradient between the fixated patches and the ran-
dom patches is defined as .�� �  ��� /�)�� . If the ratios are signif-
icantly greater than 1, then fixated patches tend to have a larger 
disparity contrast and gradient than randomly picked locations.  

 

 

 

 

 

 

 

 

 

 

 

We ran 100 simulations for each image, and plotted the mean 
luminance gradient ratio .��33333 with 95% confidence intervals (CI), 
and the mean disparity gradient ratio .��333333 with 95% CIs, for all 
subjects as shown in Figure 2. For better comparison, we plotted 1 
as a straight horizontal line across all patch sizes.  The red curves 
show the ratios of luminance gradient, and the blue curves showed 
the ratios of disparity gradients. Different markers were used to 
represent the observers: LKC (*), CHY (o), JSL (∆). We made a 
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Figure 2. Mean luminance gradient ratios (red), and 

mean disparity gradient ratios (blue) of three observers. 
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similar ensemble comparison plot for the mean luminance con-
trast ratio and mean disparity contrast ratio, as displayed in Figure 
3. It is clear that all the mean ratios of luminance gradient/contrast 
and their 95% CIs fall well above 1, while the mean ratios of dis-
parity gradient/contrast fell well below 1. All of the results we 
obtained lead to the conclusion that humans tend to fixate at re-
gions of higher luminance variation, and lower disparity variation. 

 

 

 

 

 

 

 

 

 

 

4 Discussion 

The most immediate explanation for this behavioral phenomenon 
is that the binocular vision system actively seeks to fixate scene 
points that will simplify or enhance stereoscopic perception. The 
nature of this enhancement is less clear. We suggest that the bino-
cular visual system, unless directed otherwise by a higher-level 
mediator, seeks fixations that simplify the computational process 
of disparity and depth calculation. In particular, we propose that 
the binocular vision system seeks to avoid, when possible, regions 
where the disparity computations are complicated by missing 
information, such as occlusions, or rapid changes in disparity, 
which may be harder to resolve. 

Many fMRI studies have reported that the V1 activity increases 
with disparity variation [Tootell et al. 1988; Backus et al. 2001]. 
Georgieva et al. [2009] showed that activity in occipital cortex 
and ventral IPS, at the edges of the V3A complex was correlated 
with the amplitude of the disparity variation that subjects per-
ceived in the stimuli. All of these studies show that the processing 
of large, complex disparity shapes involves the allocation of more 
neuronal resources and energy than do smooth disparity fields.  

Another (related) possibility is that when viewing an object, ob-
servers tend to fixate towards the center of the object, leaving the 
object boundaries (often associated with depth discontinuities) to 
peripheral processing involving larger receptive fields both in 
space and disparity. Such a strategy would allow the fovea to 
operate under better-posed stereo viewing conditions, and to 
process 3D surface detail, while the periphery could simulta-
neously encode the (statistically) large disparities associated with 
object boundaries. 
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Figure 3. Mean luminance contrast ratios (red), and 

mean disparity contrast ratios (blue) of three observers. 
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