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Abstract— We explore the use of Distributed Ray Tracing 
(DRT), an anti-aliasing technique from computer graphics, in 
multi-view computational stereo. As an example, we study 
ABM, a multi-view stereo algorithm based on a set of Hough 
transform accumulation operations. Augmenting ABM with 
DRT improves both internal signal quality and reconstruction 
accuracy. Results are given for both fundamental and complex 
“super-resolution reconstruction” tasks, where the voxel side 
length is less than the image ground sample distance. DRT 
improves ABM accuracy by 18% and can be generalized to 
improve other stereo algorithms. 
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I. INTRODUCTION

Passive 3D reconstruction from multiple images or video 
remains an attractive but challenging technical task after 
nearly 40 years of research. It is a key enabler for ubiquitous 
3D modeling because it often has lower size, power, and 
weight requirements than active approaches.  

Aliasing limits stereo reconstruction accuracy by 
corrupting internal signals and data. While important to 
traditional stereo reconstruction, its effect is even more 
pronounced in super-resolution (SR) reconstruction, where 
the generated 3D models have voxel sizes smaller than the 
ground sample distance (GSD) of the input imagery. 

This paper describes how distributed ray tracing (DRT) is 
used to improve the Accumulation Based Modeling (ABM) 
multi-view stereo algorithm. The ABM example provides 
insight into how the use of DRT can be generalized to other 
computational stereo or computational geometry algorithms. 

II. BACKGROUND

Computational stereo reconstructs 3D models of a scene 
by analyzing the scene’s appearance in 2D images captured 
from multiple viewpoints. Background on multi-view 
computational stereo can be found in [1]. 

Two-frame methods focus on analyzing input images in 
pairs. The core problem is to determine correspondences 
between the pixels in the pair. This computation typically 
causes the majority of complexity and runtime, although 
various methods exist for improving its efficiency [2]. 

Multi-view methods process more than two images 
simultaneously. These methods often avoid correspondence 
matching by interpreting data in an object-centric 3D model. 

Some methods, like ABM, extend the Hough transform (HT) 
to fuse data in a voxel representation [3][4]. A survey of 
multi-view techniques is given in [5] and the HT in [6]. 

It is well known that the HT domain has strong aliasing 
artifacts. The ideal HT domain signal is non-bandlimited, 
and the necessary use of discrete accumulators (e.g., voxel 
models) results in aliasing [7]. 

Aliasing has been studied extensively in standard HT 
applications. The vast majority of anti-aliasing strategies use 
traditional signal processing techniques [8][9]. These are 
problematic for stereo because HT-domain trajectories vary 
with the camera flight path and voxel range. It is impossible 
to simultaneously avoid under-sampling or over-sampling 
HT representations of non-homogeneous objects [8]. 

HT-domain interference between nearby features has also 
been noted in standard applications and in HT-based stereo 
[3][4]. Reducing aliasing in the HT representation can 
improve the results of separate anti-interference techniques. 

Aliasing limits the accuracy of non-HT-based algorithms 
as well. Among others, Kutulakos and Seitz note that the 
accuracy of the Space Carving algorithm can be increased 
“only up to the point where image discretization effects (i.e., 
finite pixel size) become a significant source of error” [10]. 

Ray tracing generates synthetic images by simulating the 
visual contributions of the scene along a ray from the camera 
origin, through each pixel, and into the scene (including 
reflections and refractions)[11]. Aliasing occurs because the 
algorithms represent non-bandlimited phenomena on 
digitized media using discrete algorithms. 

Distributed ray tracing (DRT) [12] is an anti-aliasing 
technique from computer graphics that has yet to be 
exploited in other computational geometry algorithms. DRT 
casts multiple rays through each pixel, each with minor 
variations in direction. Pixel appearance is the averaged 
contributions from each ray. This improves the modeling of 
pixels, lenses, lights, and objects to provide superior 
renderings of gloss, translucency, shadows, and other “soft” 
visual effects. Most broadly, it is a technique for mitigating 
the effects and appearance of aliasing in computer graphics. 

III. METHOD

DRT is used to improve how Accumulation Based 
Modeling (ABM) models and fuses sampled input images 
into sampled signals and voxel models by reducing aliasing. 
ABM is one of many computational geometry algorithms 
that can benefit from DRT. 
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A. Accumulation Based Modeling (ABM) 
ABM computes scene structure in a 4-stage sparse-to-

dense approach. It performs two fusion-interpretation cycles, 
first for sparse (wireframe) structure and then for dense. 
Evidence fusion uses principles of HT accumulation. 
Evidence interpretation uses specialized techniques. 

Stage 1 begins by extracting features (typically edge 
pixels) from each image. Each feature adds evidence that 3D 
space is occupied somewhere along the ray from the camera 
origin through that pixel. Rays are cast through each feature 
pixel into a voxel model (Fig. 1). ABM walks the rays in 
small steps and accumulates the steps ending in each voxel to 
approximate the total length of ray segments that intersect it. 
This estimates the evidence in the input that is consistent 
with each voxel being occupied. 

The voxel model is the quantized HT parameter space. 
Pixel rays are trajectories through HT space. Voxels are 
accumulators for a particular parameterization. As with other 
HT strategies, many rays will converge on occupied voxels 
in the wireframe reconstruction. 

Stage 2 walks the same trajectories to interpret the fused 
evidence. Evidence interferes constructively in occupied 
voxels to form clear peaks. Fig. 2 shows an observed 
evidence signal relative to the ideal signal (derived below). 
Using a set of 1D envelope and peak estimation techniques, 
ABM identifies the most significant peak in each evidence 
signal. Additional tests are performed to reject inconclusive 
or badly behaved peaks. ABM increments a count in a 
second voxel model for each passing peak. 

At the end of Stage 2, peak counts are thresholded to 
generate a wireframe 3D model. Thresholding peak counts 
requires the position of the occupied voxel to be consistent 
when evidence is interpreted from different viewpoints. This 
second accumulation yields more accurate reconstructions 
[3]. It follows similar HT extensions for line detection [13]. 

Stages 3 and 4 perform similar processing to convert the 
wireframe model to a dense model. The wireframe model is 
used to render a sparse range image from each viewpoint. 
Sparse ranges are interpolated to form dense range estimates, 
which are accumulated as in Stage 1. Stage 4 uses a variety 
of 3D morphological filters and thresholds to compute the 
dense reconstruction from the interpolated estimates. 

B. Modifying ABM with Distributed Ray Tracing 
Using DRT, ABM represents each feature pixel with a 

frustum instead of a ray. A frustum’s cross section grows 
with increasing range from the camera. We model each cross 
section to have equal evidence, so evidence density decreases 
as range increases. Evidence is fused by integrating evidence 
density over the intersection of frustum and voxel so the 
voxel values approximate evidence mass.

An analytical computation would be very expensive, and 
would require solid geometry intersections, density 
calculation at many points, and 3D integration of a non-
constant function over irregular volumes. 

All of these quantities can be approximated using DRT. 
Instead of casting one ray per feature pixel, DRT casts many 
rays with small perturbations (Fig. 3). Increasing the number 
of rays improves the accuracy of the approximations. 

Fig. 1: ABM sparse ray casting without DRT 

Fig. 2: Accumulated evidence without DRT

ABM is modified in three ways. First, DRT is used to 
accumulate the evidence provided by each pixel. Second, 
ABM uses the same ray distribution when extracting the 
accumulated evidence signal for peak detection. The 
evidence signal is the average of all voxel values at each 
range. Third, when a peak is detected, the same distribution 
is used to convert its range into voxel locations to 
accomplish peak accumulation. 

Fig. 2 depicts a badly aliased evidence density signal 
generated without DRT. Fig. 4 shows an equivalent signal 
computed using DRT, and aliasing is clearly reduced. 

The technique can be extended to incorporate camera 
parameter uncertainty. With perfect calibration, the frusta are 
known exactly. Parameter uncertainty alters the origin and 
orientation of each frustum. DRT can easily model 
distributions that exploit all available knowledge. 

The technique is conceptually simple, fast, and requires 
only integer accumulations and integer voxel models. It is 
parallelizable, flexible, and a tractable way to approximate 
complex modeling and fusion computations. 

C. Ideal Evidence Signals 
In order to quantify the benefits of DRT, we define 

“ideal” evidence signals and compare observed evidence 
signals to them using signal-to-noise ratio (SNR). 

Assume the scene has a single point object at point p,
which is distance dp from the camera. The point is visible in  
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Fig. 3: ABM sparse ray casting with DRT 

Fig. 4: Accumulated evidence with DRT

imagery captured along a linear flight path of length L0 that 
is symmetric about p. We seek the evidence density e*(d) 
along a ray r from the camera to p, after all evidence has 
been accumulated. Evidence density on the flight path is set 
to 1.0m-1. As d approaches dp, e*(d) grows to infinity. While 
accurate, this is undesirable, so density is limited to emax.

The ideal density e(d) = e(x) for each point x on r at
distance d from the camera origin is thus defined as 

maxmax
0 ,min,

)(
min)( e

dd

d
e

dL
L

de
p

p .

Ideal density signals are shown in Fig. 2 and Fig. 4. In 
theory, the choice of emax is arbitrary. In practice, the voxel 
size, L0, and other factors affect the maximum achievable 
density. In the results, emax was set empirically. 

The derivation can be applied to non-linear paths by 
defining a 2D manifold containing the flight path and 
occupied voxel. Points, distances, voxels, and densities are 
mapped from the linear derivation onto that manifold. 

IV. RESULTS

A. Fundamental Scenes 
Internal signal quality is measured on a scene containing 

a point target as described above. Evidence from 200 images 
(720x480 pixels) is fused from viewpoints along a 75m flight 
path at ranges of 150-220m. The sensor’s nominal ground 
sample distance is 0.08m. The modeling region is 7.0m x 
4.7m x 4.5m, divided into cubic voxels 0.04m per side. This 
gives a super-resolution reconstruction with a GSD-to-voxel-
side ratio of 2.0. Aliasing effects are significant. 

 Results are shown in Fig. 5 for ABM without DRT, with 
DRT on evidence accumulation (only), and with DRT on all 
three accumulations described in Section III.B. Without 
DRT, ABM achieves an average SNR of 7.67dB on its 
sparse evidence signals. DRT improves average SNR to as 
much as 13.00dB when it is used on all three sparse 
accumulation processes. Most benefits are achieved using 
100-250 DRT rays (note the logarithmic X-axis scale). 

Fig. 5 uses ±0.5 pixel perturbations from a uniform 
distribution. Other distributions and parameterizations were 
tested. Most distributions improve performance relative to 
operating without DRT. Best performance occurs with 
modest perturbations and requires parameter tuning. DRT 
performance degrades (eventually worse than the baseline) 
as perturbation magnitude becomes large. 

B. Complex Scenes 
Reconstruction accuracy is measured against sparse 

ground truth on a dataset provided by the Air Force Research 
Laboratory (Fig. 6). The camera path gives true ranges of 
150-220m. Video was captured at 60 frames per second 
(interlaced) and 720x480 pixels resolution. Ground truth is 
known for 301 locations, including building corners, 
markers, and vehicles. Extrinsic camera parameters are 
known for each frame and intrinsic parameters are estimated. 
Analysis was based on a representative 200-frame sequence. 

Inaccuracies in camera parameters led to the use of an 
atypical error metric. Mean absolute error (MAE) measured 
the distance to the closest 3D position estimate in a 5-pixel 
radius (E5) near a ground truth point’s true projection onto 
each frame. E5 was selected by inspection based on re-
projection error after parameter estimation.  

Additional detail on dataset and metrics is given in [2].  
Input video was downsampled to 180x120 resolution to 

yield a nominal GSD of 0.32m. The modeling region was 
70m x 47m x 45m region, divided into voxels 0.20m on a 
side. This results in a super-resolution reconstruction with 
GSD-to-voxel-side ratio of 1.6. 

Baseline ABM performance without DRT was 
E5=0.71m. Thresholds and other algorithm parameters were 
set empirically. DRT was applied with 100 rays per pixel 
perturbed in a uniform distribution with ±0.5 pixels deviation 
in horizontal and vertical. Thresholds and other parameters 
were adjusted for the additional rays. Uniform distribution 
DRT achieved E5=0.62m (a 15% improvement in accuracy). 
DRT was also applied with 100 rays per pixel with a blurred 
uniform distribution, which achieved E5=0.58m (an 18% 
improvement in accuracy). 
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Fig. 5: DRT performance on fundamental scenes

Fig. 6: Example test data frame with  
ground truth locations marked 

V. CONCLUSIONS

DRT was shown to improve the performance of ABM, 
which is a HT-based multi view stereo approach. DRT 
reduces aliasing to improve internal ABM signal quality by 
up to 5dB. The effects of aliasing become more significant as 
voxel sizes are reduced to achieve super-resolution 3D 
reconstruction. DRT provided an 18% improvement in ABM 
accuracy on a complex super-resolution reconstruction 
dataset. It was most effective and efficient when using 100-
250 rays per pixel. 

The use of DRT generalizes to other stereo and 
computational geometry algorithms. Not every algorithm 
will benefit, but many can use DRT to reduce aliasing. We 
have already begun modifying Space Carving [10] with DRT 
by enhancing its pixel consistency test. 

Future work will include application of DRT to other 
computational geometry algorithms, including comparisons 
in standard HT tasks against other anti-aliasing techniques. 
Parameter uncertainty knowledge should be incorporated 
into the DRT distribution. Evaluations should be performed 

on industry standard datasets, including [14]. Finally, 
detailed analysis of accumulator interference patterns in two-
point and one-line scenes would be enlightening. 

We find DRT to be an effective technique for mitigating 
aliasing in ABM, with potential applications in many other 
computational stereo algorithms. Mitigating aliasing is 
critical to achieving accurate super-resolution reconstruction. 
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