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ABSTRACT 

We extend our previous work on Multilinear Independent 
Component Analysis (MICA) by introducing a Fast-MICA 
algorithm that demonstrates the same improvement over 
classical ICA as the original MICA algorithm [1] while 
improving the computational speed by two polynomial 
orders of magnitude. Apart for enabling a faster 
determination of the multilinear structure of image patch 
probability density, this new approach opens up, for the first 
time, the possibility of computing a novel non-stationarity 
index based on the relative change in mutual information. 
We demonstrate the performance of our Fast-MICA 
algorithm together with an illustration of our novel non-
stationarity index. 

Index Terms—ICA, non-stationarity, fixation selection 
 

1. INTRODUCTION 
Denote the probability of the source that we are modeling by 
P(X), where X is a random vector whose realizations have 
dimensionality d. The goal of ICA is to factor the 
probability distribution of the source into a product of 

distributions: 
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filtered responses of the source. The filters d
ii 1  are the 

ICA filters of the source. Statistical algorithms for 
computing the ICA filters have been the subject of intense 
study [2], most of which involve the construction of 
different cost functions (usually variations of the maximum 
likelihood cost function). 

The independent directions that emerge from an ICA 
decomposition can be fruitfully utilized by reducing the d-
dimensional problem into d independent 1-D problems. 
Furthermore, ICA decompositions of data having heavy 
tailed marginals (as is for example observed in NSS 
applications) tend to favor sparse representations. Sparse 
representations are useful for many applications that seek to 
efficiently represent and process the data. 

However, in spite of these potential advantages, in reality 
the statistics of most real-world sources, such as natural 
image patches, cannot be strictly factored into a simple 
product. As a result, the so-called independent components 
contain significant mutual dependencies between them [2]. 
Accordingly, prior work has attempted to more completely 
capture statistical image structure by accounting for the 

dependences (either directly or indirectly) between the ICA 
components [3]. 

In [1] we approached this problem from the perspective 
of refining the classical ICA model such that the 
dependencies between pseudo-independent components are 
captured using a multilinear representation of P(X): 
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where RzzJg d ],...,[: 1  and RZ  is a normalizing 
constant. We call the resulting model the Multilinear ICA 
(MICA) decomposition of the distribution P(X). Of all 
possible multilinear expansions of this form that could 
describe the source distribution, we seek the one that makes 
the representation of the source as sparse as possible, i.e., 
which minimizes the contribution of g(J). 
 In [1] we successfully deployed the new method to 
model natural scene textures and demonstrated advantages 
relative to classical ICA. In Section 2 of this paper we first 
review the basic MICA model and also describe its 
computational complexity. Then in Section 3 we proceed to 
describe the construction of a Fast-MICA algorithm that 
enables the construction of the MICA distribution in O(nd2) 
(which is an improvement over the O(nd4) complexity of the 
original MICA algorithm [1]). Section 4 describes a novel 
application of the MICA for the computation of a mutual 
information based non-stationarity index for natural images. 
The computation of this index—which has been numerically 
infeasible until now—is facilitated by the Fast-MICA 
algorithm. Finally in Section 5 we show simulation results 
of the performance of the Fast-MICA algorithm along with 
the mutual information based non-stationarity map. 

2. MULTILINEAR ICA 
Consider the classical ICA model where the observation 
vector is modeled: Bzx ; where dT

d Rxxx ],...,[ 1 , 
dT

d Rzzz ],...,[ 1 ,  d is the intrinsic dimensionality of 

the data, and dxdRB  is a full-rank matrix. The goal of 
ICA is to find a matrix B  such that the resulting 
components of z are independent random variables. 

However, for many real-world sources, such as natural 
images, such an ideal decomposition is not possible and so 
the components of z will contain residual dependencies. Our 
aim is to explicitly capture these dependencies. In doing so 
we must first recognize that z cannot be further decomposed 
as a combination of independent sources via another full-
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rank matrix! It is possible, however, that z can be 
decomposed with respect to an under-complete linear 
model, but this requires knowledge of the subspace 
dimensionality. 

An alternate view which we explored in [1] is that, given 
knowledge of the intrinsic dimensionality d, the residual 
dependencies can be captured via non-linear combinations 
of independent sources. The choice of the non-linearity, as 
well as of the source distribution, must be as simple as 
possible, and yet must successfully account for the 
probabilistic structure of the observed natural image 
sources. 

Perhaps the simplest non-linear system that one can 
hypothesize for natural image source modeling is a 
quadratic channel. In our experiments with natural image 
textures, we found that the hybrid linear-quadratic model 
(stimulated by i.i.d. Gaussian sources) shown in Fig. 1 can 
successfully account for the probabilistic structure of natural 
image patches. We now describe this non-linear system 
some detail. 

The observable image source data that we are modeling 
is dRx . dxdRB  is a full-rank matrix initially chosen 
as the matrix associated with the classical ICA 
decomposition of x  which will be re-estimated in 
subsequent iterations. The system F in Fig. 1 models the 
residual interaction between the components of dRz . It 
consists of a core non-linearity  preceded by a linear 
system Asy , where dT

d Ryyy ],...,[ 1 , 

1[ ,..., ]T d
d R , and dT

d Rsss ],...,[ 1  are i.i.d. 
Gaussian: ~ (0,1)is . The density of the ith Gaussian 
channel is denoted )( isq . The Gaussian channel variances 

are dT
d R],...,[ 1 , dT

d R],...,[ 1  is an 

additive mean adjusting vector, and d
d R],...,[ 1  is 

a multiplicative vector that is applied (component-wise) to 
all channels, and which determines the effective non-
linearity of the channels. Finally, ],...,[][ 1,

T
d

T
ji CCCC

dxdRA 1  is an invertible linear transformation of the 
i.i.d. Gaussian sources that determines the interaction of the 
Gaussian sources. 

Given this it was demonstrated in [1] that under the 
MICA distribution can be expressed in closed form as 
follows: 
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and where K and |J(F)| have closed form expressions with 
respect to the MICA parameters ),,,,(C . Equation 
(1) can be used to derive gradient equations for each of the 
parameters [1]. 

The computational complexity of MICA is O(nd4) 
primarily due to the following gradient equation required to 
update the matrix C [1]: 
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where n is the number of samples and d is the dimension of 
the vector. 

3. FAST-MICA ALGORITHM 
Thus far our approach has been to derive gradient equations 
for each of the parameters based on the log likelihood 
equation derived from the MICA distribution in conjunction 
with heuristics for assessing the  parameter. We note that 
the central computational bottleneck in determining the 
MICA parameters by this method lies in the computation of 
the matrix C. 

Figure 2 presents an alternative view of the 
computational structure involved in the training of the 
MICA model (as compared to Figure 1 which showed the 
same from generative point of view). Let us assume that the 
matrix B (either ICA or Gabor) along with parameters β and 
μ have already been estimated (using the initialization and 
heuristics used in the MICA paper). Thus what remains to 
be estimated are matrix C and parameter γ. We have the 
following relationship: )(yCs , such that we want to 
make the components of vector s i.i.d. Gaussian. This is 
equivalent to performing a PCA decomposition of y since, 
under the assumption that y is jointly Gaussian (which is a 
consequence of the requirement that s is jointly Gaussian), a 
PCA decomposition of y will yield uncorrelated Gaussian 
components which are consequently i.i.d. Let vectors 

N
iiy 1  be the N observation vectors (where d

i Ry ); 
then our goal is to find the optimal parameter  and 
optimal orthogonal matrix C such that we obtain a least-
squares reconstruction error: N
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Firstly, it can be deduced that at the optimum  will be 
N
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iopt y
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_ 1 . Given this, the optimal matrix C can be 

deduced by the standard procedure of eigenvalue 
decomposition of the correlation matrix of )(y . In the 
simulations below we use a standard PCA algorithm to 
perform this decomposition which reduces the 
computational complexity to O(nd2). Alternatively one 
could also employ efficient Neural Network 
implementations of PCA such as the APEX algorithm which 
allows one to perform adaptive updates on the neural 
network on a sample-by-sample basis to yield a PCA 
decomposition. 

4. NON-STATIONARITY INDEX 
We now demonstrate how the Fast-MICA algorithm finds 

an important application in computing a non-stationarity 
index based on relative change in mutual information. 
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Fundamentally non-stationarity in an image is the 
comparison of the statistical properties of two different 
regions of the image. Though KLD (Kullback Leibler 
Divergence) is a natural way to quantify the non-stationarity 
between two regions in an image, it is impractical due to the 
difficulties in computing sufficiently rich density functions 
(owing to the high-dimensional structure of the data), 
compounded with the subsequent difficulty of numerically 
computing the KLD integral. In our previous work we have 
found it convenient to study the non-stationary structure of 
natural images via the so-called NANS (Natural Image Non-
stationarity) index [4] which we defined as follows: 
Definition 1 (NANS index): Let  be the set of 
MICA filters associated with a windowed region Rx about 
location x in an image. Then we define the NANS (Natural 
Image Non-stationarity) index at x as:

; where,  is the mean-squared error 
associated with the region Rx and MICA filters ϕx.: 

                  □ 
In similar fashion, it is natural to define a non-stationarity 
index based on the relative change of mutual information: 
Definition 2 (MI index): Let  be the set of MICA 
filters associated with a windowed region Rx about location 
x in an image. Then we define the mutual information (MI) 

based non-stationarity index at x as: ; 
where,  is the mutual information associated with the 
region Rx and MICA filters ϕx:   
     
where, filtered image patch random variable with 
respect to MICA filter .            □ 
The discrete versions of the above indices are respectively 

 and ; where  is the mutual 

information and  is the mean-squared error 
associated with the region Rx and MICA filters ϕx. 

The computation of the MI index is numerically 
feasible now due to the Fast-MICA algorithm. 

5. SIMULATION RESULTS 
We define the M x M  image patch statistics of an N x N  
image region to be the joint distribution of the random 
variables (pixel values) from M x M  patches that sample the 
image region. In this paper we are specifically interested in 
modeling the M x M  image patch statistics of natural 
scenes. In our simulations we chose M=3. 

We uniformly sampled texture images obtained from the 
USC-SIPI Brodatz database [5] with Nptch = 2000 patches of 
size M x M. An ICA was then performed on the data vectors 
obtained from each texture using Comon's algorithm [2] to 
obtain the matrix B. Subsequently the parameters 

),,,,(C  of the MICA model were estimated as 
described in Section 2. The parameter , as mentioned 

earlier, was estimated heuristically using the criteria 
developed in [1] at the outset of the simulation and held to a 
constant value throughout. Parameter initialization 
procedures consistent with that described in [1] was 
performed. 

Thereafter, for each texture, we compared the data 
distribution of each channel derived from test data sets 
(different from the training data sets) to the corresponding 
distribution predicted by the ICA and MICA models. In 
addition, the average of all the data channels was also 
compared with that predicted by the ICA and MICA models. 
Simulation of the MICA model was accomplished by 
generating d i.i.d. zero mean, unit-variance Gaussian 
channels as shown in Fig. 1, and plotting the histograms 
outputs of the channels when the optimal parameters (for the 
texture being modeled) were used. 

Figures 3 and 4 depict texture images taken from the 
Brodatz database [4]. Figs. 3(a)-3(f) and 4(a)-4(f) show the 
histograms of two of the channels corresponding to each of 
the textures, as well as both the corresponding computed 
ICA distributions and the corresponding computed MICA 
distributions. Also shown in Figs. 3(g-i) and 4(g-i) are the 
histograms of the data distributions when all of the data 
channels of the corresponding textures are averaged together 
as well as the corresponding computed ICA and MICA 
distributions. From the results it is qualitatively and 
quantitatively established that the MICA model allows for 
significantly improved approximation of the original data 
distributions as compared to the classical ICA model. 

Figure 5(a) shows a grass-water multi-texture image and 
Figures 5(b) and 5(c) show respectively the NANS and MI 
non-stationarity maps using a center-surround (CS) 
architecture [4]. Firstly the use of CS architecture implies 
that there should be two lines present in the map on either 
side of the texture transition; this however absent in the 
NANS case due to its lack of symmetrical processing of the 
textures. In spite of this, for this example, the NANS index 
does appear to furnish visually better results than the MI 
map since the central line extends through the entire texture 
transition region. Nevertheless, the quantitative performance 
of the MI index for human fixation section tasks and its 
comparison to the NANS index [4] is an important 
unanswered question which is a subject of our future work. 
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Fig.5(a): Grass-Water multi-texture Fig.5(b): NANS map Fig.5(c): MI map 
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Fig.1: Generative non-linear model of MICA distribution 
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Fig 4: Herringbone Fig 3: Pigskin 

Figure 3. Pigskin Texture: Histograms of the Data channels and the 
corresponding ICA and MICA distributions. 
Performance improvement due to MICA = (KLD(MICA)-
KLD(ICA))/KLD(ICA) = 87.33% 

Figure 4. Herringbone Texture: Histograms of the Data channels and 
the corresponding ICA and MICA distributions. 
Performance improvement due to MICA = (KLD(MICA)-
KLD(ICA))/KLD(ICA) = 73.59% 

(a) Data Channel1 (b) ICA Channel1 (c) MICA Channel1 (a) Data Channel1 (b) ICA Channel1 (c) MICA Channel1 

(g) Data Average (h) ICA Average (i) MICA Average (g) Data Average (h) ICA Average (i) MICA Average 

(d) Data Channel2 (e) ICA Channel2 (f) MICA Channel2 (d) Data Channel2 (e) ICA Channel2 (f) MICA Channel2 
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