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ABSTRACT

Natural scene statistics (NSS) are an active area of research. Al-
though there exist elegant models for NSS, the statistics of natu-
ral image distortions have received little attention. In this paper we
study distorted image statistics (DIS) for natural scenes. We demon-
strate that each distortion affects the statistics of natural images in a
characteristic way and it is possible to parameterize this characteris-
tic. We show that not only are DIS different for different distortions,
but by such parametrization it is also possible to build a classifier that
can classify a given image into a particular distortion category solely
on the basis of DIS, with high accuracy. Applications of such cate-
gorization are of considerable scope and include DIS-based quality
assessment and blind image distortion correction.

Index Terms— Scene statistics, distortion statistics, quality as-
sessment

1. INTRODUCTION

Natural scenes form a small subset of all possible visual signals and
over the past few years natural scene statistics (NSS) have received
tremendous attention [1, 2]. Apart from the elegant statistical mod-
els proposed for NSS, applications of NSS in the field of quality as-
sessment have also been studied and proven successful [3, 4, 5].In
[3], the authors note that the presence of distortion affects the statis-
tics of natural scenes and they attempt to quantify this change using
information theoretic measures. If distortions in an image change
the statistics of natural scenes, an interesting question is whether we
can somehow quantify or parametrize this new distribution in an ap-
proach similar to that for NSS. For example, we know that the coef-
ficients from a subband of a scale-space-orientation transformation
of a natural image tend to obey a Laplacian distribution (most val-
ues concentrated around the origin and heavy tails) [1]. Suppose we
distort this image with (say) additive white noise. Will the distribu-
tion of subband coefficients be different? The answer according to
researchers [3, 5] is that these coefficients are different. However, if
one were seeking to quantify distortion statistics, asystematicdiffer-
ence for a particular form of distortion is needed. In this paper, we
demonstrate that such systematic differences do exist for distorted
images of natural scenes.

Even though NSS has been an active area of research, we are not
aware of any previous work which seeks to discover the statistics
of distorted images. Authors in [3] use NSS for their information
theoretic image quality assessment measure, but do not explicitly
characterize distorted image statistics (DIS). Similarly, properties of
NSS have been used for reduced-reference image quality assessment
(IQA) [5], again without explicit characterization of DIS. Our goal
in this paper is to explicitly characterize DIS. Specifically, we will

show that not only is there a characteristic signature for each dis-
tortion, but it is also possible to classify an image into a particular
distortion category solely based on its subband statistics with high
levels of accuracy.

The major contribution of this paper is distortion identification
based on distorted image statistics. Applications of distortion iden-
tification range from quality assessment to distortion identification
based image distortion correction. For example, present-day blind
image quality assessment algorithms assume that the distortion form
is know (say JPEG) and then proceed to build models to quantify
this distortion. With our technique, it is possible to identify the qual-
ity of an image completely blind - i.e., without any knowledge of
the distorting source - since we will be able to predict the distortion
category with high accuracy. A simple extension of the proposed
scheme is as follows. If we pick algorithms for blind IQA designed
for each distortion - JPEG [6], JPEG2000 [4] and Blur [7] - we can
visualize a system that receives an image as an input, classifies it into
one of these distortion categories and then proceeds to assess quality
using the cited algorithms. For image distortion correction, one can
visualize a similar approach, since there exist distortion specific ap-
proaches for this purpose [8]. Even though we have described only
two possible scenarios here, DIS may be applied to a wide-range of
research areas. Extensions of this technique for multiply distorted
images and for videos form another interesting research direction.

In this paper we discuss scene statistics for distorted images and
build a model for classifying a given distorted image by its distor-
tion type. For this purpose we choose a large set of images, and
four distortion categories with a wide range of distortion severities.
Given these distorted images, we will show that each distortion type
possess a unique signature. Given that there exists such a signature,
we then proceed to build a classifier which is capable of classify-
ing a given image into one of these four distortion classes. We will
demonstrate that not only is such an approach feasible, but it can also
be performed with high accuracy.

2. STATISTICS OF IMAGE DISTORTIONS

Generating Distorted Images The images used for evaluating
statistics were taken from the database proposed in [9]. The database
consists of 8 categories of natural scenes: coast, mountain, forests,
open country, streets, city, tall buildings and highways. From each
category we randomly selected 10 images for training and 10 (differ-
ent) images for testing. Each image in the training and test sets was
distorted using 4 distortion categories: White Noise (WN), Gaussian
Blur (GBblur), JPEG compression (JPEG), and JPEG2000 (JP2k)
compression. Each category consisted of 30 different distortion lev-
els whose parameter ranges are shown in Table 1. The WN, Gblur
and JPEG distortions were created using MATLAB. JP2k distortion



Distortion type & Parameter Min. Value Max. Value

WN (σ2 of filter) 0.001 1
Gblur (σ of filter) 0.5 8

JPEG (quality parameter) 10 75
JP2k (bit-rate) 0.05 1.75

Table 1. Table demonstrating minimum and maximum parameter
values used for inducing distortions.

was created using using the Kakadu encoder [10]. The 30 levels for
each distortion were equally spaced parameter values between the
minimum and maximum values in Table 1 on a logarithmic scale.
The parameter values were selected such that the resulting images
span a large range of quality so as to cover the space of distortions
well. Thus a total of80×4×30 = 9600 images were generated for
training, and another set of 9600 images were similarly generated
for testing. Each distortion category had a total of 2400 images.

Generating Image Statistics Each image created above was sub-
jected to a wavelet transform over 3 scales and 3 orientations (hori-
zontal, vertical and diagonal) using the Daubechies 9/7 wavelet ba-
sis [11]. These wavelet bases have been successfully used for image
compression [10], texture analysis [12] and for other purposes. For
natural images, as we mention in the introduction, the coefficients
of each subband are well modeled by a Laplacian distribution. This
motivates the question : ‘Given that there exists a particular distribu-
tion for subband coefficients of natural images from a space-scale-
orientation decomposition, does there exist a particular (parameteriz-
able) distribution model for those natural images when distorted with
a particular distortion?’. The evidence we have found points to the
affirmative. Fig. 1 shows the histogrammed coefficients of an image
from the above dataset for a particular subband - the shape appears
to agree with a Laplacian distribution. The figure also shows the
distributions of coefficients from the same natural image distorted
using the above mentioned distortions for the same subband. It is
evident that each distortion affects the distribution in a characteristi-
cally different way. This is true across subbands and across images.
For example WN seems to yield a Gaussian-like distribution while
the JP2k histogram is highly peaked. Since we suspect that there
exists a characteristic signature for each distortion, our goal is to
parametrize these distributions in some fashion so as to retain this
signature while reducing dimensionality.

In NSS, there exist many models for the marginal distributions
of subband coefficients [1]. One simple model for these coefficients
is the generalized Gaussian distribution (GGD). In this paper, we
use GGD to model coefficients from each of the wavelet subbands
for each distorted image. The GGD is:

fX(x; µ, σ
2
, γ) = ae

−[b|x−µ|]γ
x ∈ ℜ (1)

where,µ, σ2 andγ are the mean, variance and shape-parameter of

the distribution anda = βγ
2Γ(1/γ)

, b = 1
σ

√

Γ(3/γ)
Γ(1/γ)

, whereΓ(·) is the

gamma function:

Γ(x) =

∫ ∞

0

t
x−1

e
−t

dt x > 0

The shape parameterγ controls the ‘shape’ of the distribution.
For example,γ = 2 yields a Gaussian distribution andγ = 1
yields a Laplacian distribution. The parameters of the distribution
(µ, σ2 andγ) are estimated using the method proposed in [13]. Since
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Fig. 1. Histograms of coefficients from one subband for an original
image and its distorted versions (normalized).

wavelet bases act as band-pass filters, the responses are zero-mean
and we are left with 2 parameters (σ2 andγ) for each subband. An
18-dimensional vector~fi (3 scales× 3 orientations× 2 parameters)
is formed from these estimated parameters and is the representative
feature vector for that image. In order to get a feel for the statis-
tics of these parameters and to visualize the way they vary with each
distortion, we also computed these parameters across all contents
(80 images) for each distortion type and distortion level. Parame-
ters of the fit are estimated as described. These parameter-vectors
are then subjected to a principal component analysis (PCA) [14], in
order to reduce the dimensionality of the space to 3. PCA projects
the data onto a space such that the newly formed space accounts for
maximum variance in the data. The first dimension accounts for the
most variance, the second dimension for the next-most variance and
so on. We project onto a 3-dimensional space for visualization pur-
poses only. A plot of the 3-dimensional vectors in PCA space is seen
in Fig. 2. It is obvious that each distortion follows a particular trend
and that the parameter-vectors seem to capture this trend well.

Classifying Image Distortions Before we go further, let us sum-
marize the essence of what we have proposed. A large dataset with
varied content was created and each image was subjected to various
distortions at various severities. Each image thus created was sub-
jected to a wavelet transform, whose coefficient distributions were
parametrized using the generalized Gaussian distribution (GGD).
The parameters of this GGD were estimated and stacked to form a
18-dimensional feature vector for each distorted image in the dataset
(testing and training) -~fi, wherei = {1, 2, . . . 9600}.

Our goal next was to utilize the training vectors to train a clas-
sifier such that when the classifier is fed with vectors from the test
set, a suitable classification into distortion categories is obtained. For
this purpose we use a support vector machine (SVM) [15]. SVMs are
popular as classifiers since they perform well in high-dimensional
spaces, avoid over-fitting and have good generalization capabilities
[15]. We trained a multi-class SVM on the training set consisting
of 9600 different feature vectors using the popular LIBSVM pack-
age [16]. The radial basis function (RBF) kernel (K(xi; xj) =
exp(−γ||xi−xj ||

2), γ > 0) was utilized and its parameters selected
using a grid-based 5-fold cross-validation approach on the training
set. This trained SVM was then applied as a classifier on the test set
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Fig. 2. Distorted Image Statistics. Each point in the figure is the
average of statistics of 80 images projected onto a 3-dimensional
PCA space. Only a part of the space is shown.

Distortion type Classification Accuracy

WN 99.17%
Gblur 95.42%
JPEG 74.75%
JP2k 84.67%

Overall 88.5%

Table 2. Classification accuracy on test-set for distortion identifica-
tion.

consisting of 9600 feature vectors.

3. RESULTS

Parameter section of the SVM during the training phase lead to a
cross-validation accuracy of94.60% with (c, γ) = (128, 0.056);
wherec is a penalty parameter for the error term in the minimization
function of the SVM. With this kernel, the classification accuracy
of test images is88.5%. Table 2 shows the classification accuracy
per-category of distortion. WN and Gblur are the easiest to classify
while JPEG is seemingly the hardest.

We expected that the performance of the classifier should dete-
riorate with increasing quality of images (reducing distortion sever-
ity). In Fig. 3 we plot the performance of the classifier on the test
set for five distortion severity levels for each distortion type. For
this purpose, each set of 6 distortion levels from each distortion type
was clumped into a severity level (to form 5 such quantized ‘qual-
ity’ ranges) and the performance of the classifier was examined for
this set of images. Even though the figure groups all distortions on
the samex-axis - low quality (high distortion severity) to high qual-
ity (low distortion severity) - we do not mean to insinuate that these
images have the same perceptual quality or that the degradation is
the same in any manner. All distortion categories were plotted on
the same graph due to space constraints. Figure demonstrates that
performance accuracy falls monotonically for increasing quality. In
Fig. 4 we plot the ‘confusion matrix’, that indicates which 2 sets of
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Fig. 3. Figure showing classification accuracy of SVM on the test
set as a function of quality/distortion severity.

classes are confused the most for the ‘high quality’ (most misclassi-
fied) images.

WN Blur JPEG JP2K

WN 

Blur

JPEG

JP2K

Fig. 4. Confusion Matrix for ‘high quality’ case - which (row) is con-
fused as which (column) distortion. Darker value indicates greater
number of confused images. Each row normalized. For example,
Blur is most mis-classified as JPEG - this may be because JPEG
compression induces blur as well as blocking distortions in an im-
age.

Given that the overall accuracy of classification is good and that
for high-quality images the distortions may not be significant enough
to form a characteristic signature, the next question to answer is,
‘can we label some images as unclassified’? Based on the confusion
matrix in Fig. 4, our hypothesis is that if we create an arbitrary
label - unclassified - and based on some criteria place images in this
category, our classification accuracy should improve, especially for
the high-quality case. In order to do this, we extract the probability
estimates of an image belonging to a particular class from the SVM
output. We set a threshold on the probabilityp of an image belonging
to the output class. In casep is lesser than the set threshold, we
re-label the image as un-classified. We report results of two such
probability thresholds of 0.5 and 0.75 in Table 3 along with the total
number of images classified after thresholding.

Fig. 5 shows the classification accuracy for each distortion as
a function of quality for thep ≥ 0.75 case. Comparing Figs. 3
and 5 validates our hypothesis that classification performance for
high-quality images improves when the criterion for classification is
made stricter, since this class of images may not have perceptually



Distortion Accuracy (p ≥ 0.5) Accuracy (p ≥ 0.75)

WN 99.29% 99.54%
Gblur 95.70% 97.91%
JPEG 76.24% 84.23%
JP2k 85.41% 91.20%

Overall 89.23% 93.49%
Total images 9522 9088

Table 3. Classification accuracy on test set for distortion identifi-
cation with artificial ‘un-classified’ class and different probability
thresholds.

significant distortions.
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Fig. 5. Figure showing classification accuracy of SVM on the test
set as a function of quality/distortion severity forp ≥ 0.75 with an
‘unclassified’ category.

Finally, we also tested the possibility of using an alternate classi-
fier - AdaBoost [17]. AdaBoost is a boosting technique used in con-
junction with weak classifiers to improve classification performance.
In our simulations we used a decision tree as the weak classifier and
one-vs-the-rest training since AdaBoost is essentially a 2-class clas-
sifier, leading to 4 classifiers - one for each category. We found that
with forced categorization into four distortions (based on confidence
of returned-class) an overall classification accuracy of90.41% was
achieved for the whole dataset. With the introduction of an artificial
‘unclassified’ category (where images which each of the four clas-
sifiers did not accept as belonging to their ‘true’ class were placed)
accuracy of≈ 92% was achieved over 9142 ‘classified’ images. Fu-
ture work will involve exploration of the optimal classifier for this
problem.

4. CONCLUSION & FUTURE WORK

In this paper we demonstrated that different distortions exhibit differ-
ent characteristics which systematically modify natural scene statis-
tics (NSS). We evaluated distorted image statistics (DIS) for natu-
ral images in the wavelet-domain and utilized the generalized Gaus-
sian distribution to parameterize these statistics. Further, we built a
model for classifying images into specific distortion categories based
on their DIS signature, and showed that such a classification may be
achieved with high accuracy (≈ 93.5%). We wish to increase the
number of distortions to make DIS comprehensive. We are also in

the process of creating algorithms for blind image quality assessment
that use the frame-work of DIS.
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