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ABSTRACT
We propose a new quality metric for range images that is

based on the multi-scale Structural Similarity (MS-SSIM)

Index. The new metric operates in a manner to SSIM but al-

lows for special handling of missing data. We demonstrate its

utility by reevaluating the set of stereo algorithms evaluated

in the Middlebury Stereo Vision Page

http://vision.middlebury.edu/stereo/. The new algorithm

which we term Range SSIM (R-SSIM) Index possesses fea-

tures that make it an attractive choice for assessing the quality

of range images.

Index Terms— SSIM, Quality Assessment, Range Im-

ages, Structural Similarity

1. INTRODUCTION

Currently there is a lack of methods to objectively assess the

quality of range images. Range images of every type, whether

they are acquired directly using a range finding device, indi-

rectly through structured lighting [1] or computed from stereo

images, can vary significantly in their quality when compared

to a ground truth. It is useful to be able to quantify the quality

of these range images in order to benchmark range-finding de-

vices and stereo algorithms. In previous work the RMS (root

mean squared) error [2] or percentage of bad pixels [2][3][4]

has been used to estimate the quality of range images in order

to evaluate the performance of stereo algorithms.

Recently there have been important advances in (lumi-

nance) image quality assessment. The standard quality met-

rics used in the past such as mean squared error (MSE) are be-

ing replaced by metrics such as SSIM [5], which match better

with human subjectivity. Other successful but more complex

metrics, such as the Visual Information Fidelity (VIF) Index

[6] have also been developed, using models of the human vi-

sual system (HVS) and natural scene statistics (NSS).

This paper proposes a new measure, termed R-SSIM In-

dex, which uses of a modified version of the Multi-Scale

SSIM [7] Index, but specially designed for range images.

Range images, bear both many similarities and differences

with luminance images. When applying the SSIM algorithm

to range images, the three similarity components of SSIM,

that is, luminance, contrast and structure, find their counter-

parts in the range domain as depth, surface roughness and 3D

structure.

Computational stereo is becoming more prevalent and

commonly utilized in applications such as robot navigation

and face recognition. In [2] Schartein and Szeliski created

a ranking of many recent stereo algorithms. This work has

been continued and improved and is available on their web-

site: http://vision.middlebury.edu/stereo/ [8]. To demonstrate

the utility of the R-SSIM Index, the set of stereo algorithms

covered in [2] and their website were reevaluated and given

a new set of rankings using R-SSIM. We propose R-SSIM as

an alternative or supplementary approach to assessing range

image quality.

2. THE SSIM ALGORITHM

The Structural Similarity Index was first proposed in [5].

Since its initial publication, the algorithm has gained pop-

ularity and acceptance and several variations have been de-

veloped. The algorithm’s greatest appeal is that it matches

human subjectivity. In particular the SSIM Index, like the

HVS, highly sensitive to degradations in the spatial structure

of image luminances.

The basic SSIM algorithm requires that the two images

being compared be properly aligned and scaled so they can be

compared point by point. The computations are performed in

a sliding NxN (typically 11x11) gaussian-weighted window.

Three similarity functions are computed on the windowed im-

age data: luminance similarity, contrast similarity, and struc-

tural similarity, which for two images X and Y are calculated

as follows:

l(x, y) =
2μX(x, y)μY (x, y) + C1

μ2
X(x, y) + μ2

Y (x, y) + C1
(1)

c(x, y) =
2σX(x, y)σY (x, y) + C2

σ2
X(x, y) + σ2

Y (x, y) + C2
(2)

s(x, y) =
σXY (x, y) + C3

σX(x, y) + σY (x, y) + C3
(3)
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where

μ(x, y) =
P∑

p=−P

Q∑

q=−Q

w(p, q)X(x + p, y + q) (4)

σ2(x, y) =

P∑

p=−P

Q∑

q=−Q

w(p, q)[X(x + p, y + q)− μX(x, y)]2 (5)

σXY (x, y) =

P∑

p=−P

Q∑

q=−Q

w(p, q)· (6)

·[X(x + p, y + q)− μX(x, y)][Y (x + p, y + q)− μY (x, y)]

where w(p, q) is a Gaussian weighing function such that∑P
p=−P

∑Q
q=−Q w(p, q) = 1, and C1, C2 and C3 are small

constants that provide stability when the denominator ap-

proaches zero. Typically

C1 = (K1L)2, C2 = (K2L)2 and C3 = C2/2 (7)

where L is the dynamic range of the image and K1 � 1 and

K2 � 1 are small scalar constants. The three similarity func-

tions are then combined into the general form of the SSIM

index:

SSIM(x, y) = [l(x, y)] · [c(x, y)] · [s(x, y)] (8)

3. MS-SSIM

Since its conception, the SSIM Index has seen various mod-

ifications, improvements and applications. One of these is

the Multi-Scale SSIM or MS-SSIM Index [7]. It utilizes the

same basic algorithm except that it operates over scales. The

reference and distorted images are iteratively driven through

a low-pass filter and down sampled by factor of two. The re-

sulting image pairs are processed with the SSIM algorithm

and multiplied together.

MS-SSIM(x, y) = [lM (x, y)]αM ·
M∏

j=i

[cj(x, y)]βj · [sj(x, y)]γj (9)

Here M is the finest scale obtained after M − 1 scaling

iterations. lj(x, y), cj(x, y) and sj(x, y) are the luminance,

contrast and structure components at their different scales. In

[7], αj , βj and γj are set according to scale so they match the

contrast sensitivity function of the HVS. For the purposes of

this paper and the R-SSIM metric they will be set αj = βj =
γj and

∑M
j=1 γj = 1. The MS-SSIM algorithm compares

details across resolutions, providing overall improved image

quality assessment, as shown in the massive statistical study

detailed in [9].

4. A NEW INDEX FOR RANGE IMAGES

When translating SSIM from intensity images into the range

image domain, the three similarity subcomponents find their

analog in the range domain. The luminance component be-

comes a function of mean depth which is a meaningful ele-

ment in describing a range map. The contrast component can

be interpreted as surface roughness. Most importantly, the

structure component captures 3-D structure such as disconti-

nuities, depth singularities, detail, 3D shape, and so on.

The one aspect which ordinary SSIM does not handle

properly in range maps are unknown regions or missing data.

In most applications, range images are output from stereo

algorithms, obtained through range finding devices or from

structured lighting techniques. These methods often produce

unknown regions, e.g. regions where a stereo algorithm fails

to compute a depth estimate or where the range finder is

shadowed by an obstruction. These unknown regions must

be handled appropriately in order to obtain an accurate score

from the quality metric. The R-SSIM algorithm is a vari-

ation of the MS-SSIM algorithm with the ability to handle

unknown regions or missing data.

R-SSIM handles unknown regions differently depending

on if they are on the reference image or the distorted image.

Pixels in the unknown regions of the reference image are ig-

nored in all R-SSIM calculations. Pixels in the unknown re-

gion of the distorted image are ignored when they fall inside

the sliding window used to calculate the value SSIM(x, y)
of its neighboring pixels, but the value SSIM(x, y) of the

unknown pixels themselves are set to zero. Figure 1(a) de-

picts an 11x11 patch in the reference image where there are

some unknown pixels (shown in black). Figure 1(b) shows the

same patch in the computed range image which also contains

unknown pixels. Figure 1(c) shows the Gaussian weighing

function and Figure 1(d) shows it masked by the unknown

regions and renormalized. Finally Figure 1(e) shows a map

of the SSIM values of that patch, where the pixel in the mid-

dle was the one calculated from Figures 1(a), 1(b) and 1(d).

In Figure 1(e), the same unknown region from Figure 1(b)

is indicated in black with a SSIM score of zero, while the

unknown region in Figure 1(a) will be ignored in the final R-

SSIM score.

5. EVALUATING STEREO ALGORITHMS USING
R-SSIM

Computational stereo is one of the most actively researched

fields in computer vision, and new stereo algorithms are be-

ing continuously developed. A comparative evaluation is use-

ful in gauging the performance of these algorithms as well as

monitoring the progress of the field. Scharstein and Szeliski

[2] published a paper performing a taxonomy and evaluation

of competitive stereo algorithms. In their evaluation, they

used two different quality metrics based on a known ground
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(a) (b) (c)

(d) (e)

Fig. 1. Explanation of R-SSIM Index. See text for explana-

tion.

truth. The RMS (root mean squared) error computed between

the disparity map dC and the ground truth map dT :

R = (
1
N

∑

(x,y)

|dC(x, y)− dT (x, y)|2)1/2 (10)

where N is the total number of pixels, and the percentage of

bad matching pixels:

B =
1
N

∑

(x,y)

(|dC(x, y)− dT (x, y)| > δd) (11)

where δd is a disparity error tolerance, which is set to δd in

this paper.

The authors continue to evaluate new algorithms on their

website: http://vision.middlebury.edu/stereo/ which now con-

tains 34 algorithms. In their online evaluation they run each

stereo algorithm on four different image pairs and compare

the results against a ground truth. They only use percentage

of bad pixels as a quality measure. The percentage of bad

pixels is evaluated for each of the four images in three dif-

ferent regions, as seen in Figure 2. The first region covers

all regions known in the ground truth, the second region cov-

ers all regions which are not occluded and the third region

covers all the areas which are near depth discontinuities and

near occlusions. The results of the evaluation ranked the algo-

rithms according to their performance. The average ranking

was taken from the mean rank from the different regions and

images.

In order to demonstrate the utility of the R-SSIM algo-

rithm, the same stereo algorithm results were evaluated using

the R-SSIM Index instead of the percentage of bad pixels.

The results are shown in Table 1. Correlating the results, dis-

played in Figure 3 it can be observed that the two metrics

correlate well. This demonstrates that the R-SSIM Index is

(a) Ground Truth (b) Non Occluded Regions

(c) All Known Regions (d) Regions Near Depth Disconti-

nuities

Fig. 2. Images from Middlebury stereo data set. See text for

explanation.

sensitive to the distortions that the Middlebury rankings as-

sess. However, the R-SSIM Index measures more than loss

of depth values, since it also is sensitive to errors in depth,

roughness, and 3-D surface structure, which can only be mea-

sured from local image patches, as opposed to single pixels.

Fig. 3. Correlations between R-SSIM Index values and per-

centage of bad pixels on the Middlebury dataset.

Figure 4 shows that the two methods can give very dif-

ferent rankings to the same images. The two algorithms be-

ing assessed are graded in nearly reverse rank-order by the

two assessment methods. Visual inspection of the two images

suggests that in this instance, the R-SSIM algorithm delivers

a more meaningful assessment of the quality of the computed

range maps.
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(a) CostRelax Algorithm

Middlebury rank: 14

R-SSIM rank: 25

(b) RegionTreeDP Algorithm

Middlebury rank: 20

R-SSIM rank: 9

Fig. 4. Comparison of the results of two computational stereo

algorithms and their Middlebury and R-SSIM rankings. In

this case the rankings diverge significantly.

6. CONCLUSION

We have proposed R-SSIM as a new and needed quality met-

ric for range images. We have demonstrated its utility by eval-

uating the 34 stereo algorithms in the Middlebury Stereo Vi-

sion Page. Through their evaluation and comparison of stereo

algorithms Schartein and Szeliski [2] have continue to provide

a valuable resource to the field of computer vision. We believe

that the R-SSIM algorithm is an effective method for range

image fidelity assessment which complements their evalua-

tions in a beneficial way.
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