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Abstract—Assessment of classifier performance is critical for fair
comparison of methods, including considering alternative models
or parameters during system design. The assessment must not only
provide meaningful data on the classifier efficacy, but it must do
so in a concise and clear manner. For two-class classification prob-
lems, receiver operating characteristic analysis provides a clear
and concise assessment methodology for reporting performance
and comparing competing systems. However, many other impor-
tant biomedical questions cannot be posed as “two-class” classifi-
cation tasks and more than two classes are often necessary. While
several methods have been proposed for assessing the performance
of classifiers for such multiclass problems, none has been widely
accepted. The purpose of this paper is to critically review meth-
ods that have been proposed for assessing multiclass classifiers. A
number of these methods provide a classifier performance index
called the volume under surface (VUS). Empirical comparisons
are carried out using 4 three-class case studies, in which three pop-
ular classification techniques are evaluated with these methods.
Since the same classifier was assessed using multiple performance
indexes, it is possible to gain insight into the relative strengths
and weakness of the measures. We conclude that: 1) the method
proposed by Scurfield provides the most detailed description of
classifier performance and insight about the sources of error in a
given classification task and 2) the methods proposed by He and
Nakas also have great practical utility as they provide both the
VUS and an estimate of the variance of the VUS. These estimates
can be used to statistically compare two classification algorithms.

Index Terms—Classification evaluation, ideal observer analysis,
three-class receiver operating characteristic (ROC), volume under
surface (VUS).

I. INTRODUCTION

A SSESSMENT of classifier performance is critical for fair
comparison of methods, including considering alternative
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models or parameters during system design. The assessment
must not only provide meaningful data on the classifier efficacy,
but it must do so in a concise and clear manner.

Many interesting problems in biomedicine can be represented
as “two-class” classification tasks. For example, one may de-
velop a computer-aided diagnosis (CADx ) system to predict
whether a lesion is due to a benign or malignant process based
on its appearance on medical imaging. For such problems, re-
ceiver operating characteristic (ROC) analysis is the accepted
standard for performance assessment [1]. An ROC curve is a
plot of the sensitivity versus 1-specificity that shows the trade-
offs in these quantities that can be achieved with the classifier
under study. The area under the ROC curve (AUC) is widely
used as a summary index for the classifier performance. Thus,
for two-class classification problems, ROC analysis provides a
clear and concise assessment methodology for reporting perfor-
mance and comparing competing systems. The ROC method-
ology has a number of advantages: 1) it has a single summary
measure (AUC) and a simple graphical view; 2) the values of the
AUC for chance and perfect performance are clearly specified;
3) it does not depend on disease prevalence; and 4) it is invariant
to monotonic transformations of the decision variable.

However, many other important biomedical questions cannot
be posed as “two-class” classification tasks. Instead, more than
two classes are often necessary. For example, it is more infor-
mative to predict disease stage than merely to classify whether
the disease is present or not. As an example, in computer-aided
detection of cancer, one must distinguish between false positive
detections, benign lesions, and malignant lesions. While several
methods have been proposed for assessing the performance of
classifiers for such multiclass problems, none has been widely
accepted. Note that while some measures have been defined
only for the extension to three classes, others can be used to
assess classifiers for tasks involving three or more classes.

The purpose of this paper is to critically review methods that
have been proposed for assessing multiclass classifiers. Empiri-
cal comparisons are carried out using 4 three-class case studies.
Since the same classifier was assessed using multiple perfor-
mance indexes, it is possible to gain insight into the relative
strengths and weakness of the measures.

II. MATERIALS AND METHODS

A. Datasets

Our aim was to compare methods that have been proposed
for evaluating classifier performance when three or more classes
are to be distinguished. Toward this goal, we applied several

1089-7771/$25.00 © 2009 IEEE

Authorized licensed use limited to: University of Texas at Austin. Downloaded on August 21, 2009 at 11:46 from IEEE Xplore.  Restrictions apply. 



SAMPAT et al.: INDEXES FOR THREE-CLASS CLASSIFICATION PERFORMANCE ASSESSMENT—AN EMPIRICAL COMPARISON 301

performance measures to the outputs of three different classifiers
applied on four different datasets.

1) Simulated Datasets: As we wanted to study the behavior
of the various indexes for different classification settings, we
first investigate their response under very specific conditions
using two simulated datasets. For both simulated datasets, we
use a single feature x for each class ci and assume that the
conditional distributions p (x|ci) for each class are normal dis-
tribution functions with mean and standard deviations (µ1 , σ1),
(µ2 , σ2), and (µ3 , σ3), respectively. For all classes, the stan-
dard deviation was set to one (σ1 = σ2 = σ3 = 1). For the first
dataset, the separation between the classes was empirically de-
fined as dist = |µ1 − µ2 | + |µ2 − µ3 |. This separation distance
was systematically varied from 0 to 15 to create different scenar-
ios with varying degrees of overlap between the three classes.
We set µ1 = 1, µ2 = 1, and µ3 = 1, and then increased µ2 in
increments of 0.5 and µ3 in increments of 1. For all values of
µ2 and µ3 , σ1 = σ2 = σ3 = 1.

For the second simulated dataset, two situations were consid-
ered: 1) the conditional distribution functions of classes 1 and 2
are completely overlapped, while that of class 3 is completely
separated from these classes (µ1 = 1, µ2 = 1, and µ3 = 7)
and 2) the conditional distribution functions for classes 2 and 3
are completely overlapped, while that of class 1 is completely
separated from these classes (µ1 = 1, µ2 = 7, and µ3 = 7). For
both cases, σ1 = σ2 = σ3 = 1.

2) Fisher Iris Dataset: Fisher’s Iris dataset (Iris flower
dataset) [2] is a popular three-class dataset commonly used
in classification experiments and is routinely found in the pat-
tern recognition literature. This dataset is a multivariate dataset
that consists of 50 samples from three species of Iris flowers
(I. setosa, I. virginica, and I. versicolor). For each sample, four
features were measured: the length and the width of sepal and
petal. It is known that one class is linearly separable from the
other two, which are not linearly separable from each other. This
dataset allows us to compare the behavior and effectiveness of
three-class classifier performance indexes when a varying num-
ber of input features (one to four in this case) are employed to
represent each object.

3) BI-RADS Mammography Dataset: The dataset consists
of 326 nonpalpable, mammographically suspicious breast mass
lesions that underwent biopsy (core or excisional) at Duke Uni-
versity Medical Center. Each case was interpreted by one of
seven radiologists. The mass margin, mass shape, and mass
density were reported according to the Breast Imaging Report-
ing and Data System (BI-RADS) lexicon [3] and encoded as
described in a previous publication [4]. The mass size and pa-
tient age were also collected. The radiologist’s “gut assessment”
of the likelihood of malignancy on a scale of 1–5 was provided
for each lesion. Few biopsied lesions were rated as having a
very low likelihood of malignancy (1 or 2); so the dataset for
this study includes only those rated from 3 to 5, where 3 rep-
resents “indeterminate,” 4 represents “likely malignant,” and 5
represents “malignant.”

4) Spectroscopy Dataset: This dataset was obtained from
a pilot clinical study conducted to measure the spectroscopic
signature of oral mucosa lesions suspicious for dysplasia or

carcinoma [5], using oblique polarization reflectance spec-
troscopy (OPRS) [6], [7]. Twenty-seven patients over the age
of 18 years who were referred to the Head and Neck Clinic
at the University of Texas M. D. Anderson Cancer Center were
inducted into the study. For each patient, spectroscopic measure-
ments were typically performed on one to two visually abnormal
sites and one visually normal site. Biopsies were conducted for
all sites. A total of 57 sites were measured, of which 22 were
visually and histopathologically normal (normal), 13 sites were
visually abnormal but histopathologically normal (benign), 12
were visually abnormal sites that proved to be mild dysplasia
(MD) on histopathology, and 10 were visually abnormal sites
that proved to be severe high grade dysplasia or carcinoma (SD)
after histopathology. In each measurement, parallel and per-
pendicular spectra were collected. Five spectral signals were
measured in this study. These are parallel signals, perpendic-
ular signals, diffuse reflectance spectrum, the ratio of parallel
to perpendicular, and the depolarization ratio [5]. Six features
are extracted from each spectrum: average nuclear size, average
of parallel signals, average of perpendicular signals, average of
diffuse signals, average of the ratio of parallel to perpendicu-
lar signals, and average of the depolarization ratio signals [5].
Additional details on preprocessing and feature extraction are
described in [5].

B. Classifiers

Classifiers can provide either a single continuous decision
variable or a set of posterior probabilities for each class. Differ-
ent performance indexes were designed with different classifier
output formats in mind. For example, for a three-class classi-
fication task, Mossman [8] proposed a performance index that
uses the three probabilities for belonging to each class as input.
In comparison, Nakas and Yiannoutsos [9] developed an index
that requires a single decision variable as input. Note that when
a single decision variable is used, one must know the order in
which the classes occur. One such example of the class order
is that objects from class c3 tend to have larger measurements
than objects from class c2 and that objects from c2 tend to have
larger measurements than objects from c1 .

In this study, three types of classifiers are used to provide
examples of both output formats. A linear regression model is
used to obtain a single continuous decision variable while a
k-nearest-neighbor (kNN) classifier and a Bayes classifier [10]
provide posterior probabilities for each class. Each of the three
classifiers is briefly described in the following sections. Since
the purpose of the study is to evaluate performance indexes,
using three types of classifiers is also valuable as it enables us
to assess the classifier comparisons that would result from using
a given performance index. This is an important consideration
since a common use of performance measures is to empirically
select among different models since the no free lunch theorem
[10] tells us that we generally cannot know a priori which
classifier will serve us best. Leave-one-out cross-validation was
used as a sampling method for all classifiers. In other words,
for each dataset, each object was excluded once from training
and reserved as the test case, while the remaining cases were
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used to train the classifier. Using this sampling method, more
predictions can be obtained with the given amount of data by
interchanging the training and test sets.

1) k-Nearest Neighbor: The k-NN classifier is simple, yet
robust in its application. Let each observation in the dataset
be described by a d-dimensional feature vector �x. The same
features are then obtained for an unknown observation. Next,
the distance in feature space between the unknown observation
and the known observations in the dataset can be found. Based
on these distances, the k NNs, or the k observations from the
dataset, that have the smallest distance measure from the un-
known observation are identified. The a posteriori probability
that the unknown observation belongs to each output class is
obtained by calculating the proportion of cases of each class
that are included among the k NNs of the unknown observation
in feature space. For example, if k = 13, and the number of NNs
for classes 1, 2, and 3 for a case are 3, 4, and 6, respectively,
the a posteriori probabilities for this case of belonging to each
of the classes are 3/13, 4/13, and 6/13, respectively. In order to
obtain a discrete classification, the unknown observation is as-
signed to the class to which the highest proportion of the known
observations belongs.

2) Bayes Classifier: Let P (ci) denote the a priori probabil-
ity that a sample belongs to class ci , where i = 1, 2, . . . , N .
Let each sample be represented by a d-dimensional feature
vector �x. Let p(�x|ci) denote the class-conditional probability
density function. It represents the probability distribution func-
tion for feature vector �x given that �x belongs to class ci . Let
P (ci |�x) be the a posteriori probability, which is the proba-
bility that the sample belongs to class ci given the feature
vector �x. Given P (ci) and p(�x|ci), the a posteriori probabil-
ity for a sample represented by the feature vector �x is given
by the Bayes formula [10] P (ci |�x) = p(�x|ci) × P (ci)/p(�x),
where p(�x) =

∑N
i=1 p(�x|ci) × P (ci). The formula is applica-

ble for all probability density functions; however, the nor-
mal density function is often used to model the distribu-
tion of feature values of a particular class. For simplic-
ity, this assumption was also made in our study. The gen-
eral multivariate normal density function in d dimensions is
given by

p(x) =
1

(2π)d/2 |Σ|1/2 exp
[
−1

2
(x − µ)t

∑−1
(x − µ)

]

where µ is the d-component mean vector,
∑

is the d × d co-
variance matrix, and |

∑
| and

∑−1 are its determinant and in-
verse, respectively. In this paper, a normal multivariate density
function was used to model the features for each class for all
datasets. The parameters µ and

∑
of the probability density

function for each class are calculated from the training obser-
vations belonging to that class. These parameters are estimated
by computing the mean and covariance of the features of the
training observations. As noted before, some performance meth-
ods operate on the continuous classifier output whereas others
require discrete classifications. For any given test observation
described by the feature vector �x, a discrete classification can

be obtained using the Bayes decision rule, which is: decide ci if
P (ci |�x) > P (cj |�x) ∀j �= i.

3) Linear Regression: Linear regression is a method that
models the linear relationship between a dependent variable y
and d independent variables (features), represented by the vector
�x as y = �xλ + ε, where ε is a random error term. The parame-
ters λ are selected such that the sum of residuals (the difference
between the predicted and observed values) squared is mini-
mized. A linear regression model produces a single continuous
output value for each observation, the value of which depends
on the labels selected to represent the various classes. One ex-
ample of such an encoding scheme is: normal = 1, benign =
2, and malignant = 3. The encoding of the class labels does
not affect the computation of the measures of classifier perfor-
mance. Moreover, if the target classes have a natural ordering
biologically, the results are easier to interpret if that ordering is
retained. For example, [1 = normal, 2 = mild dysplasia, 3 =
severe dysplasia] is a better choice than [1 = mild dysplasia,
2 = normal, 3 = severe dysplasia] since mild dysplasia is the
intermediate state biologically.

C. Conversion of Classifier Outputs

From Section II-B, we observe that for each object, the clas-
sifiers considered in this study can have two types of outputs.
Type A: Percent likelihood of belonging to each of the three

classes, e.g., for the Bayes classifier, one obtains three
posterior probabilities for each object.

Type B: One continuous output for each object, e.g., the output
from a linear regression classifier.

As mentioned earlier, for some three-class ROC analysis
methods, the input (which is the classifier’s output) must be
of type A (e.g., Mossman method), whereas for other meth-
ods, the input must be of type B (e.g., Nakas method). Thus,
to be able to evaluate the performance of all classifiers with all
methods, we need to define methods to transform the classifier’s
output from type A to type B, and vice versa. In Section II-C1
and II-C2, we define the rules for these transformations.

1) Conversion From Percent Likelihood to a Continuous Out-
put (Conversion From Type A to Type B): Let P (c1 |�x), P (c2 |�x),
and P (c3 |�x) represent the a posteriori probability for a sample
represented by the feature vector �x for classes 1, 2, and 3, re-
spectively. Let ctsOp denote the continuous output. Then the
rule for conversion from type A to type B is as follows:

If P (c1 |�x) ≥ P (c2 |�x) and P (c1 |�x) ≥ P (c3 |�x),

then ctsOp = 0.5 + P (c1 |�x)

If P (c2 |�x) ≥ P (c1 |�x) and P (c2 |�x) ≥ P (c3 |�x),

then ctsOp = 1.5 + P (c2 |�x)

If P (c3 |�x) ≥ P (c1 |�x) and P (c3 |�x) ≥ P (c2 |�x),

then ctsOp = 2.5 + P (c3 |�x).

Note that 0.5, 1.5, and 2.5 are ordered but arbitrary offsets.
Any other set of ordered offsets can also be used.
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TABLE I
GENERAL CONFUSION MATRIX FOR ASSESSING THE PERFORMANCE IN A THREE-CLASS CLASSIFICATION TASK

2) Conversion From a Continuous Output to Percent Like-
lihood (Conversion From Type B to Type A): A continuous
output can be converted to percent likelihood by fitting Gaus-
sian distributions to the continuous output for each class to
obtain three distributions: P (ctsOp|c1), P (ctsOp|c2), and
P (ctsOp|c3), where ctsOp denotes the output of the linear
regression classifier. Then, for each object i, three likelihood val-
ues are obtained by computing P (ctsOpi |c1), P (ctsOpi |c2),
and P (ctsOpi |c3), where ctsOpi represents the continuous out-
put of the classifier for the ith object.

D. Classifier Performance Indexes

1) Overview: Several methods have been proposed for as-
sessing the performance of multiclass classifiers. Some of
these include pairwise AUC comparisons [11], Hand and Till’s
M function (HTM) [11], one-versus-all (OVA) AUC com-
parisons [11], the modified HTM (HT3, [12]), Scurfield’s
method [13], Mossman’s three-way ROC [8], He’s method
[14], and Nakas’s method [9]. In this study, performance
measures were empirically compared on the outputs of clas-
sifiers on the 4 three-class datasets described before. Each
method was implemented in MATLAB (The MathWorks, Inc.,
Natick, MA) and is available for download as part of our
Classifier Performance Evaluation Toolbox from our Web
site (http://bmil.bme.utexas.edu/files/bmil/publications/CPET-
0.1b.zip).

The confusion matrix (shown in Table I) is an excellent way
of organizing discrete classification data, based on the actual
state of an object versus its predicted state as determined by
a classifier. In the confusion matrix, V (ci, cj ) represents how
many subjects that were actually of type ci were classified as
type cj . For a three-class decision problem, using classes c1 ,
c2 , and c3 , V (c1 , c1) represents the number of class c1 subjects
correctly classified as class c1 , V (c1 , c2) represents the number
of class c1 subjects incorrectly classified as class c2 , etc., for a
total of nine different combinations. These nine values can be
formatted into a 3 × 3 confusion matrix, as seen in Table I. This
can be easily extended to more than three classes. An N-class
problem would have N 2 combinations for V (ci, cj ), i.e., an
N × N confusion matrix would be needed to represent all the
values of V (ci, cj ).

2) Pairwise Comparisons: Pairwise comparisons break
down an N-class classification problem into separate binary
one-versus-one comparisons. For an N-class classification task,

there exist N (N − 1) different binary comparisons. Thus, this
method returns N (N − 1) pairwise AUCs for each paired com-
parison. The input to this method has to be of type A (Section II-
C). This technique breaks down the problem into multiple binary
classifications after a multiclass classifier has been applied to a
dataset. Note that this is different from pairwise classification
in which the problem is broken down into binary classification
problems before classification, such that two-class classifiers are
used. For example, when classifying breast lesions as benign,
malignant but not invasive, or invasive malignancy, pairwise
classification could be performed by designing separate two-
class classifiers for benign versus invasive malignant, invasive
malignancy versus malignant but noninvasive, and benign ver-
sus malignant but noninvasive tasks. By comparison, what is
referred to as “pairwise comparison” in this study is pairwise
performance evaluation of a multiclass classifier. This approach
can be used to determine how well a classifier separates one
class from another. It provides the user a detailed view of ex-
actly which classes may cause the most trouble for the classifier.
For a three-class classifier, the problem would be broken up into
six different pairwise comparisons represented as six AUCs.
These six AUCs could then be used to judge aspects of classifier
performance. For each observation classified, three posterior
probabilities are obtained. While computing the AUC for class
1 and class 2, one can use the posterior probabilities for either
class 1 or class 2 to generate the ROC curve. Based on which
posterior probability is used, one would obtain two different
AUC values. For the three-class task, three comparisons are
possible (class 1 versus 2, class 1 versus 3, and class 2 versus
3), and thus, a total of six AUCs are obtained.

3) Hand and Till M Function: In Hand and Till’s M func-
tion [11], the classifier performance is given by HTM, calcu-
lated by HTM = [2/{N(N − 1)}]

∑
i<j Ā(i, j), where N is

the number of classes in the classification problem and Ā(i, j)
is the probability that a randomly chosen member of class i
has a lower probability of belonging to class j than a randomly
chosen member of class j. Note that the input to this method
has to be of type A (Section II-C). When there are only two
classes, the HTM function is the same as the traditional AUC
method. Essentially this represents the average of all the possi-
ble pairwise comparisons. For a three-class problem, after the
six pairwise AUCs have been determined, the HTM index can
be found through their average. This allows for a more gener-
alized view of classifier performance, as opposed to multiple
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TABLE II
EXAMPLE CONFUSION MATRIX FOR CLASSIFYING INTO ONE CLASS VERSUS

THE REST OF THE CLASSES

AUCs. Note that a classifier with ideal performance would have
an HTM value of 1.00 and a classifier with chance performance
would have an HTM of 0.50.

4) OVA Comparisons: OVA comparisons cast an N-class
classification problem as separate binary OVA comparisons.
The input to this method has to be of type A (Section II-C).
An N-class classification task requires N different binary OVA
comparisons. Each of these N binary OVA comparisons has its
own AUC, which can be used as a measure of how well the
classifier separates one class from all the other classes. A three-
class problem would result in three separate AUC measures that
describe each OVA comparison. Like the pairwise comparisons,
the OVA method allows for a detailed look at classifier perfor-
mance; however, it is more general than pairwise in that OVA
provides only one summary measure per class.

5) HT3 (Modified HTM): The HT3 [12] function is a modi-
fied version of the HTM function and is calculated by averaging
the AUCs of classifying one class versus all the rest combined
(OVA). In other words, HT3 is the average of OVA AUCs in anal-
ogy to the fact that HTM is the average of the pairwise AUCs.
Thus, HT3= (AUCa,rest+AUCb,rest+AUCc,rest)/3, where

AUCi,rest = max
(

1
2
, 1 − 2(rest, i)

V (c1 , ·)
− 2(i, rest)

V (c2 , ·) + V (c3 , ·)

)

and Table II illustrates the computation of (rest, i) and (i, rest)
for i = c1 . In essence, this is the average of three different
OVA comparisons. The input to this method is the confusion
matrix. As the original Hand and Till function allowed for a more
generalized version of the pairwise method through averaging,
the modified Hand and Till function does the same for the OVA
method. For an N -class problem, each of the N OVA AUCs can
be calculated and averaged to obtain the index. For example, for
a three-class task, HT3 is the average of three OVA comparisons.

6) Macroaverage: When assessing classifier performance,
the macroaverage takes into account only the correct clas-
sification rates and is a simple average of the three cor-
rect classification rates. The macroaverage [12] is given by
MAVG3 = [V (c1 , c1) + V (c2 , c2) + V (c3 , c3)]/3 (recall the
confusion matrix shown in Table I; the input to this method
is the confusion matrix). This is also commonly referred to as
“classification accuracy” or “percent correct” and is widely used
for the assessment of multiclass classification techniques.

7) Cobweb Graph: An N-class classification problem can
also be represented by the N(N − 1) misclassification values
from a confusion matrix. An N(N − 1) equilateral polygon
can be created to map the point obtained from the confusion
matrix. Chance classification would be represented by the equi-
lateral polygon whose corners are at a distance of 1/N from the
center of the polygon. Each of the separate misclassifications

Fig. 1. Example confusion matrix for classifying into one class versus the rest
of the classes.

can represent one corner on a polygon for a graphical repre-
sentation. The input to this method are entries of the confu-
sion matrix. The values chosen from a three-class classifica-
tion confusion ratio matrix, which is shown in Table I, form
a 6-D point. Given three classes (c1 , c2 , c3), the following
point, (V (c1 , c2) , V (c1 , c3) , V (c2 , c1) , V (c2 , c3) , V (c3 , c1) ,
V (c3 , c2)), is obtained from a confusion ratio matrix, where
V (c1 , c2) corresponds to the cell of the confusion ratio matrix
that gives the fraction of class c1 objects that were misclassified
as class c2 objects. A chance classification is shown in Fig. 1,
and the point represented is (0.33, 0.33, 0.33, 0.33, 0.33, 0.33).
The misclassification rates of 0.33 indicate that when confronted
with an object of type c1 , the classifier would classify it as hav-
ing an equal likelihood of being from any of the three classes
c1 ,c2 , or c3 . This method attempts to address the need for a sim-
ple visualization of classifier performance, which is one of the
advantages of traditional ROC analysis that is lacking in many
attempts to extend the approach to three or more classes. How-
ever, the cobweb representation is very complicated for large
number of classes.

Note that methods 1–6 described before use indexes that mea-
sure the discriminability between only two classes at a time.
Methods 8–12, described shortly, present measures that aim to
quantify the discriminability between all three classes simulta-
neously. A common theme in these methods is the use of a 3-D
ROC surface and the measure of the volume under this surface
(VUS). Let cj represent the true class of given sample and let
oi represent the class assigned to this sample by the classifica-
tion algorithm. To describe such surfaces, we must first define
the quantity P (oi |cj ), which is referred to as the conditional
classification rate by Edwards and Metz [15]. P (oi |cj ) is the
probability that an object is classified as belonging to class i
given that it actually belongs to class j. For a three-class task,
nine such possibilities exist, as shown in Table III.

Note that in Table III, P (o1 |c1) + P (o2 |c1) + P (o3 |c1) =
1, P (o1 |c2) + P (o2 |c2) + P (o3 |c2) = 1, and P (o1 |c3) +
P (o2 |c3) + P (o3 |c3) = 1. Thus, for the three-class task, there
are six independent variables and, in general, for the N-class
task, there are (N 2 − N) independent variables. The 3-D ROC
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TABLE III
NINE CONDITIONAL CLASSIFICATION RATES FOR A THREE-CLASS

CLASSIFICATION TASK

surfaces are typically constructed by plotting the three cor-
rect conditional classification rates: P (o1 |c1 ), P (o2 |c2 ), and
P (o3 |c3 ). The volume under this ROC surface is the probabil-
ity that the measurements of three subjects, one from each class,
will be correctly classified.

8) Nakas’s Method: Nakas and Yiannoutsos [9] proposed a
nonparametric measure for the volume under the ROC surface
that requires a single decision variable as input (type B, Section
II-C). Note that when a single decision variable is used, one must
know the order in which the classes occur. One such example
of the class order is: objects from class c3 tend to have larger
measurements than objects from classes c2 and objects from
c2 tend to have larger measurements than objects from c1 . Let
X1i , X2j , and X3k represent the value of the decision variable
for the ith, jth, and kth objects from classes c1 , c2 , and c3 ,
respectively, and let n1 , n2 , and n3 be the sample sizes of
classes c1 , c2 , and c3 , respectively. The measure proposed by
Nakas and Yiannoutsos [9] for a three-class task is defined as

�

θV = (1/n1n2n3)
n1∑
i=1

n2∑
j=1

n3∑
k=1

I (X1i , X2j ,X3k ).

As mentioned before, there is an order associated with the
three variables (X1i , X2j ,X3k ), which is known beforehand.
I (X1i , X2j ,X3k ) is a function that equals one if X1i , X2j ,
and X3k are in the correct order (X1i ≤ X2j ≤ X3k ) and zero
otherwise. For the N -class classification task (N > 3), this
measure was generalized as

�

θV =(1/n1n2 · · ·nN )
n1∑

i1 =1

n2∑
i2 =1

· · ·
nN∑

iN =1

I(X1i1 ,X2i2 , . . . , XNiN
),

where ni, i = 1, 2, . . . , N, are the sample sizes of
the N classes and the function I(X1i1 ,X2i2 , . . . ,
XN −1iN −1 ,XN iN

) is defined in the same manner as that
for the three-class task. Nakas and Yiannoutsos also present
methods to measure the variance of the term

�

θV by using
U-statistics methodology. Note that the U-statistics approach
is the same as that developed by DeLong et al. [16] for a
two-class case and by Dreiseitl et al. [17] for the three-class
case. A method to compare the VUS measurements from two
decision variables was also developed.

9) Mossman Three-Way ROC: Mossman [8] defined a
method for three-class ROC analysis in which three decision
variables y1 , y2 , and y3 are considered. These variables are sub-
ject to two constraints: y1 + y2 + y3 = 1 and 0 ≤ yi ≤ 1 ∀i.
One example of such a set of decision variables is the a poste-
riori probabilities (for each class) in a three-class classification
task. Thus, the input for this method is of type A (Section II-
C). Following the description by Edwards and Metz [18], the

decision rule considered by Mossman depends on two parame-
ters α and β, and it can be stated as

decide class 1, iff y2 − y1 ≤ β and y3 ≤ α

decide class 2, iff y2 − y1 ≥ β and y3 ≤ α

decide class 3, iff y3≥α (where 0≤α≤1,−1≤β≤1).

In Mossman’s method, the correct identification rates for each
class are plotted on the same plot to form a 3-D ROC surface
analogous to the ROC curve. The VUS can be used to assess
classifier performance in a way similar to the AUC. Information
gain, likelihood ratios, and the estimate bias and standard errors
of the classifier are all easily calculated.

10) Scurfield’s Method: Scurfield’s method [13] can be used
for three or more classes. In this method, a single decision vari-
able is required as input (type B, Section II-C) and six ROC
surfaces are generated (Table IV) for a three-class classifica-
tion task. These six surfaces (see [13], Fig. 2]) describe all the
ways in which the three classification outputs o1 , o2 , and o3
can be paired with the true states of the objects c1 , c2 , and
c3 . A description of each of these surfaces and the conditions
each of these surfaces represents is provided in Table IV. Note
that the volume of these six surfaces must sum to one. (In
general, with this method, N! ROC surfaces are created for an
N-class classification task.) Given a set of ROC surfaces, Scur-
field also defined a new measure of discriminability based on
the entropy of the volumes under the set of ROC surfaces. For
the three-class case, let this measure be denoted by D1:2:3 . Let
vol1 , vol2 , . . . , vol6 represent the volumes under the six ROC
surfaces. D1:2:3 is defined as D1:2:3 = log(6) − H1:2:3 , where
H1:2:3 = −

∑
i voli × log(voli). Highly separable events are

indicated by higher values of D1:2:3 . The benefits of using
D1:2:3 as a measurement of classifier performance are that it
is nonparametric, independent of observer criteria, and finite.
Compared to methods that only look at one ROC surface, the
six surfaces of Scurfield’s method can illustrate the effect of the
different misclassifications and their interactions.

11) Sahiner’s Method: Chan and coworkers [19]–[21] are
interested in the problem of classifying a given observation
as malignant, benign, or normal. For this purpose, Sahiner et
al. [20], [21] have proposed a decision rule based on an ideal
observer model as this model has been extensively analyzed.
Edwards et al. [22] showed that an N-class ideal observer makes
classifications (decisions) by partitioning a likelihood ratio de-
cision space. The borders of the partitions are given by hyper-
planes, which are defined as follows:

decide class = ci

iff
N −1∑
k=1

(
Ui|k − Uj |k

)
P (ck ) LRk ≥

(
Uj |N − Ui|N

)
P (cN ) ,

if j < i

and
N −1∑
k=1

(
Ui|k − Uj |k

)
P (ck ) LRk >

(
Uj |N − Ui|N

)
P (cN ) ,

if j > i
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TABLE IV
SIX 3-D ROC SURFACES PROPOSED BY SCURFIELD (FOR THE THREE-CLASS CLASSIFICATION TASK) AND AN INTERPRETATION FOR EACH OF THESE SURFACES

Fig. 2. Plots of VUS/AUC (for various three-class ROC analysis methods) versus separation distance between the classes in the simulated datasets. (a) HTM and
modified HTM. (b) OVA. (c) Scurfield’s method (volume of the six surfaces). (d) Nakas and He methods.

where Ui|j is the utility of deciding an observation is from class
ci , given that it is actually from class cj . P (ck ) is the a priori
probability that an observation is drawn from class ck and LRk

is the kth likelihood ratio defined by the ratio p(�x|ck )/p(�x|cN )
of the probability density functions of the observational data.
For purpose of normalization, Sahiner et al. [20] assume that

0 ≤ Ui|j ≤ 1 and also the following constraints. Let M , B, and
N denote the malignant, benign, and normal classes. In terms
of classes c1 , c2 , and c3 used in the previous sections, c1 ≡ M ,
c2 ≡ B, and c3 ≡ M .

UM |M = 1, UB |B = 1, all correct decisions have maxi-
mum utility (1)UN |N = 1 :
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UB |M = 0, UN |M = 0 : utility of misdiagnosing a malig-
nant case as benign/normal is min-
imum (0)

UB |N = 1, UB |N = 1 : classifying a benign case as nor-
mal or vice versa is not harmful

UM |B ∈ (0, 1), utility of misdiagnosing a benign
UM |N ∈ (0, 1) : /normal case as malignant is

variable.
With these simple but realistic constraints, the ideal observer

model for the three-class task is simplified considerably and
provides a single decision boundary in the likelihood ratio plane
separating the malignant from “nonmalignant” decisions [20],
[21]. In addition, Sahiner et al. constructed a 3-D ROC surface
by plotting the sensitivity (PMM ) versus the two false-positive
fractions (PMN and PMB ). Note that this is different from all
other methods where the 3-D ROC surface is created by plotting
the three sensitivities PMM , PBB , and PNN . Finally, Sahiner
et al. define a normalized volume under the surface (NVUS)
for this particular 3-D ROC surface and provide two methods
for computing the NVUS under the condition that the three
distributions in the feature space are multivariate normal with
equal covariance matrices [20], [21]. Note that the input for this
case are two log likelihood ratios [20], [21]. For a given object,
these can be obtained from the posterior probabilities for each
class for that object.

12) He’s Method: He and Frey [23] and He et al. [24] also
use the three-class ideal observer model to develop an ROC anal-
ysis method for three-class classification tasks. The motivating
problem for their work arose from myocardial perfusion single
photon emission computed tomography (SPECT), where the
goal was to distinguish normal, infarcted, and ischemic tissue.
The input to this method are two log likelihood ratios [23], [24].
For a given object, these can be obtained from the posterior
probabilities for each class for that object. For the ROC analysis
task, note that as described in the previous section, the utility
function Ui|j , which is the utility of deciding an observation is
from class ci given that it is actually from class cj , must be spec-
ified for the ideal observer analysis. He and Frey [23] and He
et al. [24] make the following simplifying assumptions about
the utility functions:

U3|1 − U2|1 = 0 U3|2 − U1|2 = 0 U1|3 − U2|3 = 0

and Ui|i ≥ Ui|j , i, j = 1, 2, 3, i �= j.

The first assumption is described as the “equal error utility
assumption” since it assumes that under all hypotheses, wrong
decisions have equal utilities.

III. RESULTS

A. Experiment 1: Simulated Datasets

In this experiment, we studied the behavior of the various
indexes under specific conditions. For this task, we used the
two simulated datasets described in Section II-A1. For the first
dataset, for each set of values of µ1 , µ2 , and µ3 , we randomly
select 50 samples from each class and then classify these sam-
ples with a Bayes classifier using a leave-one-out sampling

approach. In Fig. 2, for each classification method, the value
of VUS/AUC is plotted against the separation distance (“dist,”
as defined in Section II-A). In the second simulated dataset,
two situations were considered: 1) there is complete overlap
between the features of classes c1 and c2 while class c3 is com-
pletely separated from these classes (µ1 = 1, µ2 = 1, µ3 = 7,
and σ1 = σ2 = σ3 = 1); 2) there is complete overlap between
the features of classes c2 and c3 while class c1 is completely
separated from these classes (µ1 = 1, µ2 = 7, µ3 = 7, and
σ1 = σ2 = σ3 = 1). For both situations, 50 samples are selected
from each class and classified with a Bayes classifier using a
leave-one-out sampling approach. This experiment was repeated
ten times, and the mean and standard deviation of the various
indexes are reported in Table V.

Recall that for a three-class experiment, vol4 and vol5 rep-
resent the likelihood that all classes are incorrectly classified
(Table IV). In this simulated experiment, in both situations, one
class (c3 or c1) is separate from the other two classes. Hence,
vol4 = 0 and vol5 = 0 for both situations (Table V). The pa-
rameter vol6 measures the likelihood that samples from class
c2 are correctly classified and observations from class c1 are
classified as c3 , and vice versa. In this experiment, c2 over-
laps with c1 (case 1) or c2 overlaps with c3 (case 2). This
implies that samples from class c2 cannot be correctly classi-
fied, and hence, vol6 = 0 for both cases. The key issue is that
only with the Scurfield, pairwise, and OVA methods can one ob-
serve the differences in these situations (Table V). Note that the
HTM, Nakas, and He methods provide similar measures for both
situations and do not provide insight on the source of the clas-
sification error.

B. Experiment 2: Fisher Iris Dataset

It is known that each feature of the Fisher Iris dataset provides
unique information about each observation. Thus, for any given
classifier, we expected the VUS to increase as the number of fea-
tures were increased from 1 to 4 for the three-class classification
task. In this experiment, we used a Bayes classifier, and the re-
sults are shown in Table VI. From Table VI, we observe that as
the number of features are increased, the VUS/AUC measures
increase as expected.

Most of the three-class ROC methods provided a global view
of the classification performance (i.e., a single VUS value).
However, note that the pairwise comparison approach and Scur-
field’s methods were the only approaches that provided a de-
tailed account of the classification performance. For example,
consider the case when only first two features were used. For
Scurfield’s method, we see that when only the first two features
are used, vol1 = 0.68 and vol2 = 0.30 (Table VI, column 3).
Note that vol1 is the volume under the 123-ROC surface that
is obtained by plotting the three correct sensitivities P (o1 |c1),
P (o2 |c2), and P (o3 |c3) (Table IV [13]).

Similarly, vol2 is the volume under the 132-ROC surface
that is created by plotting P (o1 |c1), P (o2 |c3), and P (o3 |c2)
(Table IV [13]). Recall that vol1 denotes the likelihood of clas-
sifying all classes correctly and vol2 measures the likelihood of
incorrectly classifying samples from class c2 as from class c3 ,
and vice versa (Table IV). Fig. 3(a) shows the distribution of
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TABLE V
RESULTS (VUS/AUC) FROM VARIOUS THREE-CLASS ROC ANALYSIS METHODS

TABLE VI
RESULTS (VUS/AUC) FROM VARIOUS THREE-CLASS ROC ANALYSIS METHODS

samples in a 2-D feature space (features 1 and 2). We see that
there is significant overlap between classes c2 and c3 . This is
captured by the measure vol2 . Also note that vol3 measures the
likelihood that samples from class c1 are classified as from c2
and vice versa. Similarly, vol6 measures the chance of misla-
beling samples from class c1 as from c3 and vice versa. From
Fig. 3(a), it is clear that even with only the first two features,
this is very unlikely, and thus, both vol3 and vol6 are ≤0.01
(Table VI, column 3).

Fig. 3(b) shows how all samples are distributed in a 2-D
feature space (features 1 and 3) and Fig. 3(d) shows how all
samples are distributed in a 3-D feature space (features 1–3).
From these figures, we see that feature 3 helps to differentiate
between classes c2 and c3 . Thus, when we use all three features,
vol1 increases to 0.92 and vol2 decreases to 0.08, as compared
to vol2 = 0.30 when only two features were used (Table VI,
columns 3 and 4). Thus, we can quantitatively show that feature
3 helps in discrimination of classes c2 and c3 .
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Fig. 3. Distribution of the features from the Iris dataset. (a) Distribution of samples in the 2-D feature space (features 1 and 2). (b) Distribution in 2-D feature
space (features 1 and 3). (c) Distribution in 2-D feature space (features 2 and 4). (d) Distribution in 3-D feature spaces (features 1–3).

Note that the fact that feature 3 helps to distinguish between
classes c2 and c3 was easily obtained from the results from Scur-
field’s method. To some degree, similar information can also be
found by looking at the results from the pairwise comparisons
(Table VI, columns 3 and 4). We see that the lowest AUC was
obtained (0.76, 0.77) when class c2 was compared to class c3 ,
and only features 1 and 2 were used. This indicates that the
two features do not provide adequate discrimination between
these classes. In comparison, when features 1–3 are used for
the pairwise comparison of classes c2 and c3 , an AUC of 0.99
is obtained. This shows that feature 3 helps in the discrimina-
tion of classes 2 and 3. However, the pairwise comparisons do
not provide an indication of the overall classification accuracy,
which is provided by the volume of the 123-ROC surface (vol1)
from Scurfield’s method. Note that the volume of the 123-ROC
surface and the VUS from Nakas method are identical. This ex-
periment shows that by analyzing all six ROC surfaces, one can
obtain a more detailed description of the utility of each feature
to discriminate between each pair of classes.

C. Experiment 3: BI-RADS Mammography Dataset

In this experiment, observations from the BI-RADS mam-
mography dataset were classified using all three classifiers de-
scribed in Section II-B. These results are shown in Table VII.
In this classification task, the goal was to predict the radi-
ologist’s gut assessment of the likelihood of malignancy for

each breast lesion. Note that while the Bayes classifier did
perform well for distinguishing some of the two class pairs
(for example “3” versus “5”), none of the classifiers provide
good discrimination between all three classes. From the re-
sults from Scurfield’s method, we see that the overall classi-
fication accuracy denoted by vol1 is 0.15, 0.12, and 0.10 for
the k-NN, linear regression, and Bayes classifiers, respectively
(Table VII).

The Scurfield method allows one to look at the type of clas-
sification error. Note that the sum of the two volumes, vol4 and
vol5 , measures the likelihood of classifying all classes incor-
rectly (Table IV). The sum of these measures is 0.35, 0.38, and
0.41 for each of the three classifiers respectively (Table VII).
Note that in this experiment, for some of the cases, the results
from the pairwise comparisons are reasonably good. For exam-
ple, the Bayes classifier performs well in differentiating between
classes “3” and “5” (AUC = 0.93; Table VII, last column). How-
ever, it is difficult to get an assessment of the overall classifica-
tion accuracy from only looking at the results of the pairwise
comparisons.

D. Experiment 4: Spectroscopy Dataset

In this experiment, observations from the UT spectroscopy
dataset were classified using all three classifiers described in
Section II-B. These results are shown in Table VIII. In this
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TABLE VII
RESULTS (VUS/AUC) FROM VARIOUS THREE-CLASS ROC ANALYSIS METHODS

TABLE VIII
RESULTS (VUS/AUC) FROM VARIOUS THREE-CLASS ROC ANALYSIS METHODS

classification task, the goal was to classify tissue sites into three
categories as normal, benign, or dysplasia. (The cases of mild
dysplasia (MD) and severe high grade dysplasia were combined
into one category.)

The results indicate that these sets of features do not provide
good classification between the various classes. From the results
obtained with Scurfield’s method, we see that the overall clas-
sification accuracy denoted by vol1 is 0.26, 0.25, and 0.27 for
the k-NN, linear regression, and Bayes classifiers, respectively

(Table VIII). The sum of these volumes, vol4 and vol5 (which
measure the likelihood of classifying all classes incorrectly), is
0.24, 0.28, and 0.19 for each of the three classifiers respectively
(Table VIII).

Note that vol3 quantifies the likelihood of incorrectly clas-
sifying samples from class c1 as those from class c2 and vice
versa (Table IV). In this experiment, vol3 is 0.21, 0.15, and 0.27
for each of the three classifiers respectively (Table VIII). Thus,
from Scurfield’s method, we can infer the type of error that is
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likely to occur for a given classification technique. Often, certain
kinds of errors have a “higher cost” associated with them than
others. In classification experiments, this is usually quantified
with a cost matrix. For an N-class classification task, the cost
matrix is an N × N matrix in which each term costij represents
the cost of classifying a sample as belonging to class ci when
it actually belongs to class cj [10]. As different classification
techniques may have different likelihoods of making a particu-
lar type of error, by using the Scurfield method, one can find the
classification technique that has the smallest likelihood for the
error with the “highest cost.”

Comparing the various indexes from experiments 3 and 4, we
observe some interesting trends. In experiment 3, the AUCs from
the pairwise comparisons are higher than those for experiment
4. Similarly, the HTM and modified HTM indexes are also larger
for experiment 3. However, the Scurfield, He, and Nakas indexes
for experiment 4 are greater than those for experiment 3. Note
that these indexes quantify the discriminability between all three
classes simultaneously. This further shows that it is difficult to
get an assessment of the overall classification accuracy from
only looking at the results of the pairwise comparisons.

IV. DISCUSSION

The intention of this study was to summarize methods for
multiclass performance analysis and provide insight into the
different methods via empirical comparisons. All methods were
used to evaluate the performance of three popular classifica-
tion techniques (k-NN classifier, linear regression classifier, and
Bayes classifier) in four experiments. In the following sections,
we first present the key points from the experiments and then
discuss the advantages and disadvantages of each of the three-
class ROC methods.

A. Advantages and Disadvantages of the Various Three-Class
ROC Methods

As demonstrated by the experiments before, we see that the
various three-class methods have certain advantages and disad-
vantages. First we consider the methods that analyze the discrim-
ination of two classes at a time (pairwise, HTM function, OVA,
and modified HTM). The results from experiment 1 (Table V)
show the major limitations of the Hand and Till function and the
modified HTM method. For the two simple simulated datasets
considered in this experiment, these methods generate the same
results and may be misleading. In contrast, pairwise compar-
isons allow for an in-depth view of classifier performance. The
advantage is that problem areas can be pinpointed, but the dis-
advantage is that as the number of classes increases, there are
numerous AUC results (for N classes, one obtains 2N (N − 1)
AUCs), and this may make it cumbersome to interpret. Note
that the OVA comparisons allow for a slightly less detailed view
of classifier performance than pairwise comparisons. However,
note that both the pairwise and OVA comparisons do not in-
dicate how a given method would perform for classifying all
classes simultaneously.

Among the methods that analyze the discrimination of all
three classes, the results from the experiments show that the

VUS from the Nakas, He, and Mossman methods are simi-
lar to the volume of the 123-surface in Scurfield’s method. A
key aspect is that the Scurfield method provides the most de-
tailed description of classifier performance. For the three-class
classification task, the six volumes from the Scurfield method
provide information on all potential scenarios and can provide
the investigator with valuable information on the sources of the
classification error. For example, the volume under the 321-
surface denotes the likelihood that observations from class 3
are misclassified as those from class 1 and vice versa. In addi-
tion, one can evaluate the effectiveness of certain features for
a specific classification task. For example, from experiment 2
on the Iris Fisher dataset (Table VI), we see that when only
the first two features are used, observations from class 2 are
misclassified as those from class 3 (volume of 123-surface is
0.68 and volume of 132-surface is 0.30), and when three fea-
tures are used, this helps to discriminate between classes 2 and
3 and improve the overall classification performance (volume
of the 123-surface is 0.92 and the volume of the 132-surface
reduces to 0.08). The limitation of the Scurfield method is that
it does not present methods to quantify the variance of the vol-
umes of the various ROC surfaces. Also, no guidelines exist to
compare the results from two classification methods (e.g., vol-
umes of two 123-surfaces). In comparison, the Nakas method
also allows one to measure the variance of the VUS estimate
and compare the VUS measurements from two decision vari-
ables. Similarly, the He method also provides two techniques to
measure the variance of the VUS estimate. In situations when
both the VUS and the variance of the VUS estimate are desired,
we recommend the use of the He method when the classifier’s
output consists of a set of posterior probabilities for each class.
For the case where the classifier’s output is a single continuous
decision variable, we recommend the use of the Nakas method.
Among the various three-class ROC indexes compared in this
paper, those developed by Mossman [8], Nakas and Yiannout-
sos [9], and Dreiseitl et al. [17] have been most commonly
used in various medical imaging studies [25]–[29]. One rea-
son for their popularity is the ease of implementation, whereas,
in comparison, the index proposed by Scurfield [13] is rela-
tively more difficult to compute. Yiannoutsos et al. [25] used
3-D ROC surfaces and the corresponding VUS to differenti-
ate between HIV-negative, HIV-positive neurologically asymp-
tomatic patients, and patients with AIDS demential complex us-
ing brain metabolites quantified by proton magnetic resonance
spectroscopy (MRS) [25]. Alonzo and Nakas [26] used the VUS
for the determination of diagnostic markers for lung. Binder et
al. [27] used the VUS to differentiate between melanomas from
benign pigmented skin lesions. In this three-class problem, the
goal was to distinguish three classes of lesions. Extending this
work, Dreiseitl et al. [28] compared the performance of five
different classification techniques for the classification of pig-
mented skin lesions into three classes. The VUS was used as the
index for comparing classifiers. Ratnasamy et al. [29] studied
heart failure in children. They categorized their patients into
three groups based on disease severity and used the VUS to
assess how accurately certain blood markers reflected clinical
severity [29].
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As a number of three-class ROC indexes exist, it can be
difficult to select the most suitable evaluation methodology for
a given classification task. This paper and the corresponding
toolbox will allow researchers to compare the various three-class
ROC indexes and will help them to select the most appropriate
evaluation methodology for their application.

V. CONCLUSION

The intention of this study was to summarize methods for
multiclass performance analysis and provide insight into the
different methods via empirical comparisons. All methods were
used to evaluate the performance of three popular classification
techniques in four experiments. We recommend the use of the
Scurfield method as it provides the investigator with the most
detailed description of classifier performance. In addition, it can
be used to test the effectiveness of features, and it also provides
insight about the sources of error in a given classification task.
However, the Scurfield method does not provide an estimate of
the variance of the six ROC surfaces. The He and Nakas methods
are particularly useful when both the VUS and an estimate of
the variance of the VUS are desired. Thus, in such scenarios,
we suggest the use of the He or Nakas method, depending on
the type of classifier output.
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