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ABSTRACT

We propose a new full reference video quality assessment al-
gorithm (FR VQA) - the motion compensated structural sim-
ilarity index (MC-SSIM). MC-SSIM evaluates spatial qual-
ity as well as quality along temporal trajectories. Its com-
putationally simplicity makes it a prime choice for practical
implementation. In this paper we describe the algorithm and
evaluate its performance on a publicly available VQA dataset.
We demonstrate that MC-SSIM correlates well with human
perception of quality. We also explore its relationship to the
human visual system and describe how a simple and efficient
implementation of MC-SSIM can be realized.

Index Terms— Video quality assessment, spatio-temporal
quality assessment, motion-compensation, structural similar-
ity, H.264/AVC.

1. INTRODUCTION

Creation of algorithms that seek to predict the quality of a
video such that the score produced by the algorithm corre-
lates well with human perception of quality is referred to as
objective video quality assessment (VQA). Subjective quality
assessment refers to assessment of quality of videos by a set
of human observers. Such assessment of quality produces a
mean opinion score (MOS) which is representative of theper-
ceived quality of the video. Evaluation of the performance of
objective VQA algorithms involves correlating the scores pro-
duced by the algorithm on a set of videos with the subjective
mean opinion scores. One such publicly available database
of videos which has been widely used for testing VQA algo-
rithms is the VQEG FRTV Phase-I dataset [1].

We classify VQA algorithms as full-reference (FR), no-
reference (NR) and reduced reference (RR) algorithms. FR
algorithms are those in which the reference and distorted
videos are available for quality assessment. In RR algorithms
the assumption is that some additional information regard-
ing the reference video and/or distortion inducing processis
available to the algorithm. NR refers to blind quality assess-
ment, where the algorithm is supplied only with the distorted
video. In each case, the goal of the algorithm is to produce
a quality index for the video that correlates well with human

perception of quality. In this paper, our aim is the creationof
a FR VQA algorithm that achieves this goal.

One approach to VQA is to utilize an image quality as-
sessment (IQA) algorithm that correlates well with the hu-
man perception of quality on a frame-by-frame basis. Indeed,
in [2], such an approach was used for VQA using the pop-
ular image quality assessment (IQA) algorithm - the single
scale structural similarity index (SS-SSIM) [3]. Assessing
spatial quality alone does not fully capture distortions arising
in videos, and it is imperative that VQA algorithms are de-
signed to assess quality along the temporal direction as well.
Realizing the importance of motion for VQA, in [2], the au-
thors proposed an elementary weighting scheme using motion
vectors from a block motion estimation process. Noticeable
improvements were seen. SS-SSIM for VQA was modified in
[4], where an alternative weighting scheme was presented for
the spatial quality scores.

It is our belief that temporal-based weighting of spatial
scores will fail to capture distortions in videos. For accurate
VQA, it is not only essential to compute spatial quality, but
also necessary to compute temporal quality along motion tra-
jectories. Since algorithmic motion estimation is a difficult
problem, it comes as no surprise that most VQA algorithms
do not evaluate quality along these temporal trajectories.A
recent VQA algorithm that is modeled after the motion pro-
cessing mechanisms in the human visual system (HVS) was
proposed in [5] and is referred to as motion-based video in-
tegrity evaluation (MOVIE) index. The MOVIE index uses
a spatio-temporal filter bank to decompose the reference and
distorted video into sub-bands; quality assessment is thenper-
formed over these subbands to produce a score for the video.
Even though MOVIE has several features akin to the HVS,
its computational complexity makes any practical implemen-
tation of the index difficult.

The simplicity of mean squared error (MSE) , coupled
with its history of usage in the signal processing commu-
nity makes MSE a popular choice for VQA, even though it
has been pointed out that MSE correlates poorly with hu-
man perception of quality [6]. In this paper, our aim is to
develop a VQA algorithm that not only offers the simplicity
of MSE, but also the performance of a VQA algorithm that
correlates well with human perception of quality. The pro-



posed algorithm utilizes the simple SS-SSIM for spatial qual-
ity assessment. Temporal quality assessment is carried out
using a combination of motion-compensation and SS-SSIM.
The computational simplicity of SS-SSIM [7] makes the pro-
posed algorithm - motion compensated structural similarity
index (MC-SSIM) highly practical. In this paper, we describe
MC-SSIM and relate its design to HVS processing mecha-
nisms. Further, by evaluating the performance of MC-SSIM
on the publicly available VQEG FRTV phase-I database, we
demonstrate that MC-SSIM performs extremely well in terms
of correlation with human perception.

2. MOTION COMPENSATED STRUCTURAL
SIMILARITY INDEX

Consider two videos which have been spatio-temporally
aligned. We denote the reference video asR(x, y, t) and
the test video asD(x, y, t) where the tuple(x, y, t) defines
the location in space(x, y) and timet. The algorithm is
defined for digital videos and hence the space coordinates
are pixel locations and the temporal coordinate is indicative
of the frame number. The test video is the sequence whose
quality we wish to assess. Our algorithm is designed such
that if D = R, i.e., if the reference and test videos are the
same, then the score produced by the algorithm is 1. Any
reduction from this perfect score is indicative of distortion in
D. Also, the algorithm is symmetric, i.e., MC-SSIM (R,D)
= MC-SSIM (D,R). We assume that each video has a total
of N frames and a duration ofT seconds. We also assume
that each frame has dimensionsP × Q.

2.1. Spatial Quality Assessment

Spatial quality is evaluated in the following way. For each
frame t from R andD and each pixel(x, y), the following
spatial statistics are computed:
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For spatial quality computation,wij is aN × N circular-
symmetric Gaussian weighting function with standard devia-
tion of 1.5 samples, normalized to sum to unity withN = 11.

Finally, we compute SSIM using equation 1 (next page).
In equation 1,C1 = (K1L)2, C2 = (K2L)2 are small

constants;L is the dynamic range of the pixel values and
K1 << 1 andK2 << 1 are scalar constants withK1 = 0.01
andK2 = 0.03. The constantsC1, C2 andC3 prevent insta-
bilities from arising when the denominator is close to zero.

This computation yields a map of SSIM scores for each
frame of the video sequence. The scores so obtained are
denoted asS(x, y, t), (x = {1 . . . P}, y = {1 . . . Q}, t =
{1 . . . N − 1}).

2.2. Temporal Quality Assessment

We first estimate motion by applying a block-based motion
estimation algorithm. The algorithm is applied on a frame-
by-frame basis, where motion vectors are obtained for framei
from its preceding framei−1. We seek to characterize the dis-
tortion in D, and hence motion estimation is performed only
on the reference video. The block size is set at8×8. For sim-
plicity, assume thatP andQ are multiples of the block size.
The motion vectors so obtained are of integer pixel lengths.

In order to evaluate quality, we proceed as follows. For
a framei and for block(mR, nR) (mR = {1, 2 . . . P/b},
nR = {1, 2 . . . Q/b}), in videoR, we compute the motion-
compensated block(m′

R, n′

R) in frame i − 1 by displacing
the (mR, nR)th block by an amount indicated by the mo-
tion vector. A similar computation is performed for the
corresponding(mD, nD)th block in D, thus obtaining the
motion-compensated block(m′

D, n′

D). We then perform a
quality computation between the blocksBR = (m′

R, n′

R) and
BD = (m′

D, n′

D). This quality computation is performed
using SS-SSIM. For such temporal quality computation, the
window used in SSIM,wij is a N × N rectangular win-
dow normalized to sum to unity withN = 8. Hence, for
each block we obtain a quality index corresponding to the
perceived quality of that block, and for each frame we ob-
tain a quality map of dimension(P/b,Q/b). We denote
the temporal quality map thus obtained asT (x, y, t), (x =
{1 . . . P/b}, y = {1 . . . Q/b}, t = {1 . . . N − 1}). A
schematic diagram explaining the algorithm is shown in Fig.
1.

In order to pool the obtained scores, we utilize the tech-
nique from [8], where regions which disproportionately affect
attention are given higher weight. Specifically, for each frame
t, we compute:
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S(x, y, t) = SSIM(R(x, y, t),D(x, y, t)) =
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Fig. 1. Temporal quality computation: for the current block
(dark grey) in framei, the motion compensated block from
framei−1 (light grey) is recovered for both the reference and
test video sequences using motion vectors computed from the
reference sequence. Each set of blocks so obtained is evalu-
ated for their quality.

where,ξ denotes the set consisting of the lowest 6% of the
quality scores of each frame and| · | denotes the cardinality of
the set.S(t) andT (t) are then averaged across frames to pro-
duce the spatial and temporal quality scores for the sequence
- S andT . The final quality score for the video isS × T .

Temporal quality is assessed not only on the ‘Y’ (lumi-
nance) component, but also on the color channels ‘Cb’ and
‘Cr’. For each of the channels, motion estimation is per-
formed to extract corresponding motion vectors and the al-
gorithm as described in the previous section is applied. The
final temporal quality score for the video is computed as:

T final = 0.8 × TY + 0.1 × TCb + 0.1 × TCr

where,TY , TCb andTCr are the temporal quality scores on
each of the three color channels obtained as described above.
A similar quality computation is undertaken for each of the
three channels to assess spatial quality as well. The final spa-
tial quality is computed as:

Sfinal = 0.8 × SY + 0.1 × SCb + 0.1 × SCr

where,SY , SCb and SCr are the spatial quality scores on
each of the three color channels obtained as described above.
The weights assigned to each of the channels are exactly as in
[2], though incorporating color in VQA remains an interesting
avenue of research.

2.3. Relation to HVS

The efficient coding hypothesis states that the purpose of the
early sensory processing is to recode incoming signals, so as
to reduce the redundancy in representation [9]. Time-varying
natural scenes possess high spatial and temporal correlation.
Given the redundancy in videos and the efficient coding hy-
pothesis, the principle that the visual pathway tries to improve
efficiency of representation is compelling. It has been hypoth-
esized that the Lateral Geniculate Neucleus (LGN), which
lies in the area called the thalamus, performs such a temporal
decorrelation [10]. The amount of feedback that the thala-
mus receives from the visual cortex is suggestive of possible
feedback regarding motion estimates to thalamus, which will
enable a reduction in redundancy at the LGN. The motion
compensated approach used here for VQA roughly mirrors
this process. SS-SSIM, which is used as the quality index,
has some interesting relationships with natural scene statistics
(NSS) which are used widely for studying HVS mechanisms
[11].

2.4. Computational Complexity

The essence of the proposed algorithm is SS-SSIM. The
computational complexity of SS-SSIM isO(PQ). Sorting of
scores required for percentile pooling can be performed with a
worst-case complexity ofO(PQlog(PQ)). The major bottle-
neck in MC-SSIM is the motion-estimation phase. However,
we can completely avoid this bottleneck by re-utilizing mo-
tion vectors computed for compressed videos.Specifically,as-
sume that we have a pristine compressed video which passes
through a ‘black-box’. We wish to assess the quality of the
video at the output of the black box with respect to the com-
pressed original. Since most video compression algorithms
utilize a motion-compensated approach to video compres-
sion, the motion vectors used for this purpose are available
in the compressed stream. Thus, in order to assess quality
in such a situation, we simply decompress the reference and
test video and read out the motion vectors from the reference
video. MC-SSIM computation can then be performed as de-
tailed above. In this case, the complexity of MC-SSIM is not
much greater than that for SS-SSIM due to the novel motion-
vector re-use. Further, as shown in [7], the SSIM index can
be simplified without sacrificing performance.



Algorithm SROCC LCC OR

PSNR 0.782 0.779 0.678
Proponent P8 (Swisscom)[1] 0.803 0.827 0.578
SS-SSIM (no weighting) [2] 0.788 0.820 0.597

SS-SSIM(weighted) [2] 0.812 0.849 0.578
SW-SSIM (dense - Y only) 0.837 0.810 0.622

MOVIE(Y only) [5] 0.833 0.821 0.644
MC-SSIM 0.848 0.853 0.597

Table 1. Evaluation of algorithm performance: Spearman
Rank Ordered Correlation Coefficient (SROCC), Linear Cor-
relation Coefficient (LCC) and Outlier Ratio (OR)

3. RESULTS

In order to evaluate the performance of MC-SSIM we utilize
the Video Quality Experts Group (VQEG) dataset, which
consists of 320 distorted videos along with the associated
reference videos and subjective differential mean opinion
scores (DMOS). The measures of performance are the Spear-
man rank rrdered correlation coefficient (SROCC), the lin-
ear (Pearson’s) correlation coefficient (LCC) and root mean
squared error (RMSE). LCC and RMSE are computed after
transforming MC-SSIM scores using the logistic function as
prescribed by the VQEG [1]. The results are seen in table
1. The table also lists scores for SS-SSIM [3] and speed
weighted SSIM (SW-SSIM) [4]. In [3] and [4], the authors
use a sparse sampling - i.e., not all pixel locations are sampled
in a frame. Even though this may offer computational ben-
efits; using such a sampling technique may hamper results.
In any case, at this juncture it is unclear if such a sampling
system will allow for a fair comparison of algorithms. Hence,
for SW-SSIM, we list the scores when the frame is densely
sampled - i.e., each pixel location from a frame is utilized.
We find that for SS-SSIM a change in the sampling does
not alter results much. Further, we also list the performance
of the recently proposed MOVIE index. As seen in table 1,
MC-SSIM extremely well in terms of correlation with human
perception.

4. CONCLUSIONS

In this paper we proposed a new computationally efficient
video quality assessment (VQA) algorithm, the Motion Com-
pensated Structural Similarity Index (MC-SSIM). The algo-
rithm was explained in detail its relationship to the human
visual system was studied. The performance of the algorithm
was evaluated on a publicly available VQA dataset and the
algorithm was shown to correlate extremely well with the hu-
man perception of quality.
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