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Abstract—We propose an algorithm for designing linear equal-
izers that maximize the structural similarity (SSIM) index between
the reference and restored signals. The SSIM index has enjoyed
considerable application in the evaluation of image processing al-
gorithms. Algorithms, however, have not been designed yet to ex-
plicitly optimize for this measure. The design of such an algorithm
is nontrivial due to the nonconvex nature of the distortion mea-
sure. In this paper, we reformulate the nonconvex problem as a
quasi-convex optimization problem, which admits a tractable so-
lution. We compute the optimal solution in near closed form, with
complexity of the resulting algorithm comparable to complexity of
the linear minimum mean squared error (MMSE) solution, inde-
pendent of the number of filter taps. To demonstrate the usefulness
of the proposed algorithm, it is applied to restore images that have
been blurred and corrupted with additive white gaussian noise. As
a special case, we consider blur-free image denoising. In each case,
its performance is compared to a locally adaptive linear MSE-op-
timal filter. We show that the images denoised and restored using
the SSIM-optimal filter have higher SSIM index, and superior per-
ceptual quality than those restored using the MSE-optimal adap-
tive linear filter. Through these results, we demonstrate that a) de-
signing image processing algorithms, and, in particular, denoising
and restoration-type algorithms, can yield significant gains over
existing (in particular, linear MMSE-based) algorithms by opti-
mizing them for perceptual distortion measures, and b) these gains
may be obtained without significant increase in the computational
complexity of the algorithm.

Index Terms—Equalizers, image restoration.

I. INTRODUCTION

THE mean squared error (MSE) is a popular metric used in
the design of image processing algorithms ranging from

quantization to restoration to quality assessment. The popu-
larity of MSE can be largely attributed to two main reasons:
amenability to analysis and a lack of competitive perceptual
distortion metrics. This has been the case even though it has
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been shown that MSE optimal algorithms do not necessarily
produce images of high visual quality [11]. Since most images
are intended for human consumption, using perceptual metrics
to design image processing algorithms seems natural. This
has long been recognized [32] and algorithms that take into
account the human visual system (HVS) in the design have
been developed, e.g., image compression [9], [17], [19], [31].
Several of these solutions use modified versions of the MSE
as the distortion measure such as the weighted MSE. These
designs were limited by a paucity of strong perceptual distor-
tion measures at the time, combined with the complexity of the
available measures [7], [16], [25], [33].

Recent advances in full-reference image quality assessment
(IQA) have resulted in the emergence of several powerful
perceptual distortion measures that outperform the MSE and
its variants. A nonexhaustive but significant list of these new
metrics includes the SSIM Index [27], or Wang–Bovik Index
and its variants [26], [29], [30], the visual information fidelity
(VIF) criterion [22], [23], and the visual signal-to-noise ratio
(VSNR) [5]. Despite their success in quality assessment,
image processing algorithms that explicitly optimize using
state-of-the-art perceptual distortion measures such as these
have not yet been developed. The design process for most
of these measures is nontrivial because of their less tractable
forms compared to the MSE, e.g., the VIF computes image
quality as a ratio of sum of logarithmic terms, while the SSIM
index uses the expression in (7).

In this paper, the SSIM index is considered as a design crite-
rion. The SSIM index is relatively easy to analyze, yet is highly
competitive with state-of-the-art IQA algorithms. Optimizing
with respect to the SSIM index was considered in [6] and [28],
in a very limited context, but even these obtained significant
perceptual gains compared to MSE-optimal techniques. In this
paper, we design a linear equalizer optimized for the SSIM
index and apply it to image denoising and restoration examples,
and compare its performance to a linear MSE-optimal filter.
Through these examples, we demonstrate the gain in perceptual
quality obtained using the SSIM-optimal linear equalizer.

A. Problem Outline

In this paper, we propose the design of a linear equalizer op-
timized with respect to the SSIM index. This is a generaliza-
tion of an earlier result on linear estimation for image denoising
[6]. We address the general problem of equalization of wide
sense stationary (WSS) processes (of which denoising is a spe-
cial case), and design a length equalizer (for any ) opti-
mized for the SSIM index between the reference and restored
processes. The definition of the SSIM index is first extended
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to measure similarity between random processes via a straight-
forward replacement of empirical quantities by their statistical
equivalents. The equalization problem is then formulated using
this extended definition. The SSIM index between the refer-
ence and test signal is shown to be a nonconvex function of the
equalizer coefficients. The nonconvex problem is reformulated
as a quasi-convex problem by imposing parameterized linearity
constraints on the equalizer coefficients, which then admits a
tractable solution. The optimal solution is computed by an easy
1-D search over the linearity constraint parameter. To demon-
strate its usefulness, the solution is then applied to both an image
denoising problem and an image restoration problem.

B. Related Work

The problem of deconvolution and image restoration (of
which denoising is a special case) has been widely researched
[1], [14] and several different approaches have been studied. A
broad classification of the various approaches can be found in
[14]. The literature is rich with several excellent results such
as regularized iterative restoration [15], space-varying iterative
restoration [21], wavelet shrinkage based techniques [8], spa-
tially adaptive wavelet-based restoration [2], the wavelet-based
expectation maximization technique in [10], Gaussian scale
mixture (GSM) based restoration [20], combined Fourier and
wavelet techniques, such as the ForWaRD algorithm [18], to
name a few.

The purpose of this paper is primarily to put forth a new de-
sign philosophy based on a perceptual criterion. Our formula-
tion is intended to compare perceptual approaches with clas-
sical approaches to signal equalization, in order to demonstrate
the proof of principle that gains in perceptual quality can be ob-
tained. Following the classification of restoration approaches in
[14], this paper falls under the category of stochastic linear it-
erative algorithms, which includes Wiener based solutions [12].
As in the Wiener solution, our solution requires knowledge of
the autocorrelation function of the source. This problem is ad-
dressed by using an estimation algorithm as in [20].

C. Paper Organization

We begin by providing a brief introduction to the SSIM index
in Section II and extending it to measure similarity between
random processes. The problem is formulated in terms of an
extended statistical definition of the SSIM index. We then illus-
trate its nonconvex nature and the associated issues with opti-
mization. In Section III, the procedure used to reformulate the
nonconvex optimization problem and obtain its solution is dis-
cussed. We then describe the design algorithm. The usefulness
of the design algorithm is illustrated in Section IV using image
denoising and restoration examples. To demonstrate the gain in
perceptual quality achieved by this algorithm, the performance
of the SSIM-optimal linear filter is compared to an MSE-op-
timal linear filter (using the image restoration example). The re-
sults are discussed in Section V and we conclude in Section VI,
outlining future research directions.

II. PROBLEM FORMULATION

In this section, we discuss the system model and assumptions,
describe the SSIM index, and extend its definition to handle
random processes. The equalization problem is then formulated
using the extended definition of the SSIM index. The problem

Fig. 1. Block diagram of a general linear time invariant system. In this paper,
we are interested in designing the linear equalizer block G , given the observed
process y[n], the LTI filterH, and the power spectral density of the noise process
�[n] so that the SSIM index between x[n] and x̂[n] is maximized.

is discussed both intuitively and using the algebraic form of the
function being optimized.

A. System Model

The equalization problem is illustrated in Fig. 1. We assume
that the input to the system is a WSS process, is a
linear time invariant (LTI) filter known at the receiver, and the
noise process is white and its power spectral density (PSD)
is know at the receiver. The following problem is considered.
Given a distorted observation

(1)

of the input process , design a filter of length such
that the SSIM index between the reference and the restored
process

(2)

is maximized. Since the standard definition of the SSIM index
[27] measures similarity between deterministic signals, its def-
inition is first extended to measure similarity between random
processes in the following subsection.

B. SSIM Index

The most general form of the SSIM index defined for signal
vectors and (in ) is

(3)

The term

(4)

compares the luminance (mean) of the signals

(5)

compares the contrast (variance) of the signals, and

(6)

measures the structural correlation of the signals. The quantities
are the sample means of and , respectively,

are the sample variances of and , respectively, and is
the sample cross covariance between and . The constants

are used to stabilize the SSIM index for the case
where the means and variances become very small. The param-
eters , , and , are used to adjust the relative
importance of the three components.
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Fig. 2. MSE and SSIM index as a function of equalizer taps g[0]; g[1]. (a) MSE; (b) SSIM.

As in [27], we use the following simplified form of the SSIM
index ( , )

(7)

In image quality assessment, image sub-blocks from the ref-
erence and distorted image constitute and , respectively.
The average of the SSIM values across the image (also called
mean SSIM or MSSIM) gives the final quality measure. The
design philosophy of the SSIM index is to exploit the fact that
natural images are highly structured, and that the measure of
structural correlation (between the reference and the distorted
image) is very important in deciding the overall visual quality.
Further, the SSIM index measures quality locally and is able
to capture local dissimilarities well. The SSIM index has been
shown to correlate better with the mean opinion score (MOS)
of subjective evaluation for a large set of images (relative to
MSE and, hence, PSNR). In [27], a database consisting of
175 JPEG compressed images and 169 JPEG2000 compressed
images at various quality levels was used to test the perfor-
mance of the SSIM index. The scores were shown to correlate
very well with the MOS of subjective evaluation. In [24], a
larger image database (consisting of 779 images of different
visual qualities) also confirmed the superior performance of
the SSIM index as an IQA algorithm relative to the MSE.
Though (7) has a form that is more complicated than MSE

, it remains analyti-
cally tractable. These features make the SSIM index attractive.

Since we work with random processes in this paper, the def-
inition of the SSIM index must be modified accordingly. We,
therefore, introduce the statistical SSIM index (StatSSIM index)
as follows.

Definition: Given two WSS random processes and
with means and , respectively, the statistical SSIM index
is defined as

(8)

This is a straightforward extension of the pixel domain defini-
tion of the SSIM index by replacing sample means and variances
with their statistical equivalents.

C. Equalization Problem

Suppose that a WSS process is distorted by a linear time
invariant (LTI) filter , then corrupted by an additive white
noise process (zero-mean): . The
proposed problem is the design of an equalizer of length ,
that maximizes the StatSSIM index between the source process

and the equalized (restored) process . We
can rewrite the StatSSIM index as a function of using (8)
as [see (9), shown at the bottom of the next page], where

, are both length
vectors, are the means of the source and observed

processes, respectively, , is the
cross covariance between the source and the observed
processes ,
is the variance of the source process at zero delay,

, is the covariance matrix of size of
the observed process , and are stabilizing constants.

Our problem is then to find the optimal filter

(10)

We assume that the blurring filter (of length ) and, the
power spectral density (PSD) of is known at the receiver.

From (9), we see that the StatSSIM index is the ratio of a
second degree polynomial to a fourth degree polynomial in .
A geometric feel for the function in (9) is given in Fig. 2 for
a length 2 filter and is compared to the convex form of MSE.
Fig. 2(b) clearly illustrates the nonconvex nature of (9). Despite
these features, we show in Section III that problem (9) admits
a tractable, and in particular, near closed-form solution, with a
complexity that is comparable to that of the MMSE solution.

III. STATSSIM-OPTIMAL LINEAR EQUALIZATION

Since the StatSSIM index is a nonconvex function of , local
optimality conditions such as Karush–Kuhn–Tucker (KKT)
cannot guarantee global optimality. In particular, any approach
based on descent-type algorithms are likely to get stuck in
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local optima. The approach that we take to solve this problem
transforms the nonconvex problem into a quasi-convex formu-
lation. Convex optimization problems are efficiently solvable
using widely available optimization techniques and software
[3], [4]. We show, moreover, that, in addition to the convex
reformulation, we can obtain a near-closed form solution. In
particular, we reduce the -tap filter optimization, for any

, into an optimization problem over only two variables.
Exploiting convexity properties, we can quickly search over
one parameter by means of a bisection technique, thus reducing
the problem to a univariate optimization problem. This last step
can be quickly performed by means of an analytic solution of a
simplified problem, which brings us close to the optimal value
of the final variable of our optimization.

A. Problem Reformulation

Note that the first term of (9) (corresponding to the mean)
is a function only of the sum of the filter coefficients . We
use this property to simplify the optimization problem in (9) by

constraining . With this constraint, the optimization
problem simplifies to finding

subject to (11)

This problem is a function of . The overall problem is to find
the highest StatSSIM index by searching over a range of (typ-
ically in the interval , for a small ). The solution to
the optimization problem in (11) is presented in the following
section, along with an efficient search strategy for finding .

B. Solution

The maximization problem in (11) is still nonconvex. We con-
vert it into a quasi-convex optimization problem as follows:

subject to

which follows from the definition of convolution

since is WSS is LTI is also WSS

(9)
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Fig. 3. Algorithm to search for the optimal  .

subject to

subject to

subject to

subject to
(12)

The first step in the reformulation is the introduction of the aux-
iliary variable as an upper bound on (11). The first equiva-
lence relation holds since minimizing is the same as finding
the least upper bound of the function in (11). This is equal to
the maximum value of the function, which exists, as seen by
straightforward continuity arguments. The second equivalence
relation holds since the denominator in (11) is strictly positive,
allowing us to multiply through and rearrange terms. Then, is
a true upper bound if the problem

subject to
(13)

has a non-negative optimal value. Since the objective function is
a linear term minus a convex quadratic, it is concave. The con-
straint is affine and, thus, convex. Therefore, the overall problem
is convex, and can be solved by introducing a Lagrange multi-
plier and applying the first-order sufficiency conditions

(14)

Solving for and , and denoting them to empha-
size their dependence on , we have

(15)

Fig. 4. Comparison of the denoising filter coefficient from this paper’s result
with the Wiener filter and the result in [6] at noise variance � = 625.

The optimal can then be computed in itera-
tions using a standard bisection procedure. Such an algorithm is
summarized in Fig. 3. In this procedure, the threshold deter-
mines the tightness of the bound . In other words, the solution
obtained using this technique will be within of the optimal so-
lution. The efficiency of the algorithm can be improved using
better search techniques.

C. Search for

The solution in (15) maximizes the function in (12) to give
, i.e., it is still a function of . The optimal solution to (9)

is found by searching over . The search is over a bounded 1-D
interval and is, therefore, easy to perform. We present two ways
to speed up this search.

The first is to simply initialize to the sum of the filter co-
efficients of the MSE-optimal filter, i.e., . The
second is a heuristic technique that was found to work better
than the first in all our experiments with natural images. In this
technique, is initialized to the sum of the filter coefficients of
a structure-optimal filter. By structure-optimal filter, we mean
a filter that optimizes only the structure term in the StatSSIM
index without any constraints on the mean. This would yield a
filter that is optimal with respect to one of the two terms in the
StatSSIM index (9). In the following, the structure-optimal filter
is derived.
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Fig. 5. Denoising example 1: Img0039.bmp from the “City of Austin” database. (a) Original image. (b) Distorted image with � = 35, MSE = 1226:3729,
SSIM index = 0:5511. (c) Image denoised with a 7-tap MSE-optimal filter, MSE = 436:6929, SSIM index = 0:6225. (d) Image denoised with a 7-tap
SSIM-optimal filter, MSE = 528:0777, SSIM index = 0:6444.

Following the notation in Section II-C, our goal is to find a
filter such that

Structure

(16)

This problem has the same form as (11) and, thus, can be
quickly solved using the optimization technique given above.
The optimal solution is

(17)

and so the initial value of is

(18)

The value of is computed using the same algorithm as in
Section III-B, and this value is potentially different from the
in Section III-B.

D. Comparison With Denoising Solution

Section III-B provides a near closed-form solution for the
linear equalization problem optimized for the StatSSIM index
for a general equalizer length . For the no-blur case the solu-
tion becomes

(19)
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Fig. 6. Denoising example 2: (a) Original image. (b) Distorted image with � = 40, MSE = 1639:3132, SSIM index = 0:541485. (c) Image denoised
with the a 7-tap MSE-optimal filter, MSE = 383:3375, SSIM index = 0:734963. (d) Image denoised with a 7-tap SSIM-optimal filter, MSE = 455:2577,
SSIM index = 0:753917.

where ,
. In [6], a closed-form SSIM-optimal

denoising solution was presented for a one tap filter. We com-
pare the closed-form solution in [6] with the solution in Sec-
tion III-B for the case . For the zero-mean case (as in
[6]), the linearity constraint is no longer needed and the solution
takes the form of (17). Also, zero-mean processes imply that the
covariances and the correlations are identical. This leads to

(20)

In [6], we obtained the solution

(21)

The equivalence of the two solutions is shown Fig. 4. The plot
compares the solution in (20) and the solution in [6]. The differ-
ence between the red and green plots is less than 0.001,
which is the value of chosen for this simulation.

IV. APPLICATION TO IMAGE DENOISING AND RESTORATION

While the SSIM index can be used to measure the quality
of any two signals, it was originally designed for full-reference
image quality assessment. With this in mind, we apply our so-
lution to both an image denoising and a restoration problem.

The image restoration algorithm is summarized in the fol-
lowing steps (also applicable for denoising).

• At every pixel in the distorted image, form a neighborhood
of size . The value of depends on the number of
samples needed to compute stable correlation values. From
this neighborhood, form estimates of , , , .
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Fig. 7. Denoising example 3: (a) Original image. (b) Distorted image with � = 50, MSE = 2461:8462, SSIM index = 0:3713. (c) Image denoised
with the a 7-tap MSE-optimal filter, MSE = 616:2075, SSIM index = 0:4103. (d) Image denoised with a 7-tap SSIM-optimal filter, MSE = 786:7991,
SSIM index = 0:4422.

• The local Wiener solution is computed as
(applied to zero-mean blocks).

• The following steps are used to compute the StatSSIM-
optimal solution.
— Compute the initial search point for using the solution

in (17).
— For a range of about the initial search point, compute

the solution in (15) and pick the one that has the max-
imum StatSSIM index.

In this paper, we assume that the blurring filter and the power
spectral density of the additive noise component is known at
the receiver [18], [20]. The procedure used to estimate the cor-
relation and covariance values for denoising and restoration is
discussed below. For both cases, the neighborhood of size

is unwrapped into a vector of size , and the statis-
tics are computed from this vector. We do this to be consistent

with the way the SSIM index computes the local statistics in its
implementation.

A. Denoising

The cross-covariance values at each pixel location are com-
puted from the vector formed from a local neighborhood
around the given pixel of the observed image. The following re-
lations are used in the computation:

(22)
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Fig. 8. For a 64 � 64 patch from Img0039.bmp from the “City of Austin” database, distorted with AWGN and restored using 5-tap MSE-optimal and SSIM-
optimal filters. (a) Variation of denoised images’ MSE with noise standard deviation. (b) Variation of denoised images’ SSIM index with noise standard deviation.

Fig. 9. For a 64 � 64 patch from Img0039.bmp from the “City of Austin” database, distorted with AWGN at � = 35. (a) Variation of denoised images’
MSE with filter length. (b) Variation of denoised images’ SSIM index with filter length.

The first equality holds since the noise is zero-mean; therefore,
, and the noise is independent of the source. Similarly,

for

(23)

The first equality relation holds since and are
independent (of each other, and the source process ) and

zero-mean. The second equality relation easily follows from the
first.

B. Restoration

The estimation of the cross covariance is not as straightfor-
ward for the case of restoration, as it involves inversion of blur-
ring kernels whose inverses are usually very unstable. Portilla
and Simoncelli [20] proposed a heuristic technique for esti-
mating the cross covariance between the observed image and
the original for an image restoration application. In this paper,
we follow their approach with minor modifications. The 2-D
equivalent for the model shown in Fig. 1 can be expressed as

(24)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 14, 2008 at 18:37 from IEEE Xplore.  Restrictions apply.



866 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 6, JUNE 2008

Fig. 10. Restoration example 1: Image Img0073.bmp of the “City of Austin” database. (a) Original image. (b) Distorted image with � = 15, � = 40,
MSE = 2264:4425, SSIM index = 0:3250. (c) Image restored with a 11-tap MSE-optimal filter, MSE = 955:6455, SSIM index = 0:3728. (d) Image
restored with a 11-tap SSIM-optimal filter, MSE = 1035:0551, SSIM index = 0:4215.

where is the blurring kernel, is the reference
image, and is zero-mean white Gaussian noise (inde-
pendent of ) of known power spectral density .
It is easy to show that the cross covariance between and

is equal to the cross covariance between and
, where , since

and are independent, and is zero-mean. Also,
from (24), the relation between the PSD of the observed image
and the original is .
This relation is used to estimate the PSD of as

(25)

The PSD of the original image is then estimated as

(26)

where is a constant used to prevent instability during the
channel inversion process. The value of is chosen empirically
for each image, at a given blur and noise variance. In our
experiments we found that gave us good results. The
cross correlation between and is computed
as the sample cross covariance of the inverse Fourier transform
coefficients of and . The inverse Fourier
transform coefficients (of and ) are
unwrapped into vectors and the cross-covariance values are
computed from them.

V. RESULTS

In this section, we present the results of the StatSSIM-optimal
image denoising and restoration procedures and compare the
performance to the local MSE-optimal denoising and restora-
tion procedures. The local MSE-optimal filter is a powerful
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Fig. 11. Restoration example 2: Image Img00124.bmp of the “City of Austin” database. (a) Original image. (b) Distorted image with � = 5, � = 1600,
MSE = 2014:5695, SSIM index = 0:2878. (c) Image restored with a 11-tap MSE-optimal filter, MSE = 681:0735, SSIM index = 0:3769. (d) Image
restored with a 11-tap SSIM-optimal filter, MSE = 738:8895,SSIM index = 0:4131. Note the better contrast in the leaves.

linear filter due to its local-adaptation. The denoising results are
presented first, followed by the restoration results. We demon-
strate that the perceptual quality of the StatSSIM-optimally de-
noised and restored images is superior to the MSE-optimally de-
noised and restored images. The results presented here are from
a pixel domain implementation of the solutions.

A. Denoising Results

The denoising solution was applied to natural images that
have been corrupted with zero-mean additive white gaussian
noise (AWGN). The cross-correlation and cross-covariance
values needed by the solutions are estimated using the technique
presented in Section IV-A. A neighborhood size of 15 15 is
used in our implementation. The solution was tested on several
images from the “City of Austin” database, and on standard test

images such as Lena, Barbara, and Boats. The results for 7-tap
MSE-optimal and StatSSIM-optimal filters are shown in Fig. 5
for an image from the “City of Austin” database. Both the
MSE-optimal and the StatSSIM-optimal solutions have been
applied to neighborhoods with their mean removed (zero-mean
blocks). The local means are added back after filtering. From
Fig. 5, we see that the StatSSIM-optimal solution retains more
image features (e.g., the branches, and building details obscured
by branches) than the MSE-optimal solution. The MSE-so-
lution on the other hand, performs denoising irrespective of
the image features. This result manifests itself in lower MSE
values for the MSE-optimal filter, and higher SSIM indices
for the StatSSIM-optimal filter. Fig. 6 shows a region of the
Lena image that has been corrupted with noise and denoised
using the MSE-optimal and SSIM-optimal techniques. From
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Fig. 12. Restoration example 3: A 128� 128 block of Barbara image. (a) Original image. (b) Distorted image with � = 1, � = 40,MSE = 1781:9058,
SSIM index = 0:5044. (c) Image restored with a 11-tap MSE-optimal filter, MSE = 520:1322, SSIM index = 0:6302. (d) Image restored with a 11-tap
SSIM-optimal filter, MSE = 584:9232, SSIM index = 0:6568.

this example, it can be seen that the SSIM-optimal technique
retains more details in the high frequency region of the image
(Lena’s hair) and has a higher overall contrast compared to
the MSE-optimal method. Fig. 7 shows the comparison for a
region of the “Img0039.bmp” image. Again, the SSIM-optimal
method does a better job at retaining image features as seen in
the better visibility of the building in the background and lower
smoothing of the branches. The plot of the variation of the
MSE and SSIM index of the noisy and denoised images as a
function of the noise variance is shown in Fig. 8. Further, since
our solution can be used to obtain optimal filters of any length

, we plot the variation of MSE and SSIM index as a function
of the filter length in Fig. 9. As expected, the performance of
both the algorithms improves with filter length. Also, a clear

knee is observed in the plot, which gives a good estimate of the
filter length needed at that particular noise value.

B. Restoration Results

The restoration solution was applied to natural images that
have been blurred using a Gaussian kernel, and corrupted
with AWGN. The estimation of the cross-covariance vector
needed by the solutions is done using the procedure outlined
in Section IV-B. We present examples at various blur values in
Figs. 10–14. In all the examples, the size of the blurring kernel
used is 7 7, and a 11-tap restoration filter is used. We note
that solving for a 11-tap SSIM-optimal filter (even globally) by
brute force is highly intractable.
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Fig. 13. Restoration example 4: (a) Original image. (b) Distorted image with � = 1, � = 30, MSE = 980:9643, SSIM index = 0:611074. (c) Image
restored with the a 11-tap MSE-optimal filter, MSE = 364:5094, SSIM index = 0:759695. (d) Image restored with a 11-tap SSIM-optimal filter, MSE =

453:9657, SSIM index = 0:763995.

The higher perceptual quality of the StatSSIM-optimally re-
stored images as compared to MSE-optimally restored images
is evident from these examples. In Fig. 10, the SSIM-optimally
restored image has better contrast overall, with noticeable dif-
ferences in the foliage, and the rocks. In Fig. 11, SSIM-op-
timal restoration helps retain more detail in the leafy regions
of the image and has better contrast. In Fig. 12, the SSIM-op-
timal restoration does a better job on the checked pattern on
the table cloth compared to MSE-optimal restoration. In both
Figs. 13 and 14, the SSIM-optimal solution preserves more de-
tail in Lena’s hair and has a higher overall contrast.

The variation of MSE and SSIM index as a function of
the noise standard deviation is present in Fig. 15. From the
trend, we see that the performance of the two algorithms can
be clearly distinguished, increasingly so with increasing noise
variance. The intuition behind this trend can be understood

with the example of a 1-tap filter. In this case, for a zero-mean
source, the MSE-optimal filter is , and a
simplified SSIM-optimal filter (with ) in closed-form
is . The square root relation between
the two solutions explains the trend observed in Fig. 15. The
variation of the performance with filter length is illustrated in
Fig. 16. As with denoising, the trend is an improvement with
filter length.

An important point to note is that the performance of both
the algorithms is dependent on the quality of the estimates of
the cross correlations and cross covariances. For both these
cases, a neighborhood size of 35 35 is used to compute the
required statistics. The implementation in this paper is based
on the heuristic technique presented in [20], and this can be
improved further. For example, using an iterative algorithm
as in [13] is a promising alternative to the heuristic approach.
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Fig. 14. Restoration example 5: (a) Original image. (b) Distorted image with � = 5, � = 30, MSE = 1216:4048, SSIM index = 0:506031.
(c) Image restored with the a 11-tap MSE-optimal filter, MSE = 528:2466, SSIM index = 0:654534. (d) Image restored with a 11-tap SSIM-optimal filter,
MSE = 620:4033, SSIM index = 0:670088.

C. Discussion

The design of the StatSSIM-optimal equalizer was motivated
by the fact that the SSIM index is a better perceptual image
quality metric than the ubiquitous MSE measure. From the de-
noising and deblurring results, it is clear that optimizing for
a perceptual distortion measure is more meaningful for image
data. The gain in image quality can be explained as follows: the
StatSSIM-optimal solution strives to maximize the local mean,
variance, and structure in the denoised and restored images, with
respect to the reference. The local MSE-optimal solution, on
the other hand, does not differentiate between the signal and the
noise, thereby resulting in smoothing of important structural in-
formation while denoising and restoring images.

The SSIM index can be used to measure the quality of test sig-
nals with respect to the reference not just for images, but also for
1-D and higher dimensional signals. While the SSIM-optimal
solution presented here has been applied to image denoising

and restoration examples, the solution can be applied as-is or
extended to equalization problems in digital communications,
speech processing, system identification, etc.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated and solved a linear equaliza-
tion problem optimized for the StatSSIM index. The nonconvex
problem was first transformed to a convex one by applying a pa-
rameterized linearity constraint. The optimal solution was found
by performing a search over the linearity constraint parameter.
To the best of our knowledge, this is the first such attempt at
an optimization for the SSIM index. To demonstrate the use-
fulness of the algorithm, it was applied to image denoising and
restoration problems. The results of denoising and restoration
clearly showed a gain in perceptual quality achieved by using
the StatSSIM-optimal equalization algorithm.

The results in this paper depend on the accuracy of the estima-
tion of the cross-correlation and cross-covariance values. These
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Fig. 15. For Img0073.bmp from the “City of Austin” database, distorted with � = 15, and restored using a 11-tap filter. (a) Plot of MSE versus noise standard
deviation � . (b) Plot of SSIM index versus noise standard deviation � .

Fig. 16. For a 64� 64 patch from Img0099.bmp from the “City of Austin” database, distorted with � = 1, and corrupted with � = 12. (a) Plot of MSE
versus filter length. (b) Plot of SSIM index versus filter length.

can clearly be improved by using more sophisticated estimation
techniques than the heuristic technique currently being used.
The results in this paper open up several interesting avenues for
optimization with respect to the SSIM index. While a linear filter
was designed here, we are currently working on a more general
solution that maximizes the SSIM index without the linearity
restriction. Further, the current solution is implemented in the
image domain. Extending this approach to a multiscale domain,
such as the wavelet domain, appears very promising. SSIM-op-
timal designs can also be carried out for other important applica-
tions such as motion-estimation and compensation, multiframe
reconstruction, rate allocation for image coding, to name a few.
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