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ABSTRACT

In this paper, we present a novel identity verification sys-
tem based on Gabor features extracted from range (3D) repre-
sentations of faces. Multiple landmarks (fiducials) on a face
are automatically detected using these Gabor features. Once
the landmarks are identified, the Gabor features on all fidu-
cials of a face are concatenated to form a feature vector for
that particular face. Linear discriminant analysis (LDA) is
used to reduce the dimensionality of the feature vector while
maximizing the discrimination power. These novel features
were tested on 1196 range images. The same features were
also extracted from portrait images, and the accuracies of both
modalities were compared. A superior verification accuracy
was obtained using the range data, and a highly competitive
accuracy to that of other techniques in the literature was also
obtained for the portrait data.

Index Terms— Face recognition, Gabor wavelets, Biom-
etry, Range images

1. INTRODUCTION

Biometrics are physiological or behavioral characteristics that
can be used by a human being or an automated system to rec-
ognize an individual. Examples of researched biometrics in-
clude but not limited to: fingerprints, 2D and 3D facial im-
ages, iris scans, gait, keystroke dynamics, retina scans, facial
thermograms and DNA. The automatic recognition of indi-
vidual based on their biometric characteristics has attracted
researchers’ attention in recent years due to the advancement
in image analysis methods and the emergence of significant
commercial applications.
There is an ever increasing demand for automated per-

sonal identification in a wide variety of applications ranging
from low to high security such as: human computer inter-
action, access control, surveillance, airport screening, smart
cards, and security. Even though biometrics such as finger-
prints and iris scans deliver very reliable performance, the
human face remains an attractive biometric because of its ad-
vantages over some of the other biometrics. Face recognition

is non-intrusive and does not require aid from the test sub-
jects, whereas other biometrics require a subject’s coopera-
tion. For instance, in iris or fingerprint recognition, subjects
should look into an eye scanner or place their finger on a fin-
gerprint reader.
The use of portrait images has been heavily researched

during the early days of face recognition. Portrait images,
also referred to as “2D images”, capture texture and facial
color information but do not readily provide three dimen-
sional information of faces. More than 30 years of 2D face
recognition research has resulted in many sophisticated and
mature algorithms. Unfortunately, the performance of 2D
face recognition algorithms remains unsatisfactory due to the
pose and illumination limitations inherent in 2D images [1].
Recently, quick and low cost acquisition of high quality

3D face scans has become viable due to progresses in three
dimensional sensor technology. A “3D image” is a three di-
mensional representation of the face and can be rendered by
a 3D point cloud or a range image. Three dimensional face
recognition has become popular among researchers because
of its potential to overcome the pose and illumination limita-
tions of 2D images.
Elastic bunch graph matching (EBGM) [2] is a success-

ful 2D face recognition algorithm in which multiple Gabor
wavelet coefficients at different scales and orientations are
used to model local appearance around fiducial points. In
EBGM, the main idea is to encode each 2D portrait image by
a set of Gabor coefficients calculated at defined facial land-
marks.
Inspired by the EBGM idea, we have employed Gabor

wavelets to automatically and accurately detect multiple fidu-
cial points on portrait and range images of faces [3]. Each
fiducial point was co-localized using both portrait and range
Gabor jets. A jet is a set of Gabor coefficients computed at a
pixel. A predetermined search window was placed on a fidu-
cial, and a jet was computed at every pixel in the window.
The location of a jet having the maximum similarity to the
jets of training data was identified as the precise location of
the particular fiducial (please refer to [3] for details). After the
automatic fiducial point localization, Gabor jets of all fiducial
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points are concatenated in each modality (2D and 3D), cre-
ating two independent feature vectors per face. The feature
dimensionality of both modalities are separately reduced us-
ing LDA.
In this paper a novel personal identification algorithm

based on Gabor features extracted from range (3D) repre-
sentations of the face is evaluated and its performance is
compared with its well established portrait-based (2D) coun-
terpart. These identity verification systems are tested using
1196 pairs of range and portrait images and verification ac-
curacies are reported for each modality. To the best of our
knowledge this is the first time that Gabor based descriptors
are used in face recognition based on 3D representation of
faces.
The remainder of this paper is organized as follows: In

Section 2 we present an overview of Gabor wavelets and a
detailed description of the feature localization method. Sec-
tion 3 explains the face recognition methods and data. Results
are presented in section 4 followed by a conclusion and future
work.

2. BACKGROUND

2.1. Gabor Jets

The local appearance around a point, �x, in a gray scale im-
age I(�x) can be encoded using a set of Gabor coefficients
Jj(�x) [4]. Each coefficient Jj(�x) is derived by convolving
input image I(�x) with a family of Gabor kernels ψj

ψj(�x) =
k2

j

σ2
exp
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−k2
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) [
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−σ2

2
)
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Gabor kernels are plane waves restricted by a Gaussian
envelope function of relative width σ = 2π. Each kernel is
characterized by a wave vector �kj = [kv cos φu kv sin φu]

T

where kv = 2−(v+1) with v = 0, 1 . . . , 4 symbolize spatial
frequencies and φu = (φ/8)u with u = 0, 1 . . . , 7 are the
different orientations of the Gabor kernels used in this paper.
A jet �J is a set {Jj , j = u + 8v} of 40 complex Gabor

coefficients obtained from a single image point. Complex Ga-
bor coefficients can be represented in their exponential form
Jj = aj exp(iφj) where aj(�x) is the slowly varying mag-
nitude and φj(�x) is the phase of the jth Gabor coefficient at
pixel �x.
The similarity between two jets is defined using the phase

sensitive similarity measure:

S( �J, �J ′) =

∑40
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i=1 a2
i

∑40
i=1 ái

2
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This similarity measure returns real values in the range
[−1,+1], where a closer value to +1 means a higher similar-
ity between the input jets.

2.2. Gabor Bunch

In order to search for a given feature on a new face image,
a general representation of that fiducial point is required. As
proposed in [2], the general appearance of each fiducial point
can be modeled by bundling the Gabor jets extracted from
several manually marked examples of that feature point (e.g.
eye corners) in a stack-like structure called a “Gabor bunch”.
In order to support a wide range of variations in the ap-

pearance of faces caused by subjects’ different gender, race,
and facial expression, a comprehensive training set should be
selected. For example, the Gabor bunch representing an eye
corner should contain jets from open, closed, male, female
and other possible eye corners. In this work a training set
containing 50 pairs of registered portrait and range images is
carefully selected to cover possible variations present in the
data set.
The similarity measure between a jet and a bunch is nat-

urally defined to be the maximum of the similarity values be-
tween the input jet and each constituent jet of that bunch

SB( �J,
��B) =

50
max
i=1

S( �J, �B(i)) (3)

where in (3), ��B represents a bunch and �B(i)s with i =
1, . . . , 50 are its constituent jets.

2.3. Automatic Facial Feature Detection

In order to find the location of facial landmarks on any incom-
ing coregistered range and portrait pairs, we have adapted a
multimodal (2D+3D) feature point localization algorithm de-
scribed in [3].
In the training phase, a set of 50 pairs of registered range

and gray scale portrait images was selected in [3] from a
database provided by Advanced Digital Imaging Research
(ADIR) LLC. (Friendswood, TX). All ADIR’s 2D and 3D
face images are roughly aligned with respect to a fixed
generic face model using iterative closest point (ICP) al-
gorithm. Hence, all images are frontal face images with nose
tip approximately located at the center of the image.
A set of 11 prominent facial features were manually

marked only on the portrait images of these 50 training pairs.
Since these portrait and range images are perfectly aligned,
the location of fiducials on the range image of the pair is
exactly the same as the portrait one. Fig. 1 shows a range
and portrait pair from the training set with 11 feature points
marked with red “X” on the portrait image.
Finally, Gabor jets are calculated from images of each

modality (portrait and range) at the manually marked land-
marks. All Gabor jets from a specific feature point ( e.g. nose
tip) are stacked together to create a bunch representation of
that fiducial in a given modality. For example the nose tip’s
range-bunch describes the nose tip in the range images.
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(a) (b)

Fig. 1. Example of face images from the ADIR data set a)
A portrait image with marked fiducial. b)The corresponding
range image.

In the detection phase, each fiducial point is looked for
in a search area centered at the average location of that fidu-
cial in the training data. This is because all ADIR faces are
coarsely aligned to a frontal view and the prior knowledge
about human faces can be used to limit the search areas. For
example we only need to look for the left eye in a neighbor-
hood located to the left and above the nose tip. Each search
area is a rectangle box with sides selected to be at least 5
times the standard deviation of each fiducial’s coordinates in
the training set. In Fig. 2, the search area of the nose tip and
inner corners of the eyes are marked with rectangular boxes.
In order to automatically locate a fiducial point on a pair

of range and portrait images which have never been seen be-
fore, the range and portrait data enclosed by the search area of
that feature point are first convolved with the set of 40 Gabor
wavelets presented in (1). As a result, each pixel of the search
area is represented with two Gabor jets, a “range jet” and a
“portrait jet”. Next, the jets of each modality are compared
to their corresponding bunch using the similarity measure be-
tween a jet and a bunch formulated by (3). Consequently, a
similarity map is created for each modality demonstrating the
similarity between each pixel in the search area and the appro-
priate bunch describing the appearance of the target feature
point. The final location of our fiducial point is determined
by comparing the range and portrait similarity maps and se-
lecting the pixel with the highest similarity score.

3. FACE RECOGNITION MATERIALS AND
METHODS

3.1. Data

A collection of 1196 pairs of portrait and range images from
119 subjects has been used in this research. This data base is
collected by ADIR LLC., using a stereo imaging systemmade

Fig. 2. Search areas of the nose tip and inner eye corners.

by 3Q Technologies Ltd. (Atlanta, GA), and all 2D and 3D
images were roughly aligned with respect to a fixed generic
face model using the iterative closest point (ICP) algorithm.
We have reduced the size of all images by a factor of 3 in
each direction and the resulting images are of size 251 × 167
pixels. Finally, 2D colored portrait images were transformed
to gray scale portrait images. No further preprocessing has
been applied to the data set.
This data set is partitioned into disjoint training and test

sets. The training set contains 390 pairs of gray scale por-
trait and range images of 10 subjects. The number of image
pairs per subject varies between 25 and 47 in the training set.
The training set is used to enroll the subjects in a verifica-
tion experiment. The test set has 382 image pairs from the 10
enrolled subjects plus additional 424 extra images from 109
subjects not enrolled in the verification system.

3.2. LDA Dimensionality Reduction

As explained in section2.3, 11 landmarks are automatically
located on each range or portrait image in the ADIR data set.
The magnitude of the complex Gabor jets at these landmarks
are concatenated to create a 440 dimensional real-valued fea-
ture vector in each modality (range and portrait).
Fisher’s LDA is used to reduced both portrait and range

Gabor features to 9 dimensional (9D) spaces that maximize
the between-class scatter, Sb, while minimizing the within-
class scatter, Sw. Unfortunately in our application the within-
class scatter matrix is singular because the number of samples
in the training set is smaller than the dimension of the feature
space (440). In order to solve this “ small sample size prob-
lem”, we used the regularization method mentioned in [5]. In
this method, the within-class scatter matrix is slightly mod-
ified by adding a small positive constant, K, to the diagonal
elements of Sw. K is very small compared to the eigen values
of Sw.
The projection directions were learned only from the

training portion of ADIR date set. The features of the images
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in the test set were projected into the lower dimensional space
using the projection parameters learned from the training set.

4. RESULTS

To measure the accuracy of our face recognition algorithms,
we have arranged an identity verification experiment accord-
ing to established face recognition evaluation protocols [6].
In a verification scenario, first the individual using the system
asserts his identity. The face recognition system compares the
retrieved features of the claimed identity (from the database)
with the currently captured features of the user and decides
whether a match can be declared. This decision is made based
on the Euclidean distance between the currently captured fea-
tures of that individual and the mean value of the features
corresponding to claimed identity in the lower dimensional
space.
In this paper, the verification performance is evaluated us-

ing receiver operating characteristic (ROC) curve and equal
error rate (EER) values. Fig. 3 presents the ROC curves
for the portrait-based and range-based face recognition al-
gorithms implemented in this work. The EER value for the
portrait-based Gabor features is equal to 6.1%. It is observed
that by using the range Gabor features, the EER remarkably
drops to 2.2%. This remarkable performance of range-based
Gabor features compared to one of the most efficient features
investigated in ”2D’ face recognition [6] highlights the im-
portant role that Gabor features extracted from range images
can play in future face recognition investigations.
The performance of the implemented face recognition al-

gorithm using range-based Gabor features is promising and
highly competitive to other well-known 3D face recognition
systems in the literature. For example, Pan et al. [7] has inves-
tigated using a PCA-based approach and a Hausdorff distance
approach for 3D face recognition. They have evaluated their
algorithms using a database of 360 range images from 30 in-
dividuals and reported an EER in the range of 3 − 5% for the
Hausdorff distance approach and EER in the range of 5− 7%
for PCA-based approach.

5. CONCLUSION

In this paper we introduced a novel 3D face recognition
algorithm based on Gabor responses after automatically iden-
tifying fiducial points. The verification performances are
reported and compared using a database of 1196 pairs of
range and portrait images of expressive and neutral faces.
The observed verification accuracies show the highly com-
petitive performance of our algorithm relative to existing face
recognition algorithms, and it was shown that the proposed
3D Gabor-based face recognition algorithm outperforms its
2D counterpart. The next logical step to improve the per-
formance is to combine the portrait-based and range-based
Gabor features. Another option would be the incorporation

Fig. 3. ROC curves showing the verification accuracies.

of Euclidean or Geodesic distances between these fiducial
points.
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