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MICA: A Multilinear ICA Decomposition
for Natural Scene Modeling
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Abstract—We refine the classical independent component anal-
ysis (ICA) decomposition using a multilinear expansion of the
probability density function of the source statistics. In particular,
we introduce a specific nonlinear system that allows us to elegantly
capture the statistical dependences between the responses of the
multilinear ICA (MICA) filters. The resulting multilinear proba-
bility density is analytically tractable and does not require Monte
Carlo simulations to estimate the model parameters. We demon-
strate the MICA model on natural image textures and envision
that the new model will prove useful for analyzing nonstationarity
natural images using natural scene statistics models.

Index Terms—Independent components, multilinear indepen-
dent component analysis (MICA), natural scene statistics (NSS),
nonlinear modeling.

I. INTRODUCTION

THE construction of accurate prior models of natural image
source data is essential to many applications, such as low-

level vision, for which unsupervised learning methods must be
applied due to the inherent lack of labeled training sets. Such
prior models give a framework in which to correctly interpret the
data, thereby serving as the basis for subsequent analysis viewed
from different levels of abstraction. There are a variety of clas-
sical unsupervised methods that exist for this purpose, including
principle component analysis (PCA), independent component
analysis (ICA), and multidimensional scaling (MDS) [1].

Among these classic tools, ICA has several important and dis-
tinguishing characteristics. Denote the probability of the source
that we are modeling by , where is a random vector
whose realizations have dimensionality . The goal of ICA is
to factor the probability distribution of the source into a product
of distributions: , where
are filtered responses of the source. The filters are the
ICA filters of the source. Statistical algorithms for computing
the ICA filters have been the subject of intense study over the
past decade [2], most of which involve the construction of dif-
ferent cost functions (usually variations of the maximum likeli-
hood cost function).
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The independent directions that emerge from an ICA decom-
position can be fruitfully utilized by reducing the dimen-
sional problem into independent 1-D problems. Furthermore,
ICA decompositions of data having heavy tailed marginals (as is
for example observed in NSS applications) tend to favor sparse
representations [12]. Sparse representations are useful for many
applications that seek to efficiently represent and process the
data.

However, in spite of these potential advantages, in reality,
the statistics of most real-world sources, such as natural image
patches, cannot be strictly factored into a simple product. As
a result, the so-called independent components contain signifi-
cant mutual dependencies between them [3]. Accordingly, prior
work has attempted to more completely capture statistical image
structure by accounting for the dependences (either directly or
indirectly) between the ICA components [3], [15], [16].

In this paper, we approach this problem from the perspective
of refining the classic ICA model such that the dependencies
between pseudo-independent components are captured using a
multilinear representation of

where and is a normal-
izing constant. We call the resulting model the multilinear ICA
(MICA) decomposition of the distribution . Of all pos-
sible multilinear expansions of this form that could describe the
source distribution, we seek the one that makes the representa-
tion of the source as sparse as possible, i.e., which minimizes
the contribution of . Naturally we are interested in closed
form approximations for such a . The multilinear form thus
obtained retains all the attractive properties of the ICA decom-
position, and at the same time lumps the interactions of the fil-
tered responses into the function . Of course, when is
separable with respect to the filter responses, this reduces to the
classical ICA representation.

The success of our proposed method depends upon the
accuracy of the numerical approximation of . Analytical
methods of approximating using Taylor expansions seem
formidable. Further it is necessary to estimate which, in
general, requires tedious Monte Carlo simulations.

In Section II, we introduce a nonlinear system model that en-
ables us to circumvent the above issues. We call the resulting
refinement of ICA the Multilinear ICA (MICA) Model. We suc-
cessfully deploy the new method to model natural scene textures
in Section III, and demonstrate advantages relative to classical
ICA. We conclude in Section IV with a discussion of possible
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Fig. 1. Nonlinear system model of the multilinear structure of source statistics derived from natural scene models.

applications of the MICA model together with some open prob-
lems.

II. MULTILINEAR MICA MODEL

A. Overview and Parameter Description

Consider the classical ICA model where the observation
vector is modeled: , where

is the intrinsic dimensionality
of the data, and is a full-rank matrix. The goal of
ICA is to find a matrix such that the resulting components of

are independent random variables.
However, for many real-world sources, such as natural im-

ages, such an ideal decomposition is not possible and so the
components of will contain residual dependencies. Our aim is
to explicitly capture these dependencies. In doing so, we must
first recognize that cannot be further decomposed as a com-
bination of independent sources via another full-rank matrix! It
is possible, however, that can be decomposed with respect to
an under-complete linear model, but this requires knowledge of
the subspace dimensionality.

An alternate view which we explore in this paper is that, given
knowledge of the intrinsic dimensionality , the residual depen-
dencies can be captured via nonlinear combinations of indepen-
dent sources. The choice of the nonlinearity, as well as of the
source distribution, must be as simple as possible, and yet must
successfully account for the probabilistic structure of the ob-
served natural image sources. To simplify matters further, we
first concern ourselves only with modeling unimodal distribu-
tions which, as shown in Section III, appears to be well-suited
to many natural image textures. Later on, we suggest how to ex-
tend this to multimodal cases via mixtures of MICA models. We
first focus on the complete basis case (i.e., where is a full-rank
matrix). Later, we will demonstrate how these ideas can be ex-
tended to the under-complete case in a straightforward manner.

Perhaps the simplest nonlinear system that one can hypothe-
size for natural image source modeling is a quadratic channel.
In our experiments with natural image textures, we found that

the hybrid linear-quadratic model (stimulated by i.i.d. Gaussian
sources) shown in Fig. 1 can successfully account for the proba-
bilistic structure of natural image patches. We now describe this
nonlinear system in detail.

The observable image source data that we are modeling is
. is a full-rank matrix initially chosen as

the matrix associated with the classical ICA decomposition of
which will be re-estimated in subsequent iterations. The system

in Fig. 1 models the residual interaction between the compo-
nents of . It consists of a core nonlinearity preceded
by a linear system , where

, and are
i.i.d. Gaussian: . The density of the th Gaussian
channel is denoted . The Gaussian channel variances are

is an
additive mean adjusting vector, and
is a multiplicative vector that is applied (component-wise) to
all channels, and which determines the effective nonlinearity of
the channels. Finally,

is an invertible linear transformation of the i.i.d. Gaussian
sources that determines the interaction of the Gaussian sources.

B. Structure of the MICA Distribution

The nonlinearity consists of complementary linear and
quadratic channels. Operators and are complementary
limiters: for 1 .
A simple choice of limiters which we have found to be useful
for modeling natural image textures (see Section III), are the
complementary step functions

where is the unit step function.
From this, we obtain
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where (throughout, operations on are ap-
plied component-wise). The function is plotted in Fig. 4.

For this choice of

where

Since the nonlinearity is invertible, system is also:
.

The distribution of then has the following form (where
throughout is the matrix determinant):

where and is the th Gaussian source channel.
Expanding yields the MICA model

(1)

where

is a normalizing constant, ,
and

Also

where

and

Fig. 2. (a)–(d) Examples of frequency responses of MICA filters corresponding
to the Gravel texture; (e) magnitude jGj of the MICA interaction matrix for
the Gravel texture. The larger the magnitude of G the greater the statistical
dependency between the corresponding MICA components.

In (1), is the Jacobian of the transformation , for
which the following theorem (proved in the Appendix) yields
a closed form expression.

Theorem 1: The Jacobian of the transformation is

where

The MICA interaction matrix captures interactions be-
tween the MICA components. In particular, when

, the MICA components are independent. Fig. 2(a)–(d) shows
the frequency response of a few of the MICA filters (derived
from the matrix in Fig. 1) of the Gravel texture as described
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in more detail in Section III. These MICA filters exhibit band-
pass like behavior and generally, there will be overlap among
the spectra between the various MICA components. The over-
lapping of spectra, however, does not by itself indicate the de-
gree of dependence between the MICA filters. The latter is cap-
tured more accurately by the MICA interaction matrix which,
for the Gravel texture, is shown in Fig. 2(e). In particular, the
greater the value of , the greater the degree of statistical de-
pendency between the corresponding MICA filters.

The parameter determines the degree of nonlinearity in the
system which can be qualitatively understood as follows. When
training the MICA model (given the filtered data ), deter-
mines the extent to which is scaled inside the unit interval
and consequently determines (after is adjusted as a part of the
MICA optimization) the extent to which the linear channel of
the system is active. Thus, determines the tradeoff between the
linear and quadratic models when determining the optimal tail
and peak behaviors of the MICA distribution. Once the above
parameters have been adjusted, the vector is chosen to opti-
mally adjust the mean of MICA. Finally, determines the skew
of the marginal distributions by asymmetrically assigning the
nonlinearity within the effective domain of the distribution.

C. Parameter Estimation for the MICA Model

We estimate the optimal parameters of the MICA model (1)
by employing a steepest gradient algorithm with respect to the
log-likelihood function

(2)

From (2), the gradient of the log-likelihood function with re-
spect to the different parameters can be computed in a straight-
forward manner

(3)

(4)

(5)

(6)

where such that is the
impulse function, and

(7)

where is the co-factor matrix of with respect to ,
and is the th entry of .

Our goal is to obtain a multilinear expansion of corre-
sponding to a sparse representation of the source. This can be ac-
complished by initializing with the matrix associated with the
classical ICA decomposition of source . Then . A
gradient descent algorithm then obtains the optimum parameters
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Fig. 3. High-level MICA algorithm.

and using the above expressions. A multi-
linear expansion of is obtained as in (1), the structure of
which is specified by these parameters. The estimate of can be
further refined by fixing the parameters, then invoking a gradient
descent algorithm. Let ; then .
The gradient of with respect to (the th
entry of ) is shown in (8) at the bottom of the page, where

such that is the impulse
function.

Once is computed, the two-step process of estimating
followed by re-estimating may be performed

until a desired level of accuracy is achieved. However, in our
simulations, we find that a single estimate of ,
without subsequent re-estimation of generally outperforms
classical ICA modeling on natural image textures (using the
KLD as a measure of performance) as shown in Section III
below. The high-level MICA algorithm thus described is sum-
marized in Fig. 3.

We have found it convenient to heuristically estimate in-
stead of employing (7). Our heuristic for estimating is de-
scribed and motivated as follows. Consider the case where the
distribution of the th data channel is heavy-tailed (high-kur-
tosis). Modeling the th channel histogram by a Laplacian dis-
tribution

the parameter can be estimated from the data using the fol-
lowing closed form expression [8]

Fig. 4. Function �: Linear in the unit interval and quadratic outside.

where is the sample median of the th channel data .
From (1), can be thought of as proportional to . This
yields a heuristic for the initial estimate of : .
Further refinements can be obtained in subsequent iterations by
observing that in (1), a more accurate relationship between the

and is as follows: . The th estimate of
is , where is the estimate of
obtained when using . As shown in Section III, the initial
estimate yields better performance than ICA,
even without subsequent re-estimation of .

For the case where the th data channel is not heavy tailed
(i.e., the low-kurtosis case), it is intuitive to emphasize the
linear part of —tantamount to initializing such that

. In practice,
suffices for low-kurtosis cases. As with the

high kurtosis case, we find it unnecessary to update the estimate
of at every iteration, but instead use the initial estimate
throughout the optimization process.

To simplify matters further, we employ a single scalar param-
eter that we apply to all channels. To estimate we employ a
similar heuristic as above. For high-kurtosis, use

where and is the sample
median of . Similarly, for low kurtosis take

.
As a simple way of deciding the estimate to be used, we

measure the local sample kurtosis . The high-kurtosis heuristic
is used when , and the low-kurtosis heuristic when .

(8)
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Fig. 5. (a) Gravel. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The high-kurtosis heuristic � was used.

D. Extension to Under-Complete MICA Models

Consider the case where the observation is modeled as fol-
lows: , where and

, such that , i.e., is an
under-complete matrix. Under-complete models arise in situ-
ations where dimensionality reduction is required in order to
model the data in an appropriate subspace.

As before, we ask whether multilinear modeling can accu-
rately capture the statistical dependencies between the compo-
nents of . As shown in Section III, the answer to this is af-
firmative. A simple way of assessing the performance of MICA
for under-complete models is to first consider the corresponding
complete basis case where
is the observed source vector as before, and

. The matrix is initialized with the classic
ICA matrix as described in previous sections. Now we let
constitute the most significant ICA components of

, where (assuming that the
rows of are arranged according to the energy corresponding to
the corresponding directions in the data space). We now model
the components of by the complete MICA model developed
in previous sections. In order to evaluate the performance of
MICA, first obtain estimates of the original source vector by
assigning the initial estimate of matrix to be the pseudo-in-
verse of , i.e., . As in previous sections, we
do not re-estimate but just use the initial estimate along with
the optimal MICA parameters computed as above.

III. SIMULATION RESULTS

We define the image patch statistics of an
image region to be the joint distribution of the random variables
(pixel values) from patches that sample the image re-
gion. In this paper we are specifically interested in modeling the

image patch statistics of natural scenes. We first demon-
strate the performance of MICA for the case of complete basis
for . Since, for larger patch sizes the MICA optimiza-
tion algorithm becomes more computationally cumbersome, we
demonstrate how under-complete MICA models can be success-
fully exploited to reduce complexity.

To evaluate the complete basis case, we uniformly sampled
texture images obtained from the USC-SIPI Brodatz database
[4] with patches of size . An ICA was then
performed on the data vectors obtained from each texture using
Comon’s algorithm [5] to obtain the matrix . Subsequently the
parameters of the MICA model were estimated as
described in Section II. The parameter , as mentioned earlier,
was estimated heuristically at the outset of the simulation and
held to a constant value throughout. To limit computation time,
the optimization routine for estimating was forced
to terminate after only a few iterations.

Parameter initialization prior to running the optimization rou-
tine was performed as follows. Matrix was initialized to the
identity matrix, the entries of were initialized to 0.5, and the
entries of were adjusted such that each of the channels are
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Fig. 6. (a) Sand. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The high-kurtosis heuristic � was used.

zero-mean. After running the MICA optimization routine, set-
ting the parameter to the skew of the corresponding data chan-
nels gives consistently good performance. The intuitive reason
for this choice of can be seen by considering the generative
model in Fig. 1. Once all the parameters of the MICA model
have been adjusted, varying determines the asymmetry with
which samples are exposed to the linear and quadratic channels:
by varying , we can directly control the skew of the resulting
distribution.

Thereafter, for each texture, we compared the data distribu-
tion of each channel derived from test data sets (different from
the training data sets) to the corresponding distribution predicted
by the ICA and MICA models. In addition, the average of all the
data channels was also compared with that predicted by the ICA
and MICA models. Simulation of the MICA model was accom-
plished by generating d i.i.d. zero mean, unit-variance Gaussian
channels as shown in Fig. 1, and plotting the histograms out-
puts of the channels when the optimal parameters (for the tex-
ture being modeled) were used. The ICA model was simulated
by first computing the empirical distributions of each channel,
which were then independently sampled and processed by the
matrix . The histograms of the ICA and MICA channels were
then compared with the corresponding channels of the original
data distributions using the Kullback–Leibler divergence (KLD)

[9]. The above procedure was repeated over several trials, and
the average KLD for each channel (for both ICA and MICA)
computed with respect to the corresponding channels of the data
distributions.

Figs. 5(a)–11(a) depict texture images taken from the Bro-
datz database [4]. Figs. 5(b)11(b) show the histograms of two
of the channels corresponding to each of the textures, as well as
both the corresponding computed ICA distributions and the cor-
responding computed MICA distributions. Also shown are the
histograms of the data distributions when all of the data channels
of the corresponding textures are averaged together as well as
the corresponding computed ICA and MICA distributions. The
heuristic strategy used to compute the parameter for each of
these cases is also indicated. Ideally, of course, one can compute

using the optimal derivation given earlier, but the heuristic
kurtosis-based approach has proven to yield efficient, near-op-
timal MICA solutions.

In Figs. 5–7, it is apparent that the MICA model allows for
significantly improved approximation of the original data distri-
butions as compared to the classic ICA model. In Figs. 8–11, it is
apparent that MICA does a better job in capturing the kurtosis of
the channels and does a slightly better job in capturing the skew
of the original data distributions; as for example in Figs. 9 and
10. Furthermore, in all cases, there is improved approximation
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Fig. 7. (a) Bark. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The low-kurtosis heuristic � was used.

of the peak and tail behavior of the original data distributions as
compared to ICA. Quantitative evaluation of the MICA model
for the complete basis case is provided in Table I, where the rel-
ative improvement of MICA relative to classic ICA is measured
as

where KLD(MICA) is the KLD between the MICA channels
and the corresponding original data distributions (averaged
across all channels), KLD(ICA) is the corresponding average
KLD for the ICA model, and is the relative improve-
ment due to MICA over classic ICA with respect to KLD. It is
apparent from Table I that the relative performance of MICA is
consistently better than that of classic ICA for all natural scene
textures.

Similarly, Table II quantifies the performance of the under-
complete MICA model for . The initializa-
tion of the parameters before the optimization is similar to that
described before, except that the entries of are set to zero
without subsequent setting of to the skew of the data chan-
nels. Furthermore, is always chosen according to the low-kur-
tosis heuristic. Unlike the complete basis case, and

are no longer related by a simple scale factor, and so the roles
of the different parameters in determining becomes more
complicated. Nevertheless we find, as shown in Table II, that
MICA consistently outperforms classical ICA using our simple
approach. Under-complete models are useful when is desired to
use large patch sizes to sample the image, yet make the problem
computationally tractable by working in a lower dimensional
subspace. These results demonstrate that the basic idea of multi-
linear modeling of probability distributions can be successfully
extended to under-complete cases.

We further point out that a comprehensive approach to finding
the optimal MICA model parameters would be to incorporate
an additional simulation optimization phase where the Gaussian
random vector is generated to drive the optimization of the pa-
rameters to match the desired data distributions. Such a proce-
dure is likely to be more efficient than a Monte-Carlo simulation
approach due to the explicit knowledge of the Jacobian function
involved in normalizing the resulting MICA distribution. Nev-
ertheless we have shown that even the computationally simpler
optimization approach outlined in this paper suffices to outper-
form classical ICA.

Tables III and IV show the relative performance of MICA for
contrast images and densely sampled textured regions, respec-
tively. Given the original image , the corresponding contrast
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Fig. 8. (a) Pigskin. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The low-kurtosis heuristic � was used.

image was obtained as shown in the equation at the
bottom of the page, where is chosen so that the contrast at
each point in the image is computed in a 32 32 window [10]
about is the
local mean of image around a 32 32 window about ,
and is a set of raised cosine filter weights applied to
the 32 32 window [10]. Contrast plays an important role in vi-
sual perception and is the basis for visual adaptation and other
mechanisms employed by the human visual system in encoding
low-level visual information [11] and for directing visual atten-
tion [13]. It is also a useful feature of image processing algo-
rithms that seek to emulate human performance [14]. Table III
shows that MICA appears to outperform classic ICA when mod-
eling the image patch statistics of contrast images.

Finally, we also consider the situation where a 32 32 patch
of a luminance texture image is densely sampled with

patches . The resulting samples (resulting in roughly
samples/channel) are used to train the MICA

model, as before, and subsequently compared with the ICA
model. In Table IV, MICA again outperforms classic ICA in
modeling the densely sampled image patch statistics.

We emphasize that all the results obtained above are for
suboptimal MICA distributions inasmuch as the parameter
was heuristically chosen, and the matrix was not updated in
subsequent iterations. Nevertheless, consistent and statistically
significant improvement relative to classic ICA are obtained
when modeling image patch statistics, while at the same time
revealing detailed quantitative information about the statistical
interactions between the ICA components. We finally point
out that further improvements in the MICA model are likely
possible by means of direct estimation of , incorporation of
simulation phase of optimization, further refinement of the
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Fig. 9. (a) Herringbone. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The low-kurtosis heuristic � was used.

TABLE I
PERCENT OF IMPROVEMENT IN KLD (W.R.T. ICA) DUE TO MICA MODEL

matrix , etc., which in turn will be facilitated by faster and
more efficient MICA parameter estimation algorithms.

These results demonstrate the considerable promise that mul-
tilinear modeling has in capturing the image patch statistics of
natural images. Such models can find important applications in
image processing and computational vision.

IV. DISCUSSION

In this paper, we have developed multilinear extension of
ICA with application to the modeling image patch statistics.
A simple linear-quadratic nonlinearity was shown to success-
fully account for dependences between the pseudo-ICA com-
ponents, consequently approximating the true structure of the

TABLE II
PERCENT OF IMPROVEMENT IN KLD (W.R.T. ICA) DUE TO MICA MODEL

original joint probability distribution much better than possible
with simple linear ICA. The quantitative information obtained
about the statistical dependences between the pseudo-ICA com-
ponents, which is naturally furnished by the MICA model, can
potentially be used in a variety of applications such as nonsta-
tionarity measurement in natural images [7], texture synthesis,
and modeling of simple cells in visual cortex.

Apart from such applications, there are open problems that
emerged from this work of which we briefly mention a few.

1) Sparse Coding: Consider a sparse coding problem
involving the joint minimization of the MSE (i.e.,
mean-squared coding error with respect to )
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Fig. 10. (a) Straw. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The low-kurtosis heuristic � was used.

TABLE III
PERCENT OF IMPROVEMENT IN KLD (W.R.T. ICA) DUE TO MICA MODEL

TABLE IV
PERCENT OF IMPROVEMENT IN KLD (W.R.T. ICA) DUE TO MICA MODEL

and a sparsity term induced by . Is there an optimum
basis set that is a solution to this problem?

2) Over-complete Models: A first step is to address the
problem of parameter estimation of a mixture of MICA
models. This would have the added benefit of enabling the
analysis of data from multimodal probability distributions.

3) Nonsparse Multilinear Forms: The basic methodology out-
lined here can be used to explore the original joint distribu-
tion with respect to projections on arbitrary basis; for ex-
ample, the matrix can be initialized with Gabor vectors.

Finally, there is considerable scope for improving the existing
MICA model in terms of devising more efficient algorithms for
parameter estimation, thus improving parameterizations of the
MICA model and, thus, for unleashing the full potential of this
statistical modeling methodology.

APPENDIX

Proof of Theorem 1: We prove the lemma by induction on
. For the base case it is easily shown that

Now assume by inductive hypothesis that the lemma is true
for .
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Fig. 11. (a) Grass. (b) Channel histograms of channels and their corresponding ICA and MICA distributions. The low-kurtosis heuristic � was used.

Consider the Jacobian when

Expand with respect to the first row

where is the minor matrix of with respect to .
Applying the inductive hypothesis yields

where is the minor matrix of with respect to . Thus

thereby proving the lemma for all .
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