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Nonlinearities in Stereoscopic Phase-Differencing
James Peter Monaco, Member, IEEE, Alan Conrad Bovik, Fellow, IEEE, and Lawrence K. Cormack

Abstract—Exploiting the quasi-linear relationship between local
phase and disparity, phase-differencing registration algorithms
provide a fast, powerful means for disparity estimation. Unfor-
tunately, these phase-differencing techniques suffer a significant
impediment: phase nonlinearities. In regions of phase nonlin-
earity, the signals under consideration possess properties that
invalidate the use of phase for disparity estimation. This paper
uses the amenable properties of Gaussian white noise images
to analytically quantify these properties. The improved under-
standing gained from this analysis enables us to better understand
current methodologies for detecting regions of phase instability.
Most importantly, we introduce a new, more effective means for
identifying these regions based on the second derivative of phase.

Index Terms—Disparity estimation, Gabor functions, gaussian
random processes, instantaneous frequency, local correlation, local
phase, stereopsis.

I. INTRODUCTION

A S an alternative to typical feature based algorithms,
phase-based techniques, such as phase-differencing,

have proven to be a powerful means for stereo image corre-
spondence [1]–[15]. These techniques can produce disparity
maps to sub-pixel accuracy, without requiring explicit sub-pixel
reconstruction. Since relevant phase information is available at
any point in the image, not only at specific tokens as in feature
based methods [8], [16], phase-based methods yield dense
disparity maps. Additionally, phase is relatively insensitive to
typical interimage differences such as lighting, shadows, and
noise [17]. Unfortunately, phase-differencing techniques suffer
from a significant impediment: phase nonlinearities.

The premise behind phase-differencing methods originates in
the Fourier shift theorem, which states that the Fourier trans-
forms of two signals related by a global shift are themselves
identical up to a phase difference equal to the frequency times
the shift. This linear relationship makes it possible to imme-
diately recover this shift or disparity at any frequency (that is
present in the signal) by simply dividing the phase difference
by the frequency. Unfortunately, stereo images are not related
by a global shift, but instead, are better modeled by many local
shifts. Consequently, the generation of accurate disparity maps
requires a spatially localized estimate of the phase. Such local-
ization is often accomplished by windowing the complex ex-
ponential function. The introduction of this windowing func-
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tion disrupts the simple, linear relation between phase and dis-
parity. In order to successfully apply phase-differencing to a
pair of stereo images it is necessary to completely understand
these disruptive effects. Perhaps the most comprehensive paper
in this direction is [18]. Here, Fleet et al. models images as 1-D
Gaussian white noise processes and derives bounds for the ex-
pected mean phase difference and absolute mean phase differ-
ence under the operations of translation and dilation. In [19],
Cai considers the instability of localized phase from the view-
point that registration by phase-differencing can be considered
as a type of Newton iteration. He points out that the instability
of phase measurements in certain regions violates the criteria
necessary for convergence.

A key to successfully applying phase-differencing stereo re-
construction algorithms lies in the identification of regions of
phase instability, i.e., the portions of signals that possess spe-
cific properties that invalidate the use of phase for disparity es-
timation. Several papers address this issue [10], [18], [20], [21],
focusing primarily on the same two means for instability detec-
tion. Though these techniques have been shown to be empiri-
cally successful, their foundations are somewhat heuristic and
their efficacy has never been fully examined analytically.

One intent of this work is to supplement the existing literature
by filling in some important gaps in the current understanding
of localized phase for disparity estimation. Modeling the images
as Gaussian white noise processes, we analytically quantify the
behavior of the the first and second derivatives of local phase.
The first derivative describes the linear relation between phase
and disparity. The second derivative provides valuable informa-
tion about the nonlinearity of localized phase. We demonstrate
that the current methods for identifying regions of instability are
simply approximations of the second derivative. Finally, we use
the information inherent in the second derivative to create a new,
more effective means for detecting these regions of nonlinearity.

II. PHASE-DIFFERENCING FOR STEREO CORRESPONDENCE

In this section, we first present the phase-differencing al-
gorithm and review its underlying theory. Next, we discuss
conditions under which phase-differencing is inappropriate.
We then offer a new paradigm for identifying these conditions
and demonstrate how previous methods of identification that
are prominent in the literature are better understood in light of
this paradigm.

A. Review

Given a pair of stereo images and , the goal of a
stereo correspondence algorithm is to match each point in
with its corresponding point in . If the point in
corresponds to the point in then is said to be the
disparity relating to at .

The methodology used for recovering disparity by phase-dif-
ferencing is simple. Each image is convolved with a complex
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kernel whose real and imaginary parts are Hilbert
Transforms of one another (i.e., quadrature filters). For our
purposes, we assume the filter is formed by windowing
the complex exponential with a real, symmetric function
as follows: . The windowing func-
tion must be chosen appropriately such that real
and imaginary parts of remain Hilbert transforms of
each other. If and represent the convolutions
of and with , then the disparity is esti-
mated with a single calculation: , where

is the difference in phase
between the two responses.

For simplicity, let us only consider the responses at the point
. This allows us to replace the convolution with the inner

product. Accordingly, we now have ,
where . The equation to recover disparity
becomes

(1)

which is no longer a function of the positional variable .
In order to better understand the principles governing phase-

differencing, consider the simple case where the windowing
function and the images and are related
by a single, global translation, i.e., . Now,
we have and , where
is the Fourier transform of . Furthermore,

, and can be recovered using (1). For complex
exponentials the relationship between phase and translation is
linear with the relational constant .

Since actual stereo images are not generally related by a
single global shift, but instead, by many local shifts (and other
deformations), the window with its infinite spatial
extent is not very useful. The apparent solution would seem to
be the localization of the window. Unfortunately, there is no
guarantee that disparity will remain a linear function of phase.
That is, (1) may no longer hold. Fortunately, it turns out that
phase is linear except in limited regions of phase instability.
The identification of these regions of nonlinear phase is the
topic of Section II-B.

B. Regions of Phase Nonlinearity

In this section, we discuss the spatial localization of the
window and its effects on the linearity of phase. We begin
by assuming that within the window’s spatial extent, defined
as the region containing nearly all its energy, the functions

and are modeled reasonably well by a single
translation , i.e., within . Let us now
express as a function of : ,

, and . Henceforth, we will refer only
to and and not , , , and . Note that a translation
of the image is equivalent to an opposite translation of the filter
since .
Since local phase is analytic everywhere except at the zeros of

, we can use this relation to expand into a Taylor series

(2)

where the instantaneous frequency is the constant of linearity
and its derivative indicates the degree of nonlinearity. If the
phase difference is dominated by the linear term , the disparity
can be recovered in a single step by using this modified version
of (1)

(3)

Two situations arise that may prevent the accurate recovery of
phase from (3). First, the phase difference may not be linearly
related to the disparity, i.e., the higher order terms of (2) may
dominate the linear term. Second, the relationship may be linear,
but may be so large as to preclude the detection of disparities
beyond a maximum value due to phase wrapping. Phase wrap-
ping forces , and, consequently, from (3).

The literature proposes the use of two constraints to avoid
these areas of phase instability (or detect them by identifying
regions where the constraints are violated). The first constraint
requires that not deviate too far from the center frequency
[11], [12]

(4)

This requirement is often given in the context of detecting phase
instability due to scaling deformations between views, but we
will see it is also very valuable for nonlinearities due to transla-
tion. The simultaneous use of a second constraint was proposed
by Fleet [22]. This second constraint requires

(5)

where and is the partial
derivative of with respect to . This requirement is a
consequence of the instability of phase near singularities, i.e.,
points where and phase is undefined. The first-order
estimate of the distance to such a point is . Inverting
this ratio we get (5).

In [18], Fleet proposed combing the constraints

(6)

Whereas the previous constraint (5) approximated the spatial
distance from the point of evaluation to a singularity, this
combined constraint approximates the scale-space distance
(i.e., using both space and scale) to the singularity [23]. Later,
we will further substantiate that this combination is more ap-
propriate than employing each constraint independently. This
claim was indirectly asserted by Cai [19] when he demonstrated
that the region of convergence of a Newton iteration using (3)
is the disk bounded by (6).

To simplify further discussions we present the following
definitions:

(7)
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where, for example, . Using these
definitions we can express , , and as follows:

(8)

(9)

(10)

The representation of was first noted by Papoulis [24]. The
constraints presented in (4), (5), and (6) can also be reprised
using (7)

(11)

(12)

(13)

Interestingly, the linear term in (9) consists of , corre-
sponding to the center frequency of the complex exponential,
and the additional term induced by the windowing function.
We should also note that is precisely the term constrained in
(11). More importantly, , the term in (2) that most directly
indicates the degree of nonlinearity, contains the two most
prominently advocated constraints in detecting regions of phase
instability, and . By limiting the ranges of these variables,
the possible values of are concomitantly restricted. We will
delve into these issues at greater depth in Sections III and IV.

III. GAUSSIAN RANDOM IMAGES

In this section, we quantify the effect that the spatial localiza-
tion of has on the linear relation between phase and dis-
parity. In order to produce analytic results, the image will
be modeled as the stationary Gaussian white noise process .
The nice properties of Gaussian random variables (GRVs) will
allow us to analytically derive simple, closed-form results for
many important properties of localized phase. We should note
that white noise can not model all aspects of real images. Phe-
nomena such as occlusions, foreshortening, and shadowing are
disregarded. Furthermore, white noise is spread spectrum, while
real images tend to concentrate their energy near DC.

Since is a Gaussian random process, the integrals in
(7) become GRVs. In Sections III-A–D, we first determine the
means, variances, and covariances of these variables. We then
derive relevant distributions and moments that will help us better
understand and and their importance to linear phase. Fi-
nally, we quantify the effects of the constraints in (11)–(13) in
relation to these distributions and moments.

A. Means, Variances, and Covariances

In this section, we explore the mean, variances, and covari-
ances of the the random variables that result from (7) when
is a white noise process. The random variables , , , , , and
are all zero mean due to the zero-mean ergodicity of . Since
the kernel is defined to be a quadrature filter (its real

and imaginary components are Hilbert transforms of each other)
the variances become

(14)

(15)

(16)

Furthermore, the orthogonality between the real and imag-
inary parts of quadrature filters necessitates that ,

, and . In fact, the variables , , , and
are all uncorrelated (and, hence, independent). As proof, con-

sider the following:

(17)

Verifying that the remaining combinations are also zero requires
either following the previous derivation or noticing that the in-
tegrands are odd functions.

Some cross correlations involving the random variables and
are generally nonzero

(18)

(19)

Equations (18) and (19) follow from integration by parts and
then substitution using (17). The remaining cross correlations
are zero. Their integrands either form odd functions or follow
the derivation as follows:

(20)

In summary, the covariance matrix relating , , and is
identical to the covariance matrix relating , , and

(21)

The random variables , , and are independent of , , and .

B. Instantaneous Frequency

The instantaneous frequency is expressed as the sum of two
terms in (9). The first term represents the center frequency
of the bandpass filter and corresponds to the constant
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change in phase caused by a global shift in when the win-
dowing function is constant and of infinite support. Local-
izing with induces the second term . The random
variable corresponding to this localization term is a function
of the four independent, zero-mean, Gaussian random variables

, , , and . Its distribution (see Appendix A) is

(22)

The random variable is zero mean with infinite variance. The
absolute deviation exists

(23)

C. Derivative of the Instantaneous Frequency

Analysis of the derivative of the instantaneous frequency
presents a greater challenge; determining its probability density
function in a closed form appears to be an intractable problem.
We instead independently examine its two constitute compo-
nents and (or, more precisely, their random variables and

) as delineated in (10). The form of is very similar to that of
. The difference lies in the correlation among the random vari-

ables that comprise it. The random variables and are corre-
lated, as are and . The resultant pdf of (see Appendix A) is

(24)

where is given in (21). Similar to the localization term ,
is also zero mean with infinite variance. Its absolution deviation
is finite with value

(25)

The second term is the product of and , also shown
in (10). The RV is the localization term of discussed in
Section III-B. Equation (10) indicates that both and are
slightly different functions of the same RVs: , , , and . To
better elucidate their interrelation we convert them into polar
form, setting , , , and

. The random variables and have Rayleigh
distributions while and are distributed uniformly over
the interval [24]. Substituting these values, we find

and . We can
simplify further by letting , where is uniformly
distributed over . The final forms of , , and are

(26)

(27)

(28)

The RV has zero mean, infinite variance, and an infinite abso-
lute deviation (see Appendix B).

D. Effects of Constraints

In the previous subsections we found the distribution for the
localization term of and the distributions for the components

and that comprise . All three of these pdfs have heavy
tails. In fact, all have infinite variances. The distribution for
does not even have a finite absolute deviation. Accordingly, we
would expect to find numerous regions in which and/or are
too large (in magnitude) to recover meaningful disparities due
to reasons discussed in Section II-B. In this subsection, we ex-
amine the ability of the constraints given in (11)–(13) to identify
these regions of phase instability.

Before delving into the mathematics it may be useful to
provide an intuitive explanation for the subsequent derivations.
Since excessively deviant values of and result in erroneous
phase measurements, we wish to determine the mitigating
effects of imposing the constraints. Ultimately, we wish to dis-
cover insight into the behavior of the conditional distributions
of and given that the constraints are met. As previously
stated, the following derivations assume any real, symmetric
windowing function that results in a quadrature filter. To
gain perspective it may be helpful to look ahead to Fig. 1 which
plots the effects of the constraints on the constituents of and

specifically for the Gaussian window (i.e., Gabor functions).
We begin the derivations by first examining the effects of the

constraints on the random variables , , and . The first con-
straint given in (11) requires that the localization term fall
within a certain range. This will, in general, reduce the spread
of the RV’s , , and (see Appendix C)

(29)

(30)

(31)

In fact, the variances of all three RV’s are now finite, whereas
previously their variances were infinite as was the absolute de-
viation of .

Before considering the second constraint given in (12), we
will reexamine both constraints in light of the polar representa-
tions of and shown in (26) and (27). In polar coordinates,
the constraints become

(32)

(33)

Using these constraints in the fashion suggested by (11) and
(12) amounts to forming a rectangular decision region in
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Fig. 1. E[j���j], E[j��� j], and E[j���j] with respect to constraints for Gabor kernels (� = 1) responding to white noise.

space. Observing the polar forms of the constraints and
remembering that is uniformly distributed suggests that a
circular decision region like that delineated in (13) would be
more appropriate

(34)

Incorporating this constraint we find that (see Appendix C)

(35)

(36)

(37)

Using the triangle inequality, we can now establish a bound
on the expected nonlinearity in regions satisfying (13)

(38)

We have now demonstrated that the constraint in (13) serves
to limit the second derivative of phase . In fact, the second
term can be completely controlled by this constraint. Unfor-
tunately, though the first term also tends to be reduced, it can

still obtain arbitrarily large values. To further restrict this term,
and consequently , we introduce the additional constraint

(39)

The rationale and appropriateness of this condition will be-
come more apparent in later sections when actual kernels are
evaluated.

IV. GABOR FUNCTIONS

In this section, we use the previous results to analyze a spe-
cific kernel, the Gabor function. For a Gabor kernel , the
windowing function in (7) is the Gaussian. The Gaussian is
often the window of choice because of its joint optimality with
respect to support in both time and space [25]. In addition to
stereo registration [9], [26], [27], the Gabor function has found
many useful applications in areas such as texture analysis [28],
[29]. Furthermore, the Gabor function is a common model of
the simple receptive fields in the visual cortex [30]–[32]. Nor-
malizing to have unit energy yields

(40)

The Fourier transform of the Gabor kernel is a Gaussian shifted
by the modulation frequency with standard deviation

. In order for a Gabor function to adequately approximate
a quadrature filter, must be much greater than . To ensure
this relationship across different frequencies Gabor functions of
constant relative bandwidth are usually assumed, i.e.,

. A bandwidth less than or equal
to one octave is usually sufficient to well approximate
a quadrature pair filter. With the Gaussian envelope in
the frequency domain crosses DC at three standard deviations.
A perfect quadrature pair filter requires a zero response at DC.
For a more complete discussion on the selection of parameters
for Gabor functions, see [33].
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Incorporating into (7), the covariance matrix in (21)
becomes

(41)

Using these values, we can now illustrate the effects of the con-
straints on the first and second derivatives of phase as formu-
lated in (23), (25), (29)–(31), and (35)–(37). Fig. 1 plots these
equations for Gabor kernels with relative bandwidth .
The axes indicate the value of the normalized constraint ,
where . Since the axes are expressed in terms of
wavelength , all Gabor kernels with the same relative band-
width produce identical curves. This is a consequence of the
following relation: , where

.
We next test the ability of the constraints in (11)–(13) and

(39) to identifying regions where phase-based disparity mea-
surements are poor. The constraints can be considered features;
and they can be measured at every point we calculate disparity.
These features (or some functions of them) can be used to make
a decision as to whether we can trust the disparity estimate at
that point. The points can be separated into two sets: points
at which (3) produces correct disparity estimates (set ) and
points at which (3) produces incorrect disparity estimates (set

). Specifically, set contains those points with a calculated
disparity estimate within 25% of the true disparity. Set con-
tains all points not in . The goal is to use a set of features that
will allow us to accept the greatest number of points in while
rejecting the greatest number of points in .

Prior to evaluating the performance of different sets of fea-
tures, let us consider the candidate features themselves. In order
to detect regions of phase nonlinearity, the literature advocates
using the features and by thresholding them above a cer-
tain value. This forms a rectangular decision region in
space. In Section III-D, we suggested that a circular decision
region was more appropriate. Such a region is constructed by
thresholding the 1-D feature . Furthermore, in Sec-
tion II-B, we suggested that the second derivative of phase
was a better indicator of phase nonlinearity. The variables and

represent two of the three components of (10). The use
of the final component is absent from the literature. If the
second derivative of phase is valuable, its addition should im-
prove classification.

It may appear that the best feature simply would be the second
derivative itself. This is not true. Consider the case where the
first derivative is very large, but the second derivative is zero.
Though phase may be linear, the constant of linearity is so large
that we will incur errors due to phase wrapping. Consequently,
at least one feature must restrict the size of . The second deriva-
tive is not guaranteed to do this. The previously discussed fea-
tures and both implement this restriction.

The next question is how to incorporate the second derivative
as a feature. Again, the simple solution would be to use the fea-
tures and . While this combination may work very well

in theory, in practice it poses complications. Since is a com-
ponent of , the features are highly dependent. This results in
an optimal decision region that is irregularly shaped, and conse-
quently, not well approximated by applying a separate threshold
to each feature (as we said previously, this forms rectangular de-
cision regions). When thresholding it is important that the fea-
tures be as independent as possible. For this reason, we propose
incorporating the second derivative by using the following fea-
tures: and . Fig. 2 compares the use of three dif-
ferent feature sets. The first feature set uses the methodology
most often advocated in the literature: and . The second
set uses , altering the decision region from a rectangle
to a circle. The final set uses both and . Assuming
that each feature is thresholded at a certain value, Fig. 2(a) com-
pares the resulting receiver operator characteristic curves for
each set of features when applied to white noise with a con-
stant disparity of . Approximately 96% of the points belong
to set . Interestingly, the circular decision region
slightly outperforms the rectangular region delineated by and

. This is remarkable because the space of possible decision
regions for and has two degrees of freedom (length and
width), while the circular decision region for has
only one (radius). A fairer comparison might be to allow arbi-
trary elliptical regions.

Since the results in this paper were derived under the assump-
tion of a white noise signal, the question of their extensibility
remains. To address this concern we recreate Fig. 2(a), this time
replacing the white noise image with concatenated scan lines of
a natural scene. Obviously, these concatenated scan lines do not
replicate the prospective transformations, occlusions, and other
higher order effects that exist between two stereo images, but
they do better represent the frequencies found in real images.
Fig. 2(b) demonstrates that, though the overall performance of
each set is slightly worse than with white noise, the order of ef-
ficacy remains the same. Additionally, the performance degra-
dation for the feature set containing and is signif-
icantly less than that of the other feature sets.

At this point, it is useful to note that Gabor filters are only ap-
proximations of true quadrature filters. In reality, the real com-
ponent has some DC bias that would not be present if the real
and imaginary components were actually Hilbert transforms of
one another. For zero mean images, such as the one considered
in Fig. 2(a), such a bias has no effect. Real images, such as the
one used to create Fig. 2(b), possess a frequency spectrum better
modeled by the function [34]. The relatively large DC com-
ponent in such images can disrupt phase measurements. To mit-
igate these disruptive effects the DC sensitivity of the Gabor
filter can be removed. Fig. 2(c) illustrates the attendant increase
in performance for the natural scene when the DC component
is eliminated. The thin dashed lines are the previous plots from
Fig. 2(b) and are included for reference.

Another question about the extensibility of our results
arises as we move away from the point of expansion
of the Taylor series of . This expansion, shown in (2),
considers both the first-order and the second-order terms.
Due to the effect of higher order terms, the accuracy should
degrade as moves away from zero. It is important to in-
vestigate whether or not this degradation is significant. That
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Fig. 2. Receiver operator characteristic (ROC) curves for Gabor kernels (! = �=12, � = 0:8) applied to images with constant disparity � =8. The Y axes
indicate the percentage of points with a disparity error of less than 25% that are correctly classified. The X axes indicate the percentage of points with a disparity
error of less than 25% that are misclassified. (a) Results for white noise image. (b) Results for concatenated scan lines of natural scene. (c) Results for concatenated
scan lines of natural scene with DC component removed from Gabor filter. Thin dashed lines are the plots from (b) included for reference.

is, in regions satisfying the constraint given by (13) will the
model reasonably predict the actual phase difference ? To
evaluate this we consider two quantities. The first quantity

measures the mean phase dif-
ference as a function of the displacement . The second

evaluates the de-
viation about the mean as a function of . For convenience,
we will henceforth refer to these quantities as and

, leaving implicit the variable and the de-
pendence on .

Combining the second-order Taylor expansion in (2) with the
results from Section III-D, these expected values can be ex-
pressed as

(42)

(43)

Equation (42) results from the zero-mean properties of , , and
. Obtaining (43) requires incorporating the inequality in (38).

In [18], Fleet also presents a model for both these quantities

(44)

(45)

Fig. 3 plots these models as a function of the disparity for
both a white noise image and concatenated scan lines of a nat-
ural scene. The disparity is not given explicitly in terms of
but instead as a fraction of the wavelength. Additionally, Fig. 3
provides the simulated values for and
determined explicitly from the data. The simulation and the
models assume that measurements are made in regions of linear
phase, i.e., points satisfying , where .
The threshold is commonly advocated in the literature
[10]. As we can see from the figure, both models adequately
predict the simulated results for both the white noise and nat-
ural scene images. Finally, with the goal of visually demon-
strating the advantages of (39), we present a random-dot stereo
pair whose disparity is the isotropic Gaussian shown in Fig. 4(a).
With a Gabor kernel ( , ), disparity is estimated
using (3), producing the images in Fig. 4(b) and (c). Regions in
Fig. 4(b) violating the criteria were removed.
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Fig. 3. Comparison of mean phase difference E[������] and expected deviation of phase difference about mean E[j������ � E[������]j] between numerically simulated
results, our second-order model [(42) and (43), and model proposed by Fleet ((44) and (45)]. The phase difference is measured at points satisfying

p
� + � < 1.

(a) Results for white noise image. (b) Results for concatenated scan lines of natural scene.

Fig. 4. (a) Ideal disparity map. (b) Disparity map using
p
� + � < 1:27. (c) Disparity map using

p
� + � < 1:45 and j� j < 1:34.

Regions in Fig. 4(c) violating or
were removed. Eliminated points were replaced by linear inter-
polation. To ensure a fair comparison, both sets of constraints
were chosen so as to remove the same number of measurements
(24%). The valid points remaining in both disparity maps are
95% identical. Still, the images shown in Fig. 4(b) and (c) are

visually different. This difference manifests as several isolated
spikes in Fig. 4(b), which are both less frequent and less promi-
nent in Fig. 4(c). The largest spikes occur at the peak of the
Gaussian where the disparity is the greatest. This is understand-
able since the greater the disparity, the greater the error resulting
from nonlinearities.
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TABLE I
ERROR METRICS FOR DISPARITY MAPS IN FIG. 4. (A) MSE. (B) SSIM

Table I(a) provides the mean squared error (MSE) between
the true disparity map shown in Fig. 4(a) and the estimates
shown in Fig. 4(b) and (c). Since the majority of the disparity es-
timates are identical, it is instructive to calculate the MSE only
considering the of the points with the largest squared error.
These MSE calculations, evaluated for several values of ,
are provided in the table. To further confirm these results we re-
place MSE with the structural similarity index metric (SSIM)
developed by Wang and Bovik [35], [36]. SSIM offers an al-
ternative to MSE for assessing image quality. Based on prop-
erties of the human visual system the SSIM metric provides
a quality index by combining three metrics based on the fol-
lowing: loss of correlation, mean distortion, and variance dis-
tortion. The final value ranges from , with 1 signifying
no error. Using qualitative experiments, the SSIM metric has
been shown to better model a human’s perceived quality mea-
sure. Substituting SSIM for MSE, Table I(b) reprises Table I(a).

V. CONCLUSION

In this paper, we were able to derive probability density func-
tions for the components of both the first and second deriva-
tives of localized phase. We quantified the effects on these pdfs
caused by constraining their domains to regions of linear phase.
In order to identify these regions, we proposed using the second
derivative of phase. We then described how prevalent methods
proposed in the literature can be seen as approximations of the
second derivative. We empirically validated these assertions and
their extensibility by comparing the different methods on white
noise, a natural scene, and a random-dot stereo pair.

Undoubtedly, local phase is a powerful means for recovering
the disparity relating two different signals. Unfortunately, we
lack a rigorous mathematical and intuitive framework for truly
understanding it. At times, however, there are works such as [18]
that expand our knowledge base and improve our insight into
its machinations. In this paper we have reexamined many of the
current perceptions and paradigms associated with phase non-
linearity and have reformulated them in terms of something with
which we are very familiar: the second derivative. Additionally,
we have verified this interpretation by demonstrating its efficacy
in detecting regions in which phase measurements break down.

APPENDIX A
PROBABILITY DENSITY FUNCTION DERIVATIONS

Consider the zero mean Gaussian random variables , , , ,
, and . Let defined in (21) be the covariance matrix relating
, , and and also relating , , and . These matrices represent

the only dependencies between the six random variables (i.e., ,
, and are independent with respect to , , and ). Their joint

probability density function (pdf) is

(46)

where is the determinant of . In Sections VII-A and B, we
will consider the properties of functional combinations of these
random variables.

At this point, it is important to note that Fleet [23] derived a
distribution for similar to that which immediately follows. His
derivations considered the more general case where , , , and

were not all independent. He did not, however, consider the
additional components and .

A. Probability Density Functions for and

The goal of this section is to find the joint and marginal pdfs of
the random variables and , where
and . Consider the following func-
tions of the random variables , , , , , and : ,

, , , , and . The solu-
tions of this system of equations are , ,

, , ,
and . Because of the nature of the solu-
tions and , there are four unique roots (combi-
nation of solutions). The Jacobian of the these transformations
is . Incorporating these re-
sults into (46) and simplifying, the joint pdf can be expressed as

follows (for simplicity let )

where

and

We next integrate out the variables , , and
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Continuing, consider three new functions of the random vari-
ables , , and : , , and [since the
mathematics may obfuscate matters, we reiterate that these rep-
resentations of and correspond to the original definitions:

and ]. The
Jacobian is . Finally, we can substitute the
solutions , , and into the previous equa-
tion for and integrate with respect to to arrive at the
joint pdf of and

(47)

Integrating (47) with respect to and produces the distribu-
tions and , respectively

(48)

(49)

Some important moments of and are ,
, , and . Noting that

, we see

(50)

(51)

It is worth noting that the pdfs given in (48) and (49) are in-
stances of generalized Cauchy distributions [37], [38].

B. Alternative Representation for

In the representation of shown in (10), the random variables
and are dependent, as are and . These dependencies make

further derivations involving more difficult. In this section, we
introduce an alternative form in which these dependencies are
not present. Begin by letting and . We
desire values for and such that is independent of and

is independent of . This requires
and , i.e.,

Using these values for and , the variances of and
become

(52)

Furthermore, the random variables , , , , , and are all
uncorrelated and, consequently, independent. (refer to Sec-
tion III-A if this is not clear).

Continuing, we can now express as follows:

(53)

Because of the independence of , , , and , this form of
behaves similarly to (where , , , and are independent) with

and replacing and . Consequently, (48) and (50) hold valid
for after replacing with the in (52). This substitution
reproduces (49) and (51) as it should.

APPENDIX B
POLAR FORMS FOR , , , AND

In this section, we derive the polar forms of , , , and
and demonstrate their use in determining the joint pdf relating

and . Consider the constituent components of (10):
(see Appendix B)

and , where
and . We

begin by converting each into polar coordinates, setting
, , , ,

, and . The random variables ,
, and have Rayleigh distributions while , , and

are distributed uniformly over the interval [25]. All the
random variables are independent of each other. In polar polar
coordinates, similar to those presented in [23], we have

(54)

(55)

(56)

(57)

where , , , and
. and are uniformly distributed over

and are independent of , , and each other. The
joint distribution relating , , and is

(58)

For a more general form of the pdf relating , , , and
that considers additional dependencies see [23]. To find the joint
pdf relating relating and , begin by letting ,

, and . The solutions to these equations
are , , and . The Jacobian for the
transformation is . Substituting these solutions into (58) and
integrating with respect to , we have
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(59)

Integrating out and we arrive at the following marginal
distributions:

(60)

(61)

For a moment we return our attention to . From (60), we can
easily show that is not finite. As a consequence,

is also infinite as is the variance of .
We can now find the joint distribution . Remem-

bering that and , we can
find the expression for by substituting the solutions

and (with Jacobian
) into

(62)

APPENDIX C
CONDITIONAL PDF DERIVATIONS

In this section, we analyze the effects of the constraints posed
in (11) and (13) on the random variables , , and . The con-
straint shown in (11) restricts the possible values of . In order
to quantify the influence of this constraint, we will find expres-
sions for , , and .
First, we note that

(63)

The initial step is to find , , and . Obvi-
ously, we have

(64)

(69)

(70)

(71)
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(72)

(73)

(74)

To determine the other expected values, we first determine the
conditional distribution functions of and with respect to

(65)

(66)

Using the fact that , we
find

(67)

(68)

Inserting (64), (67) and (68) into (63) we have (69)–(71), shown
at the bottom of the previous page.

Finally, we quantify the influence of constraint (13) on ,
, by evaluating , , and

, where . We find the ex-
pected values in a slightly different manner than that shown in
(63). In Appendix B, we discussed how , , can be expressed
as functions of the random variables , , , and [see
(54), (56), and (57)]. Therefore, we can use the pdfs in (59) and
(60) to calculate the expected value as in (72)–(74), shown at
the top of the page.
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