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ABSTRACT

Accurate objective quality metrics are of great potential bene-
fit to the video industry, as they promise the means to evaluate the
performance of acquisition, display, coding and communication sys-
tems. Although the area of image quality assessment has attained
maturity in recent years, video quality assessment still has a long
way to go to before it reaches the levels of success achieved by still
image quality metrics. In this paper, we propose a novel quality
metric for video sequences, which we call the Video Information Fi-
delity Criterion (V-IFC), that utilizes motion information in video
sequences, which is the main difference in moving from images to
video. We previously proposed a model that describes the statistics
of natural video sequences and this model is used in the development
of V-IFC. This metric is capable of capturing temporal artifacts in
video sequences, in addition to spatial distortions. Results are pre-
sented that demonstrate the efficacy of our quality metric by com-
paring model performance against subjective scores on the database
developed by the Video Quality Experts Group (VQEG).

Index Terms— Quality Assessment, Video Signal Processing,
motion compensation, Video Quality Experts Group (VQEG), Infor-
mation Fidelity

1. INTRODUCTION

With the rapid increase in popularity of multimedia applications such
as Video On Demand, wireless video, digital cinema etc., it is critical
to be able to monitor the quality of video as it passes through distor-
tion channels. Distortion channels are created due to the processing
of the video sequences by common operations such as compression,
channel coding, transmission errors, error concealment and decoding
etc. In an overwhelming majority of applications, the end-user of the
video sequence is a human observer. It is hence of interest to evalu-
ate the quality of a video sequence, as seen by a human observer, as
opposed to generic distortion measures that are commonly used for
any data signal such as Mean Square Error (MSE). Video Quality
Assessment (VQA) algorithms attempt to assess perceptual degra-
dations introduced by any signal processing operations performed on
video sequences. Unfortunately, despite rapid advances in video pro-
cessing and communication technology, the performance of video
quality assessment algorithms remains poor and there is consider-
able room for improvement [1].

Although progress in the development of accurate and reliable
VQA algorithms has been slow, great strides have recently been
made in assessing the quality of still images [2, 3]. In this paper, we
develop a full reference quality metric for video signals by making
natural extensions of the powerful information fidelity framework
for still images to the spatio-temporal (video) domain. Full refer-
ence quality metrics assume the availability of a “perfect” reference

video and attempt to assess the fidelity of the test video with respect
to this pristine original.

Most of the research on VQA in the literature has focused on
methods that attempt to model the Human Visual System (HVS).
The approach adopted by HVS-based metrics is to process the video
data using models that simulate the initial stages of the visual path-
way. Various quality metrics developed for quality assessment differ
in the aspects of the Human Visual System (HVS) that are chosen
to be incorporated in the quality assessment system, as well as the
computational model that is used to describe these effects. Exam-
ples of video quality metrics based on the HVS-based philosophy
include the Digital Video Quality (DVQ) metric [4], the Sarnoff JND
model [5] and the Perceptual Distortion Model (PDM) [6]. However,
studies conducted by the Video Quality Experts Group indicate that
the performance of HVS-based VQA algorithms leaves considerable
room for improvement [1]. HVS-based VQA metrics suffer from in-
accurate modeling of the HVS. In particular, inadequate modeling
of temporal mechanisms in the HVS play a key role in the perfor-
mance loss of video quality metrics, as opposed to still image quality
metrics. For example, all of the VQA metrics mentioned above use
either one or two temporal channels and only model the temporal
tuning of the neurons in area V1 of the visual cortex. These models
are too simple to describe motion processing in the HVS. In particu-
lar, activity of neurons in area MT of the extra-striate cortex, which
play a very important role in motion perception, is not accounted for
in any of these models.

Preliminary extensions of the information fidelity approach has
been proposed for VQA [7] using a simple implementation of the
still image quality metric on spatio-temporal video blocks. However,
this metric does not utilize motion information or model temporal
artifacts in video that can affect the quality of the video sequence.
The human eye is quite sensitive to motion and can accurately judge
the velocity and direction of moving objects, skills that are essen-
tial to the survival of an organism. Considerable resources in the
HVS are devoted to motion perception and it is hence essential for
video quality metrics to incorporate some form of motion model-
ing. Further, video sequences suffer from spatio-temporal artifacts
and quality metrics must take into consideration temporal distortions
in videos. Example of such temporal artifacts include ghosting, jit-
ter, motion compensation mismatch, smearing, mosquito noise etc.
Furthermore, the model presented in [7] uses a natural scene model
that was proposed for natural images to model the scene statistics
of natural video and the accuracy of such a model remains open to
question.

We believe that the performance of video quality assessment
techniques can be improved by the introduction of meaningful mod-
els that describe motion in video sequences, as well as model spatio-
temporal distortions in the video stream. To our knowledge, none of
the quality metrics proposed in the literature explicitly model motion



or temporal artifacts in video sequences. The novelty of this work
lies in the use of motion models in predicting visual quality. In this
paper, we present a Video Information Fidelity Criterion, known as
V-IFC, that incorporates motion modeling using optical flow, which
results in a motion compensated implementation of the IFC for still
images [2]. We then demonstrate the performance of our metric on
the VQEG database that contains distorted sequences as well as sub-
jective scores assigned by human observers to these sequences [1].

2. MOTION IN THE FREQUENCY DOMAIN

In this paper, we consider the apparent motion of image intensities,
namely the optical flow. The term velocity denotes the optical flow
vector and not the true three dimensional velocity of motion. Let
i(x, y) denote an image and let Ĩ(u, v) denote its Fourier transform,
where (x, y) denotes the spatial axes and (u, v) denotes the spatial
frequency axes. Assuming that this image undergoes translation with
a velocity ~λ = (λx, λy), the resulting video sequence is given by
l(x, y, t) = i(x − vxt, y − vyt). Then, L̃(u, v, w), the Fourier
transform of l(x, y, t), lies entirely along a plane in the frequency
domain [8]. This plane is defined by:

λxu + λyv + w = 0

Additionally, the frequencies along this plane in the spatio-temporal
frequency domain are identical to the spatial frequencies in the im-
age i(x, y).

In line with the assumptions used in several video compression
standards, including MPEG-2 and H.264, we assume that short seg-
ments of video consist of local image patches undergoing transla-
tion, which is a reasonable approximation as long as there are no
scene changes. This model can be used locally to describe video se-
quences, since translation is a linear approximation to more complex
types of motion. Frequency domain approaches are also well suited
to our study of human perception of video signals due to the pres-
ence of bandpass visual channels in the HVS [6]. Hence, in the pro-
posed V-IFC video quality assessment system, the video sequence
is spatio-temporally filtered using a family of band-pass filters. We
use a model for the statistics of these sub-band filtered coefficients
that we have developed previously to assess the quality of video se-
quences [9]. This model is summarized in the next section.

2.1. Statistical Model for Video

We previously proposed a model that describes the statistics of natu-
ral video sequences, which we briefly summarize here [9]. Transla-
tional motion of local image patches was combined with a statistical
model for natural images in the frequency domain in the develop-
ment of our model.

The wavelet coefficients of natural (still) images exhibit strong
dependencies along neighboring spatial locations, scales, orienta-
tions. The Gaussian Scale Mixture (GSM) model nicely describes
the wavelet coefficients distributions of natural still images [10, 11],
which motivated the development of our information theoretic met-
rics for still image quality assessment [2, 3]. A continuous-frequency
version of the GSM model can be posed as follows. Given a natural-
istic image i with Fourier Transform Ĩ, we make the local model

Ĩ(u, v) ∼ zU(u, v) (1)
for all (u, v) in any sub-band of an oriented scale-space de-

composition, where z is the mixing density and U is a complex,
zero-mean, white Gaussian random field. Assume that an image

patch that is described by these statistics undergoes translation with
velocity ~λ = (λx, λy). Next, consider methods of capturing lo-
cal video statistics using this simple model. Filter the video signal
l(x, y, t) with a family of spatio-spectrally localized 3-D sub-band
filters fi(x, y, t) ↔ F̃i(u, v, w), resulting in sub-band filtered co-
efficients ci(x, y, t). Assuming the mixing density is estimated, the
coefficients ci(x, y, t) conditioned on the mixing density ẑi(x, y, t)
are zero-mean Gaussian random variables with variances [9]:
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i |F̃i(u, v,−λxu − λyv)|2dudv (2)

where F̃ (u, v,−λxu−λyv) is a 2-D slice of the filter along the
plane containing the spectrum of the translating video signal. The
dependence of σi, ẑi and ~λ on (x, y, t) is dropped for notational con-
venience. From this, it is apparent that large-magnitude coefficients
will appear where the energy of the variance field is large and where
the oriented plane significantly intersects the filter pass-bands. Ad-
ditionally, ci(x1, y1) is independent of ci(x2, y2) when conditioned
on ẑ, since U(x, y) was assumed to be white.

The z field is often modeled as gamma-distributed [10]; how-
ever, we do not assume any prior distribution of z and estimate it
using a wavelet analysis of local signal energy, denoting the estimate
using ẑ. Further details can be found in [9].

3. IFC INDEX FOR IMAGES

The IFC index was first developed for still images [2] and since the
design of our metric closely follows this development, we briefly
overview it here. The reference and test images are first passed
through a scale-space oriented decomposition to generate filtered co-
efficients for the reference and test images.

Let ~Ci(x) denote a set of coefficients at adjacent spatial loca-
tions (an R × R window of coefficients, for example) of the refer-
ence image. Here, the index i denotes a single filter from the en-
tire family used in the decomposition and we assume N filters, i.e.
i = 1, 2, . . . N . x denotes a spatial index for the vector of coeffi-
cients and x = 1, 2, . . . M . In the IFC framework, this vector ~Ci(x)
is assumed to be modeled well using the GSM model developed for
natural images [10]. Thus, ~Ci(x) can be modeled as a Gaussian ran-
dom vector of zero mean and covariance CU , conditioned on the
estimated value of the mixing density ẑi(x). In addition, the dis-
torted image is assumed to be generated from the reference image
using a simple blur and additive noise distortion model (also known
as channel model). Let ~Di(x) denote a set of coefficients from the
distorted image at corresponding spatial locations to those chosen
from the reference image. Then, the channel model is given by:

~Di(x) = Gi(x) ~Ci(x) + ~Ni(x) (3)

where Gi(x) denotes a deterministic scalar gain field and ~Ni(x)
is assumed to be an Additive White Gaussian Noise (AWGN) field
with covariance matrix σN

i (x)I.
Then, the IFC index between these coefficients is given by the

mutual information between these vector fields and can be shown to
be:

IFC( ~C(x), ~D(x)) =
1

2
log2

„

1 +
|Gi(x)2ẑ2

i CU + σN
i I|

|σN
i I|

«

(4)



Fig. 1. Geometry of the Gabor filterbank in the frequency domain.

The overall quality index of the entire image is then calculated
as the sum of the IFC indices over all values of x. This quality
measure was shown to perform very well in predicting the quality of
still images [2].

4. V-IFC INDEX FOR VIDEO SEQUENCES

4.1. Selection of sub-band filter family

In Section 2, we discussed the simple form that motion in video se-
quences takes in the frequency domain. This motivated us to develop
the statistical model for sub-band filtered coefficients of video se-
quences. Decomposition of the video into bandpass channels in the
frequency domain helps us achieve two goals, namely optical flow
estimation and quality computation, both of which are accomplished
using the outputs of these bandpass filters.

Although any filter family can be used to decompose the video
sequence into bandpass channels, we opt to use Gabor filters in our
implementation. Gabor filters attain the theoretical lower bound on
the uncertainty in the frequency and spatial variables and thus, visual
neurons can be said to optimize the uncertainty in information res-
olution [12]. Additionally, development of the video quality metric
in Section 4.3 requires estimation of the optical flow vectors. Gabor
filters have been successfully used for this purpose in the literature
[13].

A Gabor filter f(x, y, t) is simply the product of a Gaussian
window and a complex exponential:

f(x, y, t) =
1

(
√

2π)3σxσyσt
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where (U, V, W ) is the center frequency of the Gabor filter and

(σx, σy, σt) is the spread of the Gaussian window in space-time.
Then, the Fourier transform of the Gabor filter is a Gaussian whose
standard deviation in the frequency domain is (1/σx, 1/σy , 1/σt).

F̃ (wx, wy, wt) = e−
1
2 [σ2

x(wx−U)2+σ2
y(wy−V )2+σ2

t (wt−W )2] (6)

The filters used in our implementation have the same geometry
as the Gabor filters described in [13] and are illustrated in Figure
1. We used a family of filters consisting of N = 22 filters all at
the same scale, i.e., all filters are tuned to the same spatio-temporal
frequency band. Figure 1 shows the isosurface contours of the re-
sulting filter bank in the frequency domain. The spatial spread of the
Gaussian filters is the same along all axes and hence, the iso-surface
contours are spherical.

4.2. Optical flow estimation

The proposed V-IFC algorithm uses motion information from the
reference video sequence in the form of the optical flow vectors.
We briefly describe the optical flow estimation algorithm. We used
the Fleet and Jepson phase based algorithm for optical flow esti-
mation with slight modifications [13]. The Fleet and Jepson algo-
rithm is designed under the assumption that the evolution of phase
contours of bandpass filtered outputs closely approximates the pro-
jected motion field. Constant phase contours are computed using
the derivatives of the Gabor filter outputs, which is computed us-
ing a 5-point central difference kernel in [13]. However, we chose
to perform the derivative computation by convolving the video se-
quence with filters that are derivatives of the Gabor kernels denoted
by f ′

x(x, y, t), f ′

y(x, y, t), f ′

y(x, y, t).

f ′

x(x, y, t) = f(x, y, t)

„

−x

σ2
x

+ iU

«

(7)

Similar definitions apply for the derivatives along y and t di-
rections. This filter is more accurate in computing the derivative of
the Gabor outputs, and produced better optical flow estimates in our
experiments. We wish to point out that the Fleet and Jepson algo-
rithm does not produce flow estimates with 100% density, i.e. flow
estimates are not computed at each and every pixel of the video se-
quence. Finally, note that our current implementation uses only one
scale of filters and cannot compute optical flow in fast moving re-
gions of the video sequence due to temporal aliasing [13].

4.3. Proposed quality index for video sequences

Motion plays a very important role in the human perception of video
sequences. Distorted videos suffer from artifacts that are spatio-
temporal as described in Section 1. The main drawback of most
video quality metrics in the literature, including the information the-
oretic quality metric for video developed earlier [7], was the failure
to model motion or temporal artifacts in video sequences. In Sec-
tion 4.2, we described a method to estimate the motion in a video
sequence that has been proposed in the literature. In this section,
we will use this statistical model just developed to develop a novel
information theoretic video quality metric, that closely follows the
development of the IFC metric for still images

Let {Ci(x), i = 1, 2, . . . N} denote the output of Gabor filter
fi(x, y, t) operating on the reference video sequence. Note that x
denotes a spatio-temporal index that represents the location of the
sub-band filtered coefficients. Similarly, let {Di(x), i = 1, 2, . . . N}
denote coefficients at the corresponding spatio-temporal location ob-
tained by filtering the distorted sequence, whose quality we wish to
estimate, with the Gabor filter fi(x, y, t).

From the statistical model presented in Section 2.1, we know
that Ci(x) is distributed as a zero-mean Gaussian random variable
with variance given by Eq. 2. We denote this resulting variance field
by σC

i (x). The main difference between the our quality metric and
that presented in [7] is the introduction of this statistical model which
was derived specifically for video sequences under the commonly
used assumption of local translation. Although the heuristic model
used in [7] was shown to work reasonably well by illustration, it
was not tested systematically. Additionally, the model in [7] did not
incorporate any motion information from the video sequence.

Similar to the IFC paradigm, we assume that the coefficients of
the distorted video sequence are obtained by applying a distortion
operator on the reference video coefficients. This distortion channel
is modeled using a blur and additive noise model and is given by:
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Fig. 2. Illustration of a set of motion compensated filters: (a) A static
sequence (b) Sequence with motion.

Di(x) = Gi(x)Ci(x) + Ni(x) (8)
where Gi(x) is a deterministic gain field and Ni(x) is an AWGN

field.Thus, E[Ni(x)Ni(y)] = 0 ∀ x 6= y and E(Ni(x)2) =
σN

i (x). This distortion model is capable of handling both spatial
as well as temporal distortions in the video sequence. Gabor filters
form spatio-temporal bandpass channels in the frequency domain,
whose iso-surface contours are ellipsoidal in shape. Assuming trans-
lational motion in the video sequence, the spectrum of the video se-
quence will lie along a plane. The orientation of this plane is defined
by the optical flow vector ~λ and the frequency components along this
plane are determined by the spatial frequency components of the im-
age patch undergoing translation. Thus, distortions in the video that
are purely spatial, i.e. intra-frame distortions, will result in changes
in the frequency components along the plane, which will be captured
by the Gabor filter outputs. Examples of such spatial distortions in-
clude blurring, blocking and ringing caused by compression, errors
during acquisition, transmission through communication channels
etc. Distortions in the video that are purely temporal, i.e. inter-frame
distortions, will result in a change in the axis along which the plane
intersects the Gabor filter. Examples of temporal distortions include
motion compensation mismatch and mosquito noise due to compres-
sion, ghosting and temporal aliasing during acquisition, transmission
through communication channels etc. Our distortion model captures
both complementary forms of distortion and is hence, capable of
handling a wide variety of distortion operators.

It is also instructive to note the differences between our proposed
model and the distortion operator presented in [7]. Although a simi-
lar blur and additive noise model was proposed in [7], that distortion
model was applied on the derivatives of the video sequence in the
pixel domain. Thus, the model does not allow for an intuitive expla-
nation of the kinds of distortions that it can handle.

We now define the quality index of the distorted sequence as the
mutual information between the coefficients of the reference and dis-
torted video sequences that are modeled as Gaussian random fields,
conditioned on the estimated values of the mixing density ẑi(x) and
the gain field Gi(x). It is fairly straightforward to compute this mu-
tual information and the V-IFC index is hence defined by:

V-IFC(Ci(x), Di(x)) =
1

2
log2

„

1 +
Gi(x)2σC

i (x)

σN
i (x)

«

(9)

We now modify the IFC framework further to develop a motion-
compensated implementation of the proposed quality metric. The
optical flow computation on the reference sequence provides us with
an estimate of the local orientation of the plane containing the fre-
quency spectrum of the video sequence. We then identify the Gabor
filters that overlap significantly with this plane. Although in the orig-
inal IFC framework, quality indices are computed for all the Gabor
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Fig. 3. Illustration of the dependence of the range of V-IFC values
on the reference sequence. Each marker represents data points from
a different reference video.

filters, we define a selection criterion and only compute V-IFC in-
dices for the outputs of the filters that satisfy this criterion.

In our implementation, we require that the plane lie within one
standard deviation of the Gabor filter in the frequency domain. Thus,
if the optical flow vector at a pixel is (λx, λy) and the center fre-
quency of the Gabor filter is (U0, V0, W0), then the plane that con-
tains the spectrum of the video sequence is described by vxwx +
vywt + wt = 0. Thus, our rule for selection of the filter is:

S =

(

k :

˛

˛

˛

˛

˛

λxU + λyV + W
p

λ2
x + λ2

y + 1

˛

˛

˛

˛

˛

≤ 1

σ

)

(10)

where S denotes a set that contains the selected filter indices and
σ denotes the standard deviation of the Gabor filter along any axis
in the space domain, since we use spherical Gabor filters. This filter
selection procedure is illustrated in Fig. 2. Fig. 2(a) shows the filters
that are selected for a static video sequence that undergoes no motion
and consists of the same image repeated over frames. Fig. 2(b)
illustrates the filters selected for a hypothetical sequence undergoing
translation.

We hypothesize that our proposed metric is capable of handling
a wide variety of both spatial as well as temporal artifacts. Note
that in the absence of temporal artifacts, the proposed metric is sim-
ply a motion compensated implementation of the IFC metric for still
images. This is a desirable property. Furthermore, motion compen-
sation provides us with a way to model temporal distortions in the
video. This is because the proposed system results in the filtering of
the distorted sequence along the motion trajectories of the reference
video sequence and estimating IFC indices using these filter outputs.

4.4. Implementation Details

The optical flow estimates described in Section 4.2 provide estimates
of (λx, λy). Estimation details of the parameter ẑ were also de-
scribed in Section 2.1. The parameters Gi(x) and σN

i (x) were esti-
mated by computing the least squares regression fit between coeffi-
cients extracted using a 7 × 7 × 7 window from Ci(x) and Di(x)
centered on the pixel location x.

The integral in Eq. 2 can be evaluated in closed form. This inte-
gral was computed for complex Gabor filters in [14]. We used sine
phase Gabor filters, which have zero DC response, in our implemen-
tation and evaluated this integral.
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where F̃s(u, v, w) denotes the Fourier transform of the sine phase
Gabor filter, (U, V, W ) denotes the center frequency of the filter and
(σu, σv, σw) denotes the standard deviation of the Gabor filter in the
frequency domain.

Our flow estimation algorithm does not produce flow estimates
at each pixel of the video sequence. At pixels without motion infor-
mation, we simply set λx = λy = 0. This results in the computation
of V-IFC indices that capture spatial distortions alone at these pixels.
Additionally, to avoid computing IFC indices in low signal-to-noise
regions, which may occur when the signal energy is insignificant in-
side the span of the Gabor filter, we computed IFC indices only at
pixels where the magnitude of the response was at least 5% of the
maximum response of the filter to the frame that contained the pixel.

5. RESULTS

We tested our proposed V-IFC index on the VQEG database [1].
This database contains 20 reference video sequences, test sequences
obtained by distorting each of these reference videos with 16 differ-
ent distortion operations and subjective scores for all test sequences
[1]. The distorted sequences are further sub-divided into a low qual-
ity and high quality data set and for each reference sequence, two
of the distorted versions are included in both the high and low qual-
ity data sets. We chose to treat the resulting subjective scores in the
low and high quality tests as independent data points in computing
the correlation coefficients. The current implementation of our op-
tical flow estimation uses filters at just one scale. The results we
present are for 16 of the 20 reference sequences, since the flow es-
timation algorithms failed to produce outputs for 4 sequences that
were fast moving. These excluded sequences were sequence 6 (For-
mula 1 racing car), sequence 8 (scrolling text), sequence 9 (rugby
game) and sequence 19 (football game). The VQEG test sequences
are interlaced and similar to the approach adopted in [7], our algo-
rithm operates only on the odd fields of the interlaced sequences. To
reduce the computational burden, flow and V-IFC indices were not
computed for each frame, but only for one in 16 frames.

We tested our metric on the remaining 16 reference sequences
with 288 data points by computing the Spearman Rank Order Corre-
lation Coefficient (SROCC) between subjective and objective scores
for different video quality metrics. SROCC is one of the metrics
specified by the VQEG that tests the prediction monotonicity of a
video quality assessment system.

On analyzing our results, we noted that the range of values that
the V-IFC index takes depended on the reference sequence. This is
illustrated in Fig. 3. Each marker symbol denotes the data points
obtained from all distorted versions of the same reference sequence.
We show data for four different sequences from the VQEG database
in this figure. We believe that the reason for this is the fact that the
IFC is not a normalized metric [2]. The V-IFC, as specified in Eq.(9),

Prediction Model SROCC
Peak Signal to Noise Ratio 0.786
Proponent P8 (Swisscom) 0.803

Structural Distortion Measurement [15] 0.812
Visual Information Fidelity [7] 0.849

Proposed V-IFC Metric 0.876

Table 1. Comparison of SROCC values for different video quality
assessment algorithms.

depends not only on the distortion parameters, but also on the vari-
ance or energy of the coefficients of the reference image, σC

i . We
believe that this behaviour of the IFC metric can be rectified by de-
veloping a normalized information theoretic measure, similar to [3]
in the future. To overcome this problem, we fitted the objective and
subjective scores of each reference sequence independently using a
logistic function specified in [2]. The SROCC was then computed
between the subjective and objective scores after passing the V-IFC
scores through this optimal logistic function.

The results of our experiments are summarized in Table 1, which
shows the SROCC values for different metrics. PSNR does not cor-
relate well with subjective scores as seen in Table 1. Proponent P8
is the best performing metric amongst the 10 different proponent
models tested by the VQEG in terms of the SROCC metric [1]. We
compared our results against the better performing version of the two
metrics proposed in [15]. We also compared our results against the
metric presented in [7]. The results clearly indicate that our V-IFC
index performs quite well and is competitive with other video quality
assessment systems. Although these preliminary results are promis-
ing, it is important to remember that the SROCC values reported here
are somewhat optimistic since the scores were fitted individually for
each reference sequence. In some sense, this reduces the burden on
the quality assessment algorithm to predict visual quality well across
different content in the video database.

6. CONCLUSIONS AND FUTURE WORK

In conclusion, we presented a novel information theoretic quality
metric for video sequences, that uses a statistical model for video
that we developed previously as well as a novel distortion model to
predict subjective quality of video data. We validated our model by
testing it on the VQEG - Phase I FR-TV database and showed that
our metric is competitive with other state-of-the-art video quality
metrics. In the future, we would like to seek improvements in our
optical flow estimation techniques. Additionally, we would like to
evaluate other distortion models that directly model the distortion in
the flow field of the video.
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