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ABSTRACT. The goal of this study was to assess the reliability of measurements of the
physical characteristics of spiculated masses on mammography. The images used in this
study were obtained from the Digital Database for Screening Mammography. Two
experienced radiologists measured the properties of 21 images of spiculated masses.
The length and width of all spicules and the major axis of the mass were measured. In
addition, the observers counted the total number of spicules. Interobserver and
intraobserver variability were evaluated using a hypothesis test for equivalence, the
intraclass correlation coefficient (ICC) and Bland-Altman statistics. For an equivalence
level of 30% of the mean of the senior radiologist’s measurement, equivalence was
achieved for the measurements of average spicule length (p,0.01), average spicule
width (p50.03), the length of the major axis (p,0.01) and for the count of the number
of spicules (p,0.01). Similarly, with the ICC analysis technique ‘‘excellent’’ inter-rater
agreement was observed for the measurements of average spicule length (ICC50.770),
the length of the major axis (ICC50.801) and for the count of the number of spicules
(ICC50.780). ‘‘Fair to good’’ agreement was observed for the average spicule width
(ICC50.561). Equivalence was also demonstrated for intraobserver measurements.
Physical properties of spiculated masses can be measured reliably on mammography.
The interobserver and intraobserver variability for this task is comparable with that
reported for other measurements made on medical images.
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Computer-aided detection (CAD) systems have been
developed to aid radiologists in interpreting mammo-
grams [1–5]. However, it is widely acknowledged that
current CAD systems detect microcalcifications more
accurately than they detect masses, including spiculated
masses. One reason for this is that calcifications are
typically much denser than the surrounding tissue,
whereas there is less contrast between masses and the
parenchyma. Moreover, from an image processing
perspective, calcifications are easier to detect because
they can be simply modelled as impulse functions. In
comparison, spiculated masses are difficult to model
because of the great variability in their physical
characteristics. The lack of statistical information on the
physical properties of spiculated masses makes it
difficult for engineers to create mathematical models of
these abnormalities. For instance, there is no quantitative
record of the physical characteristics of spiculated
masses, such as the typical length of spicules. This

information would be beneficial for the design of CAD
algorithms (e.g. [6]), even though radiologists may not
consciously use such information in detecting or char-
acterizing lesions.

All radiological measurements are subject to inter-
observer and intraobserver variability. A number of
statistical methods are available to quantify interobserver
and intraobserver agreement. The Bland-Altman techni-
que, intraclass correlation coefficient (ICC), kappa
statistic and regression analysis are some of the most
frequently used methods. While we are unaware of any
studies that have focused on the reliability of measure-
ments of mammographic lesions, several studies have
assessed the observer variability of rating data, as
opposed to measurement data, in mammographic
interpretation. For example, considerable interobserver
variability has been reported in describing mammo-
graphic masses using the BI-RADSTM lexicon [7, 8]. By
comparison, many studies have evaluated the interob-
server and intraobserver variability of measurements
in non-mammography medical imaging applications
(e.g. [9–15]).

In this paper, we present the results of a study in
which two experienced radiologists measured the para-
meters of spiculated masses on mammography. We
demonstrate that the observer variability for this task is
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comparable with what has been reported in other
medical imaging measurement studies.

Materials and methods

Data set

The images used in this measurement study were
obtained from the Digital Database for Screening
Mammography (DDSM), http://marathon.csee.usf.
edu/Mammography/Database.html [16]. The DDSM is
the largest publicly available data set of digitized
mammograms. The entire database consists of 2620 cases
and each case consists of four mammograms: a cranio-
caudal (CC) and mediolateral oblique (MLO) view of
each breast. The mammograms were obtained from three
institutions [16]. Along with the digitized mammograms,
the DDSM contains ‘‘boundary’’ files of the abnormal-
ities. The outlines of the abnormalities as indicated by a
radiologist are stored in ‘‘chain code’’ in these files. From
this ‘‘chain code’’, borders of the abnormalities can be
reconstructed.

In this study, observers primarily worked with a
region of interest (ROI) from each image, although the
full mammogram was always available to them. The ROI
was defined such that the central mass and all spicules
were visible. In particular, the ROI was taken as the
smallest rectangle in which the boundary specified in the
DDSM database could be inscribed, plus 500 pixels in
each direction.

For this study, the MLO views of cases of spiculated
masses were randomly selected from the DDSM. Cases
were selected from a single scanner, and we confirmed
that a range of density ratings, subtlety ratings and
pathology were represented by the sample. A set of 12
cases was used for observer training and measurements
were collected using a second, distinct set of 21 cases. The
characteristics of the measurement set are summarized in
Table 1. A list of the DDSM cases numbers and the ROI
images used in this study are available on our website:
http://www.bme.utexas.edu/research/informatics/.

Observer training and measurement protocol

The physical measurements were made by two
experienced radiologists. For the rest of the paper, we
will refer to these radiologists as R1 and R2. Radiologist
R1 was the senior radiologist and had more experience in
breast imaging. R1 also trained as a breast-imaging
fellow for 1 year and has been reading mammograms

since 1990. Currently, radiologist R1 reads 7000 mammo-
grams per year. Radiologist R2 was trained as a breast-
imaging fellow for 1 year and has been reading
mammograms since 1994. Currently, radiologist R2
reads 3000 mammograms per year.

We used the ROI Manager plugin of NIH ImageJ to
enable the radiologists to measure physical properties of
spiculated lesions on mammograms (Figure 1). Using a
straight line tool, the radiologists marked the principal
axes of the central mass, the width of each spicule at its
base where it meets the mass, and traced each spicule in
order to measure their length. Since the resolution of the
images was known, the pixel measurements were
converted into physically meaningful quantities (e.g.
millimetres). In addition, the radiologists counted the
spicules associated with each lesion. The measurements
were made on ROIs, but the radiologists were allowed to
view the full mammogram at any time and could adjust
the display as desired (e.g. zoom). The images were
displayed on a standard laptop computer in a darkened
room and the radiologists were allowed unlimited time
for the measurement task. All of the images with the
radiologists’ markings overlaid are available on our
website, as described earlier.

Measuring spiculated lesions is not part of routine
clinical practice. Thus, we conducted a training stage in
which the radiologists discussed the results of measure-
ments made independently on a training set of images.
Each radiologist independently measured the properties
of a training set of 12 spiculated masses. Their markings
were overlaid on the original ROIs (Figure 2a) and they
discussed areas of agreement and disagreement in their
measurements.

Following the training phase, the two radiologists
independently measured the properties of 21 images of
spiculated masses. There was no overlap between the
training and the measurement sets. Because of time and
scheduling constraints, these measurements were carried
out in two sessions. In the first session (a few weeks after
the training session), the properties of 12 images were
measured and in the second session (a few months after
the training session) the properties of the remaining 9
images were analysed. To assess the intraobserver
variability, one radiologist (R1) re-measured the first
set of 12 images after an interval of 5 months. Thus, a
total of 21 images were used for the analysis of the
interobserver agreement and a set of 12 images was used
to compute the intraobserver agreement.

Statistical analysis

We believe that it is important to assess the degree of
agreement using multiple statistical methods. This view
is also shared by Luiz et al [17] who noted that for the
analysis of measurement studies it is desirable to report
the degree of agreement using multiple statistical
methods as no method is foolproof and each has its
own limitations.

The degree of agreement between the measurements
of radiologists R1 and R2 was evaluated using a
hypothesis test for equivalence, the intraclass correlation
(ICC) coefficient [18], and Bland-Altman statistics [19,
20]. In testing for equivalence, the null hypothesis is that

Table 1. Properties of the two sets of images used in this
study. A set of 12 cases was used for observer training and
measurements were collected using a second, distinct set of
21 cases

Total
number
of cases

No. of
malignant
cases

Minimum
density

Mean
density

Maximum
density

Training set 12 10 1 2 3
Measurement

set
21 21 1 2 3
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the measurements of the two radiologists are not
equivalent and the alternative hypothesis is that they
are equivalent [21]. Note that the more familiar paired t-
test for a null hypothesis of equal values vs an alternative
hypothesis of not equal values is not an appropriate test
for establishing equivalence. Failing to reject a null
hypothesis does not prove that the null hypothesis is
correct; in particular, a failure to reject the null hypoth-
esis can arise from a lack of power. Thus, a hypothesis
test specifically intended for assessing equivalence was
used.

The test statistic (t) for assessing equivalence is

t~

ffiffiffi

n
p

x+dð Þ
s

ð1Þ

where x and s are the mean and standard deviation,
respectively, of the differences between the measure-
ments of the two readers. The value of d is computed as a
factor multiplied by the mean of the more experienced
reader’s measurements. In this study, the factor was 0.20,
0.25, or 0.30. The variable d accounts for the expected
variability in the measurements made by the two
radiologists. A smaller value of d implies stricter criteria
for demonstrating that the measurements of the two
radiologists are equivalent.

The ICC coefficient is also used to report the degree of
agreement between multiple readers. A number of
different models can be used for computing the ICC
value [18]. In this study, to report the interobserver
agreement, a two-way random model was used since the
set of images is a random subset of images from the class
of mammographic images and the radiologists are also
randomly selected from the population of radiologists.

ICC~
MSR{MSE

MSRz(k{1)MSEz
k

n
(MSC{MSE)

; ð2Þ

where k denotes the number of readers, n denotes the
number of images, MSR is the mean square error
between images, MSE is the residual mean square error
and MSC is the mean square error between readers. For
the computation of the intraobserver agreement, a two-
way mixed model was used as the set of images is
considered as a random subset of images from all
mammographic images, but the measurements are made

by a single radiologist and thus the rater (radiologist) is
considered as a fixed effect in the ICC model [18].

Different guidelines exist for the interpretation of ICC,
but one reasonable scale is that an ICC value of less than
0.40 indicates poor reproducibility, ICC values in the
range 0.40 to 0.75 indicate fair to good reproducibility,
and an ICC value of greater than 0.75 shows excellent
reproducibility [22].

Bland-Altman analysis (also known as the method of
differences) has been proposed for measuring the degree
of agreement [19, 20]. In this method, the differences in
the measurements made by two readers are plotted
against the average values of these measurements.
According to Bland and Altman [19, 20], if 95% of the
differences are within ¡1.96 standard deviations of the
mean of the differences, then this denotes good agree-
ments between the two sets of measurements. These
limits are also known as the ‘‘limits of agreement’’. Note
that hypothesis testing for equivalence and the ICC
method provide quantitative measures of the agreement
between the measurements whereas the Bland-Altman
analysis technique provides a qualitative assessment.

Results

The interobserver and intraobserver variability of
measurements of spiculated masses was evaluated using
a hypothesis test for equivalence, the ICC coefficient and
the Bland-Altman technique. For an equivalence level of
30% of the mean of R1’s first measurement (Table 2),
equivalence was achieved between R1’s and R2’s
measurements (N521) for average spicule length
(p,0.01), average spicule width (p50.03) and the count
of the number of spicules (p,0.01). For comparing the
major axis measurements, one case was removed since

Table 2. Summary statistics and the results of the hypothesis test for equivalence between the measurements of radiologists R1
and R2. The null hypothesis was that the two radiologists are not equivalent. Thus, if we reject the null hypothesis, the
measurements of the two radiologists are deemed equivalent

Total number
of cases

Delta Major axis Spicule width Spicule length Number of spicules

R1’s mean53.78 R1’s mean50.278 R1’s mean52.44 R1’s mean517.57

R2’s mean53.73 R2’s mean50.221 R2’s mean52.39 R2’s mean518.48

211 d50.30 * mean of R1’s
measurement

p,0.01 p50.03 p,0.01 p ,0.01

211 d50.25 * mean of R1’s
measurement

p,0.01 p50.18 p,0.01 p ,0.01

211 d50.20 * mean of R1’s
measurement

p,0.01 p50.54 p,0.01 p50.01

1One observer measured minor axis by mistake, so that image was removed for the major axis calculation only.

Table 3. Interobserver agreement. Intraclass correlation
(ICC) coefficients for the measurements made by radiologists
R1 and R2.

Total
number
of cases

Major axis Spicule
width

Spicule
length

Number of
spicules

211 ICC50.801 ICC50.561 ICC50.770 ICC50.780

1One observer measured minor axis by mistake, so that
image was removed for the major axis calculation only.
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Figure 1. NIH ImageJ Interface for
obtaining measurements of key
characteristics of spiculated masses.

(a) (b)

Figure 2. Examples of the measurements made by radiologists R1 and R2 before and after the training stage. The measurements
made by R1 are shown in blue and those made by R2 are shown in green. (a) Example measurements made by the two
radiologists during the training phase. (b) Example measurements made by the two radiologists during the measurement phase.
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R2 inadvertently measured the minor axis; with N520,
equivalence was achieved for the length of the major
axis (p,0.01). Similarly, Table 3 shows the degree of
agreement between the measurements of the radiologists
R1 and R2 using the ICC method. Our analysis shows
that there is ‘‘excellent’’ inter-rater agreement between
R1’s and R2’s measurements (N521) for average spicule
length (ICC50.770), and the count of the number of
spicules (ICC50.780). ‘‘Fair to good agreement’’ was
obtained for the average spicule width (ICC50.561). For
comparing the major axis measurements, one case was
removed and with N520. ‘‘Excellent’’ inter-rater agree-
ment was observed for the length of the major axis
(ICC50.801). The interobserver agreement was also
analysed using the Bland-Altman technique. Bland and
Altman suggested that if 95% of the differences were
within the ‘‘limits of agreement’’ then this denoted
good agreement between the two sets of measure-
ments. According to the Bland-Altman method, good

(a) (b)

(c) (d)

Figure 3. Bland-Altman analysis for the interobserver agreement for each of the four physical characteristics that were
measured by radiologists R1 and R2. The parameters measured were: (a) major axis of the spiculated masses, (b) the width of the
spiculations, (c) the length of the spiculations and (d) the number of spiculations.

Table 4. Results of the hypothesis test for equivalence
between the first and second set of measurements made
by radiologist R1. The null hypothesis was that the two sets
of the measurements made by radiologist R1 are not
equivalent. Thus, if we obtain a p-value of less than 0.05
(bold type), we can reject the null hypothesis and say that
the two sets of measurements are equivalent.

Total
number
of cases

Delta Major
axis

Spicule
width

Spicule
length

Number
of
spicules

12 d50.30 * mean
of first set of
measurements

p50.00 p50.00 p50.00 p50.00

12 d50.25 * mean
of first set of
measurements

p50.00 p50.00 p50.02 p50.02

12 d50.20 * mean
of first set of
measurements

p50.01 p50.00 p50.26 p50.09
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interobserver agreement was obtained for all four
parameters measures (Figure 3).

We studied the intraobserver variability based on re-
measurement of 12 images by the senior radiologist R1.
For an equivalence level of 30%, equivalence was
achieved between R1’s first and second measurements
(N512) for all properties (Table 4): average spicule
length (p,0.01), average spicule width (p,0.01), length
of major axis (p,0.01) and the count of the number of
spicules (p50.01). Moreover, equivalence was demon-
strated even at the stricter level of 25% of the mean of
R1’s first measurement. The intraobserver agreement

between the two sets of measurements made by
radiologist R1 (N512) using the ICC method were also
very good (Table 5). The intraobserver agreement was
‘‘excellent’’ for the length of the major axis (ICC50.951),
average spicule length (ICC50.852), and the average
spicule width (ICC50.896). ‘‘Fair to good agreement’’
was observed for the count of the number of spicules
(ICC50.641). The intraobserver agreement was also
analysed using the Bland-Altman technique. Bland and
Altman suggested that if 95% of the differences were
within the ‘‘limits of agreement’’ then this denoted good
agreement between the two sets of measurements.
Figure 4 show that for all of four parameters measured,
good intra-observer agreement is obtained according to
the Bland-Altman technique.

Discussion

In this paper, we have shown that it is feasible to make
reliable measurements of the physical properties of

Table 5. Intraobserver agreement. Intraclass correlation
(ICC) coefficients for the two sets of measurements made
by radiologist R1

Total
number of
cases

Major axis Spicule
width

Spicule
length

Number of
spicules

12 ICC50.951 ICC50.896 ICC50.852 ICC50.641

(a) (b)

(c) (d)

Figure 4. Bland-Altman analysis for the intraobserver agreement for each of the four physical characteristics that were
measured twice by the senior radiologist R1. The parameters measured were (a) major axis of the spiculated masses, (b) the
width of the spiculations, (c) the length of the spiculations and (d) the number of spiculations.
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spiculated masses on mammography. The properties
measured were the length and width of all spicules and
length of the major axis of the central mass region. The
count of the total number of spicules was also assessed.

We obtained good interobserver and intraobserver
agreement in our study for the measurement of the
properties of spiculated masses. We were able to
demonstrate this with a hypothesis test for equivalence,
the ICC and the Bland-Altman analysis. Since such a
measurement task is not a part of the radiologists’
regular clinical duties, the training stage was crucial for
this measurement study. In the training phase, the
radiologists discussed measurements that they had made
independently (Figure 2a). While it was difficult for
them to verbalize a consensus measurement protocol, the
discussion was clearly fruitful since the data collected for
the training process did not show equivalence (except for
major axis), but equivalence was demonstrated for all
four physical parameters in the measurement study after
the training was complete.

Two interesting points are evident from a visual
inspection of the marked images from the training and
measurement phases of the study. First, some of the
changes to their measurement protocol can be surmised;
before the training, R2 typically marked spicules as being
much longer than R1, but R2 marked the spicule lengths
similarly to R1 after the training phase. Second, we
noticed that if the two readers picked the same spicule,
their measurements for that spicule were nearly iden-
tical. Thus, the primary source of variability appears to
be the identification of structures as ‘‘spicules’’ rather
than the task of measuring a spicule after it is located.
Both of these points are observed in Figure 2, where the
measurements made by the two radiologists are overlaid
on the original image. Figure 2a shows the measure-
ments made on an image during the training stage and
Figure 2b shows the measurements on an image from the
second set of spiculated masses.

To the best of our knowledge, no prior study has
measured the physical properties of masses on mammo-
grams or assessed the observer variability of such a task.
However, researchers have reported the interobserver and
intraobserver agreement for various measurement tasks in
other areas of medical imaging (e.g. [9–15]). Although
several statistical methods can be used to report the
interobserver agreement, the most common approach has
been to use the ICC. The ICC values reported in prior
medical imaging measurement studies range from 0.570 to
0.820; thus, the ICC values observed this study (0.561 to
0.951) are within the range defined by previous work.
Thus, we have demonstrated that properties of spiculated
masses can be reliably measured on mammography,
within the level of interobserver and intraobserver varia-
bility typical of other measurement tasks in radiology.
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