
Understanding how humans search for objects in a vi‑
sual scene is a fascinating yet poorly understood topic. 
The classification image paradigm, originally developed 
with 1‑D signals for auditory psychophysics and later 
extended to images (2‑D signals) for vision research, in 
order to study observer strategies in a vernier acuity task 
(Ahumada, 1996; Beard & Ahumada, 1998), is a poten‑
tially helpful tool for probing the search strategies used by 
human observers (Rajashekar, Cormack, & Bovik, 2004). 
In the original classification image paradigm, the observer 
responses, over numerous trials, in a psychophysical yes–
no type experiment (e.g., detection of a target embedded 
in noise) are used to categorize the stimulus noise into four 
groups (hits, misses, false alarms, and correct rejections). 
The stimulus noise is then averaged within each category, 
and the combination of these averages produces what is 
referred to as the classification image. The obtained image 
shows how the observer weights individual pixels to make 
a decision, and the spatial patterns formed by these pixels 
can reveal the filters or features used by the observer.

Classification images have been used in several inter‑
esting areas: illusory contours (Gold, Murray, Bennett, & 
Sekuler, 2000), image feature detection and identification 
(Neri & Heeger, 2002), stereo (Neri, Parker, & Blake‑
more, 1999), and visual attention (Eckstein, Shimozaki, 
& Abbey, 2002).1 A general limitation of this technique 
in its original form is that it required a large number of 

trials (often several thousand per observer). A variant of 
the classification image technique was developed in our 
lab for the study of visual search (Rajashekar, Cormack, 
& Bovik, 2002). In this technique, observers’ eye move‑
ments were recorded while they searched for a target 
embedded in 1/f  noise. By assuming that gaze would be 
drawn to points in the stimulus bearing some resemblance 
to the target, the noise at all fixations made during a trial 
was captured, and a large volume of data could thus be 
gathered in a short time.

In this article, we present a further variant of the classi‑
fication image technique in the context of a simple visual 
search task. In this method, a 1/f  noise mask is divided into 
discrete tiles (although other noise types may be used), 
and the target is embedded in one of them, selected at ran‑
dom. The eye movements of observers are then recorded 
while they search for the target, in order to determine the 
sequence of tiles fixated during the search.

1/f  noise has an amplitude spectrum A( f ) 5 1/f a, where 
a is near 1, which is similar to the amplitude spectra of 
natural images (Field, 1987), and it is used due to its ap‑
peal in simulating a realistic search environment. The ad‑
ditional power at low spatial frequencies (relative to white 
noise) results in rapid emergence of features in the classi‑
fication image with our method, at the scale of reasonably 
sized targets, without the requirement for postprocessing. 
Several aspects of our technique allow it to rapidly reveal 
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classification images. First, the use of eye tracking allows 
a large volume of data to be collected in a given time, 
in comparison with traditional psychophysical methods. 
Second, the use of discrete tiles makes the method more 
robust to saccadic inaccuracy, the tendency for observers 
to fixate different parts of the target, and the limited ac‑

curacy and precision of the eye movement recordings, all 
of which would ultimately result in loss of spatial preci‑
sion (or blur) in the final classification images. Finally, 
our novel classification taxonomy provides several new 
categories for offline analysis, allowing us to differentiate 
foveal and nonfoveal aspects of the search process (see the 
Analysis Method section).2 For comparison, we also ran 
two control experiments, identical to the main experiment 
but (1) without the grid, to demonstrate its efficacy in ac‑
celerating the convergence of classification image results, 
and (2) using uniform white noise, rather than 1/f  noise, to 
demonstrate that the classification images produced with 
both noise types are similar whether search targets are 
embedded in 1/f  noise directly or white noise is used and 
the noise tiles are pinkened prior to averaging, to amplify 
lower frequency information.

METHOD

Observers
Three of the authors (26, 28, and 40 years of age) served as ob‑

servers. All had emmetropic vision. Two were experienced psycho‑
physical observers, and all 3 were familiar with and comfortable in 
the eyetracker.

Apparatus
An SRI/Fourward Generation V Dual Purkinje eyetracker (Four‑

ward Technologies, Buena Vista, VA) was used to record eye move‑
ments. This device has an accuracy of better than 10 min of arc, a 
precision of about 1 min of arc, and a response time of about 1 msec 
(although we would like to note that a principal advantage of our 
methodology is that it permits the use of a considerably less accurate 
tracker). A bite bar and forehead rest were used to minimize head 
movements. The continuous output voltage of the eyetracker was first 
passed through a hardware Butterworth low-pass filter (Krohn-Hite 
Corp., Brockton, MA) with a 100‑Hz cutoff to eliminate extrane‑
ous high-frequency noise in the recording environment and then was 
sampled by the host computer at 200 Hz with a National Instruments 
data acquisition card (National Instruments Corp., Austin, TX).

A calibration routine was run at the beginning of each session and 
after every 25 trials during a session in order to establish the linear 
relationship between output voltage and monitor coordinates. For the 
calibration, the observer fixated each of nine points in a 3 3 3 grid 
spanning a visual angle of 7º 3 7º on the display. The average horizon‑

Figure 1. Targets used in the trials: (A) Triangle and (B) dipole. 
Additional shapes used in the analysis: (C) Bow tie, (D) circle, 
and (E) star.
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Figure 2. An example stimulus (with a higher signal-to-noise 
ratio than those used during the experiment). The target, a tri-
angle, is in the tile immediately below the central one.

Figure 3. Examples of scanpaths and tile categories. The signal-to-noise ratio 
has been increased for illustration purposes.
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tal and vertical voltages were then fit (separately) to the three unique 
horizontal and vertical screen positions (corrections were performed 
for the small cross-talks). Afterward, a dot was superimposed on the 
computed gaze position in real time so the observer could immediately 
verify that calibration was successful. In addition to the mandatory re‑
calibration every 25 trials, the calibration was automatically checked 
at the beginning of each trial. This was done by requiring that the 
computed fixation be within 60.25º of the center of the fixation mark 
for 500 msec at the beginning of each trial. If 5 sec elapsed before this 
requirement was met, recalibration was automatically initiated.

The observers viewed the stimuli on an Image Systems 21‑in. gray‑
scale monitor (Image Systems Corp., Minnetonka, MN) driven by a 
Matrox Parhelia graphics card (Matrox Graphics, Dorval, Quebec) 
at a screen resolution of 1,024 3 768 pixels, a grayscale resolution 
of 8 bits per pixel, and a refresh rate of 60 Hz. The screen was placed 
134 cm from the observer and subtended a visual angle of 16º 3 
12º, giving approximately 1 min of arc per screen pixel. The lumi‑
nance output was linearized by putting the inverse of the monitor’s 
measured gamma function in the display look-up table. The ambient 
illumination in the laboratory was kept constant for all the observers, 
and there was a minimum of 5 min to adapt to the ambient illumina‑
tion and screen luminance while the eyetracker was calibrated.

The experimental software was written in MATLAB (The 
MathWorks, Natick, MA), and the stimulus presentation itself was 
controlled using the Psychophysics Toolbox (Brainard, 1997; Pelli, 
1997). Gaze positions were calculated in real time so that feedback 
could be provided after each trial. Fixation points and the intervening 
saccades were discriminated offline, on the basis of the spatiotempo‑
ral properties of human eye movements, by using an adaptation of 
an ASL fixation detection algorithm (Applied Science Laboratories, 
Bedford, MA). This three-stage algorithm was robust with respect to 
small drifts, blinks, and microsaccades.

Stimuli
The stimulus consisted of a single 64 3 64 pixel target embed‑

ded in a 7 3 7 mosaic of 64 3 64 pixel tiles containing 1/f  masking 
noise, where a 5 0.8. The two targets used are shown in Figures 1A 
and 1B (the shapes shown in panels C–E were used in data analysis, 
but not in the experiment per se; see below). One hundred mosaics 
were generated offline by creating one hundred 544 3 544 pixel 1/f 
noise images and then superimposing the 12‑pixel-wide gray bor‑
ders. On each trial, the target was added to a randomly selected tile 
in the noise mosaic. An example stimulus in which a triangle is em‑
bedded in the tile immediately below the center one is shown in Fig‑
ure 2. The signal-to-noise ratio (SNR) in this example is somewhat 
higher than those used in the actual experiment, where the SNR was 
determined at the beginning of each session as described below.

Procedure
Each observer ran four sessions for the main experiment: two ses‑

sions of 100 trials for each of the two target types. Before every ses‑
sion, the SNR yielding 68% correct target detection was determined 
using the QUEST adaptive procedure (Watson & Pelli, 1983). Note 
that this is effectively a contrast threshold, but we covaried the con‑
trast of the target and of the noise so that the entire grayscale was 
used but never exceeded. This SNR threshold was determined using 
the same procedure as that in the experiment itself. In other words, 

Figure 4. The expected image from randomly sampling tiles: 
(A) Raw, (B) contrast stretched, and (C) low-pass filtered (using a 
3 3 3 Gaussian mask, with s 5 0.9).
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Figure 5. The average images for (A) triangle and (B) dipole 
target search are shown for 3 observers. Columns labeled “A” 
contain the raw average images collectively scaled to a single 
common grayscale color map, and columns labeled “B” contain 
the raw images after low-pass filtering and individual contrast 
enhancement.
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a trial during the threshold determination was exactly the same as a 
trial during the experiment, except that, in the former, the SNR was 
varied to find the 68% correct point, whereas in the latter, the SNR 
was fixed at that point. Since the first several trials of the QUEST 
are necessarily done at a relatively high SNR, these trials served to 
familiarize the observers with the task.

At the beginning of each trial, a fixation mark appeared at the cen‑
ter of the display for a maximum of 5 sec. As was described earlier, if 
the observer’s computed fixation was within our error tolerance, the 
trial continued. Next, the fixation mark was replaced by the stimulus 
for 5 sec, and the observer searched for the target with the goal of hav‑
ing his fixation on the correct tile when the trial ended. The computer 
provided audio feedback (“correct” or “incorrect”) after each trial.

The use of a common initial fixation point and a fixed, 5‑sec trial 
duration ensured a somewhat consistent strategy and criterion across 
observers that yielded several fixations per trial. To wit, if we had used 
a very short duration, the experiment would effectively have become 
a 49‑alternative forced choice yielding few fixations per trial. If we 
had used long or unlimited durations, different response criteria could 
have resulted in very different strategies, including exhaustive search. 
We chose 5 sec as a compromise that would allow the observers to 
visit several (five to six, on average) likely tiles without the search 
becoming exhaustive (resulting in fixations on very unlikely tiles). 
Post hoc analyses (see the Results section) suggested that the com‑
promise was an acceptable one. It would also be possible, of course, 
to use a variable payoff matrix (for example), instead of imposing a 
time limit, but we chose the simpler option in order to demonstrate our 
basic method. The small number of fixations that fell between the tiles 
in the stimulus grid were not included in our analysis.

Analysis Method
Classification taxonomy. In a yes–no detection experiment, re‑

sponses can be categorized into hits, misses, false alarms, and cor‑
rect rejections, depending on the observer’s response and whether 
the target was actually present. In the psychophysical classification 
image paradigm, the stimulus noise is averaged within each cat‑
egory, and these averages are combined to form the classification 
image. For example, the average for the hits and false alarms can be 
subtracted from the average for the misses and correct rejections, 
under the assumption that if a given pixel inclines the observer to say 
“target present” when bright (say), it should also incline the observer 
to say “target absent” when dark (Ahumada, 1996). The fidelity of 
the image from each category will actually depend on the observer’s 
sensitivity and bias, but the fidelities seem to be about equal in the 
simple psychophysical situation, so combining the averages with 
equal weight is close to optimal (Ahumada, 2002).

In this study, we simply extended the categorization above to ac‑
commodate eye movements. Consider that each fixation (excluding 
the initial fixation at stimulus onset) involves two decisions: the de‑
cision to fixate a certain tile (and not the others) and the subsequent 
decision to either remain on that tile or continue searching. The 
presumption in defining our taxonomy is that the former is based 
primarily on nonfoveal information and the latter is based primarily 
on foveal information. Consider the left panel in Figure 3. The first 
fixation is to a tile on the far right, which does not contain the target. 

This tile can thus be labeled a nonfoveal false alarm ( f
–

FA), since the 
incorrect decision that the target was in that tile was (presumably) 
based on peripheral information. Also, each tile except the central 
one and the one containing the target can be labeled a nonfoveal cor-
rect rejection ( f

–
CR), since the correct decision that the target was 

not in those tiles was also based on peripheral information, and the 
tile actually containing the target can be labeled as a nonfoveal miss 
( f

–
Miss). Finally, when the eye moves to the subsequent tile (in the 

lower left), the tile at the first fixation can be labeled a foveal correct 
rejection ( f CR), since the decision to reject this tile and continue 
searching was based on foveal information. Later in the trial, the 
observer actually fixates the tile containing the target, making that 
tile an f

–
Hit, but then continues searching, so that tile also becomes 

an f Miss. If the observer had decided to remain on the tile contain‑
ing the target, instead of continuing his search, this tile would have 
become an f Hit. Trials in which the observer quickly finds the target 
and in which the observer never fixates the target are shown in the 
center and right panels, respectively.

Tiles were categorized postexperiment according to Table 1 for 
analysis. Note that for a given trial, each tile can belong to more than 
one category. As is shown in the table, each fixated tile was classified 

Figure 6. Classification images for (A) triangle and (B) dipole 
target search are shown for 3 observers. (C) Foveal and nonfoveal 
classification images combined across observers. (D) Classifica-
tion images combined across foveal and nonfoveal categories and 
across observers. Columns labeled “A” contain the raw images 
collectively scaled to a single common grayscale color map, and 
columns labeled “B” contain the raw images after low-pass filter-
ing and individual contrast enhancement.
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Table 1 
The Noise Tile Taxonomy

Category

  Nonfoveal  Foveal  Observer Response

Target present f
–
 Hit f  Hit Maintained fixation on target

f  Miss Continued search
f
–
 Miss Not fixated

Target absent f
–
 FA f  FA Maintained fixation on target

f  CR Continued search
  f

–
 CR    Not fixated
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as an f
–

Hit or an f
–

FA, depending on whether the tile contained the 
target or not. The tile was then additionally classified as belonging to 
one of the foveal categories, depending on the observer’s response: 
either maintaining fixation on the tile, indicating that he thought the 
target was there, or continuing the search, indicating that he thought 
the target was elsewhere. Tiles not fixated were classified as f

–
Miss 

(target present) or f
–

CR (target absent).
Generating the average images and the classification images. 

Pixel-by-pixel averaging of images within each category was used 
to obtain the average noise images corresponding to that category. 
It is important to keep in mind that only the noise patches are used 
as input to this process, and not the target. Any structure revealed 
through these methods therefore originates from the influence of 
particular samples of noise on the observers’ responses.

The average noise tiles were combined in the usual manner (Hit 1 
FA 2 Miss 2 CR; Ahumada, 2002) to create the classification images, 
but this was done separately for our foveal and nonfoveal categories.

Because we used a finite number of noise tiles (49 3 100 5 
4,900), the expected average image that would result by randomly 
sampling tiles is not uniformly zero but, rather, is the average of all 
the tiles. This expected image, corresponding to a null hypothesis 
that an observer does not use spatial structure in the tiles to select 

fixation points, is shown in Figure 4A. As one might expect, it is 
very flat (with a standard deviation of just .0015 on a 0-to-1 scale) 
but does contain some spatial structure, which can be made clearer 
by contrast stretching (Figure 4B), and blurring (Figure 4C). This 
overall average can be thought of as the bias each pixel has as a 
result of using a finite number of noise samples. Although the spa‑
tial structure in this overall average does not closely resemble the 
search targets (and we have quantified this assertion by calculating 
comparative 2‑D correlation coefficients for each of our experimen‑
tal targets; see Figure 7), we must be aware that any average noise 
image or classification image resembling this expected image does 
not possess a significant structure of its own.

RESULTS

Average/Classification Images
The pixel-by-pixel averages of the noise tiles in each of 

the eight categories are shown for each observer in Fig‑
ure 5. Columns labeled “A” contain the raw average images 
collectively scaled to a single common grayscale color map, 
and columns labeled “B” contain the raw images after low-
pass filtering (using a 3 3 3 pixel Gaussian mask with s 5 
0.9 pixel) and individual contrast enhancement. The former 
shows the relative fidelity of the average image from each 
category, and the latter reveals possible structures present 
in each of the classification images. All the categories pre‑
sented some target-dependent spatial structure, except for 
f
–

CR, which converged to the overall average shown in Fig‑
ure 4. f

–
Hit, f

–
FA, f Hit, f FA, and f CR all show features 

associated with the target, whereas both f
–

Miss and f Miss 
present features anticorrelated with the target. In the future, 
more accurate pixel weights could be obtained by applying 
a foveation algorithm (e.g., Geisler & Perry, 1998; Lee & 
Bovik, 2003) to the stimuli at each fixation point prior to 
computing the nonfoveal average images and classification 
images, to attenuate higher spatial frequencies outside the 
acuity range of the visual system in a space-variant fashion 
at each fixation. In this article, however, we will confine 
ourselves to simple averaging of unfoveated patches, in 
order to illustrate our basic method.

Figure 7. Zero-lag 2‑D correlation coefficients showing the 
structural similarity (A) between the classification images for the 
triangle search and each of the test shapes and (B) between the 
average classification image for the dipole search and each of the 
test shapes. Error bars show the standard errors of the correla-
tions across observers and categories (foveal and nonfoveal).
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Figure 8. Classification images for triangle target search in 1/f 
noise, without a stimulus grid, are shown for 3 observers (pan-
el A), and the combined classification images are also presented 
(panel B). Columns labeled “A” contain the raw classification 
images after individual contrast enhancement, and columns la-
beled “B” contain the raw images after low-pass filtering and 
individual contrast enhancement.
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The foveal and nonfoveal classification images, f CI and 
f
–

CI, obtained by linearly combining the average images in 
the four response categories (defined in our classification 
taxonomy) in both the foveal and the nonfoveal cases, are 
shown in Figures 6A and 6B. Both foveal and nonfoveal 
classification images were created for each observer and 
each target. As is shown in Figure 5, columns labeled “A” 
contain the raw average images collectively scaled to a 
single common grayscale color map, and columns labeled 
“B” contain the raw images after low-pass filtering and in‑
dividual contrast enhancement. These foveal and nonfoveal 
classification images provide cleaner target-like features.

Average images for both target types in the foveal and 
nonfoveal categories, averaged across all 3 observers, are 
shown in Figure 6C. The combined classification image, 
obtained by averaging the foveal and nonfoveal classifica‑
tion images across observers, is shown for each target type 
in Figure 6D. These combined classification images obvi‑
ously show a strong resemblance to the sought targets.

The level of structural similarity between the classifica‑
tion images (shown in Figures 6A and 6B) and the search 
targets was quantified by computing the zero-lag 2‑D cor‑
relation coefficients between them and the set of shapes in 
Figure 1. The correlation coefficients obtained, averaged 
across observers and the categories (foveal and nonfoveal), 
are shown by the hatched bars in Figures 7A and 7B for 
both the triangle and the dipole classification images. Also 
shown are the coefficients obtained by computing the cor‑
relation between the search target and each of the shapes 
(black bars) and the coefficients obtained by computing 
the correlation between the expected image (shown in Fig‑
ure 4) and each of the shapes (gray bars). The error bars 
show the standard errors of the coefficients across observ‑
ers and categories (foveal and nonfoveal). Note that the 
correlations are highest when computed between a clas‑
sification image generated from a particular target (the tri‑
angle in panel A and the dipole in panel B) and that target 

itself. Moreover, the patterns of the experimental correla‑
tion coefficients (hatched bars) are virtually identical to 
those obtained using the targets themselves, rather than the 
classification images (black bars). These results show that 
our technique produces classification images that rapidly 
converge to relatively high fidelity representations of the 
pixel weights used by the observers and that, in this case, 
these weights strongly resemble the actual targets.

Control Experiments
Implementation without a grid. To show the effect of 

dividing the stimulus into a grid of tiles and using the ac‑
companying taxonomy, we simply repeated the experiment 
without the grid, as was done in earlier work pioneering the 
use of eye tracking with classification images (Rajashekar 
et al., 2002). In this version of the technique, the actual lo‑
cation of each fixation is computed, and the 64 3 64 pixel 
patch of the stimulus noise surrounding each fixation is 
sampled and stored. The resulting set of noise patches is 
then simply averaged to form the classification images for 
each observer.3 These are shown in Figure 8A; columns 
labeled “A” contain the classification images for the tri‑
angle target search after individual contrast enhancement, 
and columns labeled “B” contain the raw images after 
low-pass filtering and individual contrast enhancement. 
The combined classification image obtained by averaging 
the classification images across observers, is shown in 

Figure 9. Zero-lag 2‑D correlation coefficients showing the 
structural similarity between the classification images for the tri-
angle search and those for each of the test shapes, comparing the 
main experiment with the no-grid control experiment. Error bars 
show the standard errors of the correlations across observers.
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Figure 8B. Although there does appear to be some spatial 
structure in these images, it seems less specifically trian‑
gular than that seen in Figure 6A. This was confirmed by 
doing the same correlation analysis as that just described, 
the results of which are shown in Figure 9. The black and 
hatched bars show the target/shape and raw classification-
image/shape correlations replotted from Figure 7A, and 
the quilted bars show the correlations obtained using the 
classification images shown in Figure 8. Not only is the 
pattern of correlations across shapes different, but also the 
actual target used (the triangle) produced a substantially 
lower correlation with the classification images than did 
two of the other shapes (the circle and the star).

Implementation with white noise. 1/f  noise approxi‑
mates the spectral distribution of natural scenes, making it 
a valuable tool for probing search behavior within a statis‑
tically natural visual environment. Despite this important 
benefit, the presence of spatial correlation in 1/f  noise leads 
to classification images that do not correctly estimate the lin‑

ear independent contribution of each pixel to an observer’s 
behavior, since the noise itself is already spatially correlated. 
In this control experiment, we showed that because infor‑
mation actually determining the observer’s behavior exists 
predominantly at low spatial frequencies (presumably), the 
classification images converge to a similar degree, regard‑
less of whether 1/f  noise is used or whether another noise 
type (such as white noise) is postprocessed to amplify lower 
frequencies after the experiment has been completed.

To compare the classification images derived from 1/f 
noise with those derived from white noise, we simply re‑
peated our procedure, using uniform white noise,4 with 
200 trials and the same 3 observers. Figure 10 shows the 
resulting data in the same format as that in Figure 5. Visual 
comparison of the two figures indicates an apparent lack 
of spatial structure in the white noise case when processed 
for viewing as before, with low-pass filtering and contrast 
enhancement. The foveal and nonfoveal classification im‑
ages are shown for each observer in Figure 11A and aver‑
aged across observers in Figure 11B, and the combined 
classification image is shown in Figure 11C. Features of 
the triangle target are present but comparatively faint in 
the average images. Some spatial structure emerges in the 
combined classification image, but it is unclear without 
further processing (see below).

To effect a fairer comparison, we pinkened our white noise 
stimuli and recalculated the classification images. We then 
compared these pinkened classification images with those 
obtained directly from the 1/f  noise stimuli. The pinkening 
procedure was derived from the computation of the unbiased 
estimate described by Abbey and Eckstein (2002). This pro‑
cedure involves multiplying each noise image by the covari‑
ance matrix of the 1/f  noise (computed to within an arbitrary 
scaling factor) given by B * BT, where B represents the 1/f 
blurring filter and T the matrix transposition. The classifica‑
tion images combined across foveal and nonfoveal categories 
and across observers are shown in Figure 12. Panel A shows 

Figure 11. Classification images for the triangle target search in 
white noise are shown (A) for 3 observers, (B) combined across ob-
servers for foveal and nonfoveal categories, and (C) combined across 
observers and foveal and nonfoveal categories. Columns labeled “A” 
contain the raw images collectively scaled to a single common gray-
scale color map, and columns labeled “B” contain the raw images 
after low-pass filtering and individual contrast enhancement.
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(A) after being pinkened and (B) after being pinkened, low-pass 
filtered, and contrast stretched.
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Figure 13. Zero-lag 2‑D correlation coefficients showing the 
structural similarity between the classification images for the tri-
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bars show the standard errors of the correlations across observers.
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the raw result obtained with the pinkened white noise, and 
panel B shows the low-pass filtered and contrast stretched 
version. Again, our results indicate that preblurring (using 
1/f  noise stimuli) or postblurring (pinkening uniform noise 
post hoc) produces closely comparable results, evidenced by 
the correlation analysis shown in Figure 13. The black and 
hatched bars show the target/shape and raw classification 
images/shape correlations replotted from Figure 7A, and the 
striped bars show the correlations obtained using the clas‑
sification images shown in Figure 11.

These results demonstrate that the use of 1/f  noise (ef‑
fectively, the preblurring of stimuli to make them more 
naturalistic) does not impact the resultant classification 
images too dramatically, although we might expect that the 
strategies human observers employ in different noise con‑
ditions may be modulated accordingly. White noise has the 
benefit of uncorrelated pixel values, leading to an unbiased 
estimate of each pixel’s importance, but the disadvantage 
of possessing statistics that deviate from natural images, in 
comparison with 1/f  noise. Therefore, important insights 
may be gained using other noise types, particularly 1/f , 
when we seek to study more naturalistic behavior.

Performance Measures
In general, classification images are valuable insofar as 

observers do the same thing on each trial. If an observer 
switches back and forth between two strategies, say, the 
pixel weights will reflect the linear combination of the 
two, with no way to disentangle them. Our task is slightly 
more complicated than those used in traditional psycho‑
physics. We therefore wanted to ensure that the observers’ 
performance remained roughly constant across trials and 
did not depend on the target location (i.e., the initial tar‑
get eccentricity). Although this is not a direct measure of 
strategy, a change in strategy would probably be accom‑
panied by a change in performance.

Performance over location and time. Figure 14 
shows the cumulative number of hits as a function of trial 
number, obtained for the 3 observers with two sets of 100 
trials for each of the two search tasks (triangle and dipole 
target search) in the basic 1/f  noise, with grid, experiment. 

The mean cumulative hit number is represented by the 
thick black curve, and it reaches the 68% rate sought dur‑
ing the QUEST procedure at the final trial. These per‑
formances are compared with that of a perfect observer 
(dashed curve labeled as perfect) and with that of a ran‑
dom observer (dashed curve labeled as chance).

Each set of 100 trials yielded a slope between roughly 
0.5 and 0.8, and for each set, this slope was roughly con‑
stant throughout. Again, this is not direct evidence that 
the observers did not change strategies, but it does indi‑
cate that a constant level of performance was maintained 
within a session.

We also measured the success rates of the observers in 
four different initial eccentricity regions covering the full 
stimulus, the center tile (Zone 1) and three concentric 
square annuli surrounding the center tile (Zones 2–4), to 
see whether the location of the target had any influence on 
the performance. Because these zones were square, they in‑

Figure 14. Graph of observer performance over time, measured 
as cumulative number of hits.
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clude tiles centered at eccentricity ranges of 0º, 1.19º–1.68º, 
2.38º–3.36º, and 3.56º–5.04º. Figure 15 shows the compari‑
son of box plots of the success rates in the four different ini‑
tial eccentricity regions, for sets of 100 trials performed by 
the observers for both targets: (A) triangle and (B) dipole. 
The only obvious aberration in the data is that the dipole tar‑
get was always detected when presented in the central tile, 
presumably because this target at this location results in the 
edge’s being presented directly to the foveola. The triangle 
target was also more difficult to detect when presented in 
the outermost tiles, but not dramatically so.

Observer dwell times. As was discussed in the Method 
section, the observers were given 5 sec to find the target, 
in order to ensure a fairly consistent strategy across ob‑
servers, allowing several fixations to be made per trial but 
precluding the possibility of an exhaustive search. Fig‑
ure 16A shows the distribution of the dwell times from the 
main experiment for all the fixations, excluding the initial 
and the final ones for each trial, for all the observers and 
both target types. It can be seen that the dwell times are 
concentrated mainly between 200 and 600 msec, in ac‑

cordance with previous studies (Jacob, 1995). Figure 16B 
shows the distribution of the dwell times for only the final 
fixations. Over 83% of the dwell times observed for the 
final fixations are equal to or longer than 600 msec, the 
upper bound on typical fixation durations, reaching 95% 
for cases in which the target is actually found. We inter‑
pret this observation as indicating that, in our experiment, 
search was fairly naturalistic and that there was enough 
time for the observers to deliberately select a single tile 
as containing the target on most trials. For greater rigor 
in ensuring that the final fixation categories ( f Hit, f FA) 
do not contain search fixations, one could eliminate those 
with dwell times below a threshold.

DISCUSSION AND CONCLUSIONS

In this article we have demonstrated a technique for ex‑
pediting the convergence of classification images in visual 
search experiments. In fact, for each of the 3 observers 
and two target types, and with only 200 trials per observer, 
we see that the classification images obtained with our 

Figure 16. Dwell time distribution for each observer: (A) Nonfinal and (B) final fixations.
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method closely resembled the target sought (Figures 5–7). 
Although the number of tiles falling into many of the cat‑
egories was small, we still managed to obtain fairly dis‑
tinctive average images and, hence, convincingly robust 
classification images. Stronger classification images were 
obtained than were obtained with a nongrid control experi‑
ment (this claim is supported by both a visual inspection of 
the results and the strength of the correlation coefficients 
obtained between the classification images and the tar‑
gets). The use of naturalistic 1/f  masking noise was evalu‑
ated with a second control experiment in which white noise 
was used. Visual inspection and correlation coefficients 
indicate that there is a minimal difference between classifi‑
cation images generated with either noise type if we either 
pinken white noise tiles and compare with 1/f  noise tiles or 
whiten 1/f  noise tiles and compare with white noise tiles.

In addition, we have introduced a new taxonomy for the 
categorization of results from each fixation during a trial. 
This new taxonomy simply extends the conventional signal 
detection theory categories to distinguish foveal and non‑
foveal processes. However, this extension should allow us 
and others to characterize the kinds of information used in 
the fovea and periphery during naturalistic visual search. 
For instance, Figure 5A shows blob-like average images 
across observers for the nonfoveal category f

–
FA—hence, 

characterizing the features that attracted observer fixa‑
tions to tiles not containing the target. But as outlined in 
our taxonomy, noise images in the f

–
FA category are di‑

vided into two foveal categories: f FA (corresponding to 
the observer’s final selection of a wrong candidate) and 
f CR (corresponding to a rejection of a wrong candidate). 
In fact, f FA presents sharper target-like features, in com‑
parison with f CR and f

–
FA. Although preliminary, such 

results hint at the difference between the foveal and the 
nonfoveal selection processes. Moreover, stimuli could 
be filtered to take into account the eccentricities of the 
tiles with regard to the fixation points (foveation), prior 
to averaging, thus eliminating any contribution of spatial 
frequencies outside the pass band of the visual system at 
a given eccentricity.
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NOTES

1. For an explanatory discussion of the classification image technique, 
see Eckstein and Ahumada (2002) and Simoncelli (2002).

2. We use the term foveal to refer to a central patch 1º of visual angle 
across and nonfoveal to refer to regions outside this patch.

3. This is not strictly a classification image but can be thought of as the 
average spatial structure that was fixated by the observer.

4. We used uniform, rather than Gaussian, noise because of higher 
RMS contrast; at a 68% correct SNR in our task, Gaussian noise would 
have been substantially clipped at the tails.
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