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ABSTRACT

Quality assessment plays a very important role in almost
all aspects of multimedia signal processing such as acquisi-
tion, coding, display, processing etc. Several objective qual-
ity metrics have been proposed for images, but video quality
assessment has received relatively little attention. Most of
the video quality metrics in the literature are simple exten-
sions of metrics for images.

In this paper, we integrate natural image statistics and
the theory of optical flow to propose a new model for the
statistics of video signals in the wavelet domain. This model
utilizes motion information in video sequences, which is the
main difference in moving from images to video. Results
are presented to demonstrate the effectiveness of this model
to describe the statistics of wavelet coefficients. We then
briefly describe how this model can be used in an infor-
mation theoretic framework to develop quality metrics for
video sequences.

1. INTRODUCTION

Accurate objective quality metrics are of great potential ben-
efit to the video industry, as they promise the means to eval-
uate the performance of acquisition, display, coding and
communication systems. Although a lot of work has been
done on still image quality assessment, surprisingly little
work has been done on quality assessment of video sig-
nals. Even today, mathematical measures such as the Mean
Square Error (MSE) and Peak Signal to Noise Ratio (PSNR)
are widely used in tasks such as the design of image commu-
nication systems, although it is well known that these met-
rics don’t correlate well withvisual quality. The popularity
of PSNR is partly due to its mathematical convenience and
simplicity and partly due to the lack of a competing metric
that has been shown to consistently perform better in pre-
dicting visual quality, across images.

Many of the proposed quality metrics in the literature
use models that describe the frequency response, luminance
and contrast sensitivities, contrast masking and other fea-
tures of the Human Visual System (HVS) [1]. Visual quality
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is then computed as the distance between the distorted and
reference images, after normalizing these signals to account
for the sensitivities of the HVS. However, the performance
of these metrics is limited by the accuracy and complexity
of the underlying HVS models. More recently, the SSIM
or Wang-Bovik index and VIF or Sheikh-Bovik index have
been shown to be highly effective in predicting image qual-
ity and extensions to evaluating video quality have been pro-
posed [2, 3]. However, neither of these metrics attempt to
model motion in video sequences.

Biological vision systems devote considerable resources
to motion processing, since estimation of the speed and di-
rection of motion of objects in the environment are crucial
to the survival of the organism. Presentation of video se-
quences to human subjects induces visual experience of mo-
tion and perceived distortion in video sequences is a com-
bination of both spatial and motion artifacts. For example,
motion artifacts such as ghosting and blocking are clearly
visible in video signals distorted by compression, blurring
etc. Thus, video quality assessment is not a straight forward
extension of image quality assessment. Modeling motion
and distortions in motion is essential in the development of a
video quality metric, and optical flow is a valuable tool that
describes the apparent motion of image intensities. In this
paper, we propose a new model to describe the statistics of
three-dimensional wavelet coefficients of video sequences
as a function of optical flow. We then briefly describe how
these statistical models can be used to develop a video qual-
ity metric in an information theoretic framework.

2. STATISTICAL MODEL FOR VIDEO

In this section, we present a novel model that describes the
statistics of the three-dimensional wavelet coefficients of
video signals. In Section 2.1, we review how translational
motion in video manifests itself in the frequency domain. In
Section 2.2, we propose a model to describe the statistics of
two-dimensional scenes in video sequences in the frequency
domain. In Section 2.3, we consider motion of these scenes
and thereby derive the statistics of the wavelet coefficients
of video signals. Finally, Section 2.4 describes how the pa-
rameters in the model can be estimated.



2.1. Motion in the Frequency Domain

In this paper, we only consider apparent motion of image in-
tensities, namely theoptical flow, and the term velocity de-
notes the optical flow vector and not true three dimensional
velocity of motion. Leti(x, y) denote an image and let
Ĩ(wx, wy) denote its Fourier transform. Assuming that this
image undergoes translation with a velocity~v = (vx, vy),
the resulting video sequence is given byf(x, y, t) = i(x −
vxt, y − vyt). If F̃ (wx, wy, wt) denotes the Fourier trans-
form of f(x, y, t), thenF̃ (wx, wy, wt) lies entirely along a
plane in the frequency domain:vxwx + vywy + wt = 0
[4]. Additionally, themagnitudes of the spatial frequencies
do not change, but are simply sheared in the frequency do-
main. It can be shown that̃F (wx, wy, wt) is given by

F̃ (wx, wy, wt) =
{

Ĩ(wx, wy) if vxwx + vywy + wt = 0
0 otherwise

We assume that short segments of video, without any
scene changes, consist of image patches undergoing trans-
lation. This model can be used tolocally describe video se-
quences, since translation is a linear approximation to more
complex types of motion.

2.2. Modeling the Statistics of Images

The Gaussian Scale Mixture (GSM) model is a popular ap-
proach for describing the statistics of wavelet coefficients of
natural images [5]. Wavelet coefficients of natural images
are not modeled well by independent and identically dis-
tributed (i.i.d.) Gaussian random variables, a model that is
often used due to its mathematical tractability. Wavelet co-
efficients at adjacent positions, scales and orientations tend
to have similar magnitudes, due to the presence of oriented
structures in images such as edges. GSM random variables
have been used to model the statistics of wavelet coefficients
successfully. A random vector is said to be a GSM if it is
a product of a scalar random variable, known as the mix-
ing density, and a Gaussian random vector. Here, the mix-
ing density models the dependencies between neighboring
wavelet coefficients.

Edges, occlusion boundaries and other oriented struc-
tures in natural images manifest as oriented components
with large magnitudes across scales in the Fourier trans-
form of the image. Image texture is characterized by a
high concentration of localized spatial frequencies in the
frequency domain. Due to these reasons, localized regions
in the frequency domain representation of natural images
tend to have similar magnitude and can hence be modeled
well using a GSM incontinuousfrequency space.

We propose a continuous GSM random field model for
the Fourier transform of a natural image that is restricted to

a small region of the frequency domain corresponding to a
sub-band of a scale-space decomposition:

Ĩ(wx, wy) ∼ zU(wx, wy), (wx, wy) ∈ S

whereS denotes a specific sub-band,z is the multiplier or
mixing density andU is a complex, zero-mean, white Gaus-
sian random field. Thez field has been modeled using a
gamma density in the literature [5], but in this paper, we
assume that it is a constant parameter and do not assume
any prior knowledge of the distribution ofz. We denote
this estimated value ofz by ẑ and the estimation details are
presented in Section 2.4.

2.3. Incorporating Motion Models

We noted in Section 2.1 that when an image moves at a ve-
locity ~v, the frequency spectrum of this image sequence is
simply the Fourier transform of the image, but sheared at an
orientation defined by the velocity vector. Using the model
proposed in Section 2.2 for the image, we have the follow-
ing distribution for each subband in the frequency spectrum
of the video sequence:

F̃ (wx, wy, wt) ∼ zU(wx, wy)δ(vxwx + vywy + wt)

whereδ(t) is the Dirac delta function.
Consider filtering this video signal with a family of three-

dimensional sub-band filters. Although any filter family can
be used, we opt to use Gabor filters in our analysis. Ev-
idence indicates that the receptive field profiles of simple
cells in the mammalian visual cortex can be described well
by a set of Gabor filters [6]. Also, Gabor filters attain the
theoretical lower bound on the uncertainty in the frequency
and spatial variables and thus, visual neurons can be said to
optimize the uncertainty in information resolution [6]. Ga-
bor filters are hence highly suitable for use in video qual-
ity assessment which deals with human perception of video
sequences. Additionally, development of the video quality
metric in Section 4 requires estimation of the optical flow
vectors and Gabor filters have been successfully used for
this purpose in the literature [7].

Letg(x, y, t) denote a Gabor filter and let̃G(wx, wy, wt)
denote its Fourier transform. Consider the wavelet coeffi-
cients in a particular sub-band, denoted byw(x, y, t), ob-
tained by filtering the video signalf(x, y, t) with the Gabor
filter g(x, y, t). We then have

w(x, y, t) =
∫

g(x′, y′, t′)f(x− x′, y − y′, t− t′)dx′dy′dt′

(1)

=
1

8π3

∫
G̃(wx, wy, wt)F̃ (wx, wy, wt)dwxdwydwt (2)



Eq. (2) is a consequence of the properties of the Fourier
transform and Parseval’s theorem. We assumef(x′, y′, t′)
denotes the video signal centred at(x, y, t) and hence ignore
the phase shift term that would have appeared in Eq. (2).

Given that the mixing density is known,̃F (wx, wy, wt)
has been modeled as a Gaussian random field. We use the
estimated value of the mixing field, namelyẑ, in our anal-
ysis here. Sincew(x, y, t) as defined in Eq. (2) is the in-
tegral of a linear function of a Gaussian random process, it
is a Gaussian random variable. It can then be shown that
w(x, y, t) has zero-mean and varianceσ2

w given by:

σ2
w =

(
1

8π3

)2∫
ẑ2|G̃(wx, wy,−vxwx − vywy)|2dwxdwy

(3)
Here,G̃(wx, wy,−vxwx − vywy) is a two-dimensional

slice of the Gabor filter along the plane containing the fre-
quency spectrum of the translating video signal. The vari-
ance of the wavelet coefficients is hence a function of the
energy of the Gabor filter along this plane. This makes intu-
itive sense, since only those filters that intersect the oriented
plane will produce large magnitude coefficients.σ2

w is also
a function of ẑ2, which models the average energy of the
imagei(x, y) in the spatial frequency band spanned by the
filter. This also agrees with our intuition, since the mag-
nitude of the wavelet coefficients will also depend on the
magnitude ofF̃ (wx, wy, wt) along the oriented plane. Eq.
(3) explicitly characterizes the distribution of the wavelet
coefficients as a function of the optical flow vector and can
be evaluated in closed form.

2.4. Parameter Estimation

The value of the mixing density, namelŷz, needs to be es-
timated from the given video sequence. Denoting the first
frame of the video sequence byi(x, y), we need to estimate
the energy of this image in the sub-bands spanned by the
Gabor filters. Note that̂z is the energy of the image in the
two-dimensional sub-band obtained by the projection of the
Gabor filter onto the planewt = 0. This can be estimated
by filtering i(x, y) using a family of two-dimensional Ga-
bor filters corresponding to these projections.ẑ can them
be computedlocally as the energy in these filtered signals.

3. RESULTS

To test our model, we implemented a family of sine phase
Gabor filters and used these to filter sequences with known
optical flow vectors. Lettingw denote the wavelet coeffi-
cient at a specific spatiotemporal location, our model states
that w/ẑ is normally distributed with zero mean and vari-
anceσ2

w/ẑ2. We plotted the distribution ofw/ẑ against
this predicted distribution. Figure 1(a) shows the result on a

video sequence consisting of a repeated image,i.e., there is
no motion in the entire sequence. The fit is quite good and
similar plots were obtained for all images in our database.
We also tested our model on the Yosemite fly through se-
quence [8]. Since the predicted varianceσ2

w is a function
of vx andvy, the velocity vectors were quantized and distri-
butions were plotted for pixels that have the same velocity.
Figures 1(b) and 1(c) show the results obtained for different
values of the optical flow vector [8]. These results show that
our model performs quite well in predicting the statistics of
three-dimensional video wavelet coefficients.

4. VIDEO QUALITY METRIC

Recently, researchers have proposed information theoretic
approaches to the image quality assessment problem [9].
In this framework, a natural image source is assumed to
transmit reference images over a communication channel.
The communication channel is used to model the distor-
tions that the reference image undergoes and the test image
is assumed to be the output of this channel. The mutual in-
formation between the image source and the output of this
channel is then used to quantify the quality of the distorted
image. The success of this approach in image quality pre-
diction can be attributed to the accurate models used to de-
scribe the statistics of the natural image source [10]. It has
been argued that natural scene and HVS modeling are dual
problems, as the HVS has evolved in response to viewing
natural scenes [11]. Thus, source models provide a new
perspective on the quality assessment problem, which has
traditionally been attacked using HVS models. We use the
statistical model for wavelet coefficients proposed in Sec-
tion 2 to derive a quality metric for video signals, closely
following the development in [9] for images.

In [9], a simple attenuation and additive noise distor-
tion model in the wavelet domain is used for images. The
blur component models any loss of signal energy in wavelet
sub-bands, due to operations such as compression, blurring
etc. This model, when usedlocally, has been shown to be
adequate in modeling several distortions like compression,
additive noise, blurring and contrast stretching [9].

We suggest that a similar model can be used to describe
most motion artifacts such as ghosting and blocking. In this
case, the distortion in the optical flow vector of the test video
is modeled using a blur and additive noise model. This is
illustrated in Fig. 2. LetXd denote the wavelet coefficients
of the distorted video. The quality of the distorted signal
can then be quantified by the mutual information between
the input and output of this channel, namelyI(X;Xd). The
proposed statistical model can then be used to compute this
quantity in closed form.
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Fig. 1. Distribution of the normalized wavelet coefficients
w/ẑ. Dashed line shows the predicted distribution.

5. CONCLUSIONS AND FUTURE WORK

In conclusion, we propose a novel statistical model to de-
scribe the wavelet coefficients of video signals. We also pro-
pose a framework to predict the visual quality of video sig-
nals using this model. Experimental studies indicate that our
model is successful in predicting the distribution of wavelet
coefficients of video sequences. These results are promising
and we envision that the proposed metric that we are devel-
oping will also be successful in predicting visual quality.

Fig. 2. Block diagram of proposed video quality metric
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