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ABSTRACT
Multicolor fluorescencein-situ hybridization (M-FISH) tech-
nique provides color karyotyping that allows simultaneous
analysis of numerical and structural abnormalities of whole
human chromosomes. Currently available M-FISH systems
exhibit misclassifications of multiple pixel regions that are
often larger than the actual chromosomal rearrangement.
This paper presents a novel unsupervised classification
method based on fuzzy logic classification and a prior
adjusted reclassification method. Utilizing the chromosome
boundaries, the initial classification results improved signifi-
cantly after the prior adjusted reclassification while keeping
the translocations intact. This paper also presents a new
segmentation method that combines both spectral and edge
information. Ten M-FISH images from a publicly available
database were used to test our methods. The segmentation
accuracy was more than 98% on average.

Index Terms— M-FISH, Fuzzy-logic, Segmentation, Chromo-
some, Classification, Unsupervised.

1. INTRODUCTION

Multicolor fluorescencein-situ hybridization is a combina-
torial labeling technique developed for the analysis of human
chromosomes [1], [2]. The technique has been used for
the characterization of translocations, to search for cryptic
rearrangements, to study mutagenesis, tumors, and radiobi-
ology [3]. In cancerous cells, translocations, exchanges of
chromosomal material between chromosomes, are extremely
common. To be able to distinguish 24 human chromosomes
(22 somatic chromosomes and X and Y sex chromosomes),
a minimum of 5 fluorophores are used. Each chromosome
is stained with a unique combination of fluorophores so
that every chromosome is uniquely identified. An extra
fluorophore, DAPI (4’6-diamidino-2-phenyl indole dihydro-
cloride), is counter stained to all chromosomes. Currently,
there are two types of M-FISH imaging systems: a sys-
tem developed by Speicheret al. [4], so called ‘multiplex
fluorescence in situ hybridization’ (M-FISH), which uses a
set of optical bandpass filters, and a system developed by

Schr̈ock et al. [2], so called ’spectral karyotyping’ (SKY),
which uses an interferometer. Both systems provide color
karyotyping (visualization of chromosomes in a specific
format) by assigning a pseudocolor to each pixel based on
the spectral information.

Currently available M-FISH systems still exhibit misclas-
sifications of multiple pixel regions due to a number of
factors including non-homogeneity of staining, variations
of intensity levels within and between image sets, and
emission spectra overlaps between fluorophores. The size of
the misclassified regions are often larger than the actual chro-
mosomal rearrangement. Thus a careful examination of the
classification results by a well trained human operator must
be performed. Furthermore, segmentation of chromosomes
that are overlapping and touching each other are performed
manually in most cases. To reliably automate the process,
accurate segmentation and classification must be achieved.

In this paper, we present a new segmentation method
between chromosomes and background and a novel un-
supervised classification method based on a fuzzy logic
classifier specifically designed for M-FISH images. After the
segmentation and pixel classification, pixels are reclassified
by adjustinga priori. Detailed explanations are described
in Section 2. In Section 3, segmentation and classification
results are shown along with example images. We conclude
the paper in Section 4.

2. METHODS

2.1. Foreground-background segmentation

M-FISH images have six channels. Each channel contains
the intensity of a corresponding fluorophore. Since each
chromosome is uniquely stained, an intensity combination
across 6 channels is unique for each chromosome. Previ-
ously, we have designed a 6-channel 25-class maximum like-
lihood classifier [5], [6]. 25 classes include 24 chromosomes
plus background. By classifying every pixel in the image
using this maximum-likelihood classifier, both segmentation
and classification of chromosomes were achieved simulta-
neously. The overall accuracy of the segmentation was rela-
tively high (about 90%) using this method. When a portion



of the chromosome pixels are classified as background or
vice versa, the lost region cannot be recovered without prior
knowledge of the chromsome boundaries. Thus, prior to
the pixel classification, an accurate segmentation method is
desired.

In order to compute a reliable boundaries between objects
and background, we combined multiple methods that utilize
not only spectral information but also edge information.
Laplacian of Gaussian (LoG) edge detection on the DAPI
channel provides nice closed boundaries of chromosomes
that correspond well to human perception. However, it also
picks up unwanted artifacts from the background. In general,
chromosome intensities are brighter than the neighboring
background, although the background surface is not globally
uniform. When object intensity is brighter than the neighbor-
ing pixels, adaptive thresholding is an effective segmentation
method. This method effectively separates chromosomes
from background. Due to its simplicity and effectiveness,
adaptive thresholding is widely used for chromosome image
segmentation. However, when a number of pixels in the
foreground are darker than neighboring foreground pixels,
adaptive thresholding creates holes inside the chromosome.
To utilize the spectral information, 6-feature 2-class K-
means clustering method is used. This clustering method
is preferable to the maximum-likelihood method because
it does not require training. It groups six dimensional data
into two classes while iteratively regrouping the data points
until the class means converge. Its classification results are
similar to those of the maximum-likelihood classifier since
they both utilize the same information. Adaptive threshold-
ing, LoG edge detection, K-means clustering, and a global
thresholding methods are combined together to achieve a
final segmentation result. A composite threshold image is
obtained after voting among those 4 methods. For example,
a pixel becomes foreground when a majority (3 out of 4) are
foreground.

2.2. Fuzzy-logic classifier

Supervised, parametric classification methods require
training of classifiers. Training can be accomplished only
when samples are labeled. Labeling samples can be ex-
tremely time consuming. A fuzzy-logic classifier is an unsu-
pervised classification method that does not need to assume
the underlying distribution, nor does it estimate the distri-
bution. Furthermore, the computational complexity is far
less (at least 10 times) than that of the maximum-likelihood
classifier while the classification accuracy is comparable.It
only requires information regarding spectral combinations
for each class (e.g. Table I).

The discriminant functions of the fuzzy logic classifier are
formulated as follows:

gi(x) =
6

∏

j=1

f(xj)P (ωi) (1)

Chromosome
Spectrum

DAPI Aqua Green Gold Red Far Red
1 x x
2 x x
3 x x
4 x x x
5 x x x
...

Table I. Color table. Chromosome labeling chart for Vysis
M-FISH probe. Chromosome 1 is stained with DAPI and
Gold.

wherei is the class index (i = 1 ∼ 24), andj is the spectrum
index (j = 1 ∼ 6), P (ωi) is thea priori probability for class
i, andx is a sample vector.

f(xj) =

{

xj if T (i, j) = 1

1 − xj if T (i, j) = 0
(2)

whereT is the color table (e.g. Table I). For example, the
discriminant function for class 1 will be (assuming equal
priors)

g1(x) = x1×(1 − x2)×(1 − x3)×x4×(1 − x5)×(1 − x6)
(3)

A pixel x belongs to classωi if gi(x) > gj(x) for all
j 6= i. Only pixels inside foreground are classified using
this classifier.

2.3. Prior adjusted reclassification

After the classification, overlapping and touching chro-
mosomes can be separated by analyzing the classification
result [7]. Currently we are developing algorithms for the
automatic separation of overlapping and touching chromo-
somes. In commercial systems, chromosomes are segmented
using only the DAPI channel prior to classification, and most
of overlapping and touching chromosomes are separated
manually. Thus in these systems the boundary information
is given before the classification. The boundary informa-
tion is extremely useful when correcting misclassifications.
Misclassifications usually occur where chromosomes touch
or overlap and near the boundaries of chromosomes. Here
we introduce a method that eliminates misclassifications
effectively while preserving the translocations intact when
the boundary information is available. For the current status
of our research, the boundary information is obtained from
the ground truth.

In M-FISH data we have observed that when a pixel
x1 belongs toω1 but misclassified asω2, the posterior
probability difference is small,P (ω2|x1) > P (ω1|x1) and
P (ω2|x1) − P (ω1|x1) = ǫ. The posterior probability is
derived from Bayes rule as follows:

P (ωi|x) =
p(x|ωi)P (ωi)

p(x)



In this case,x1 could be easily reclassified asω1 by a
small increase in the prior forω1. However, whenx1 truly
belongs toω2, the posterior probability difference is large:
P (ω2|x1) >> P (ω1|x1), and a small increase in the prior
for ω1 would not change the classification result. Therefore,
the developed method effectively corrects misclassifications
while preserving the translocations. Of course, for this
method to work, the right class to increase the prior must
be determined for a given boundary.

A set of pixels that belongs to a boundaryBi is defined
asSi. Si may contain pixels that belong to multiple classes
due to misclassifications and a translocation. GivenBi, there
exists the most likely classωm among{ω1, . . . , ω24} thatSi

belongs to. GivenBi, m is found by the following formula:

m = arg max
m

{

Ps(ωm|s)
24
∑

i=1

Pp(ωm|xi)PN (ωm)

}

(4)

wherePs(ωm|s) is the posterior probability givens, s is the
normalized size ofBi, Pp(ωm|xi) is the posterior probability
given a vector that belongs to classωi, and PN (ωm) is
the normalized number of pixels that belong toωm. Three
factors are considered in determining the most likely class:
the chromosome size, the sum ofa posteriori probabilities
for each class, and the class population. These three factors
are effectively incorporated in order to compensate for errors.
Onceωm is found, all pixels inBi are reclassified with a
higher prior forωm.

3. RESULTS

We tested our algorithms on 10 images from Advanced
Digital Imaging Research’s M-FISH image database, which
contains 200 hand-segmented M-FISH images. The database
is available athttp://www.adires.com/05/Project/MFISH_
DB/MFISH_DB.shtml.

Foreground and background segmentation was performed
using the voting method as explained in Section 2.1. Prior to
the segmentation, a non-uniform background was corrected
by fitting a cubic surface to the estimated background pixels
and subtracting it from each channel [8]. The background
pixels for each channel were estimated by a global thresh-
olding method, an iterative clustering method, in which the
threshold was found while iteratively grouping pixels into
two classes until the class means converge. The decision
boundary between the two classes was the threshold. To
safely exclude chromosome pixels from the surface esti-
mation, dilation was performed on the thresholded image.
Pixels below threshold were used for the surface estimation.
After the background correction, cells are identified basedon
the circularity and size measures. Once the background was
corrected and cells are removed from the image, adaptive
thresholding, LoG edge detection, and 6-feature 2-class K-
means clustering were performed. A composite threshold
image was created after voting. An example is shown

Images Fuzzy ML
v1303xy 89.5 90.7
v1304xy 86.0 87.2
v1305xy 94.6 .
v1306xy 91.1 .
v1308xy 91.0 .
v1310xy 83.4 87.4
v1311xy 92.4 90.1
v1312xy 89.0 .
v1313xy 88.9 93.3

Ave 88.0 89.8

Table II . Classification rates

in Fig. 1. Fig. 1 (b) was generated by thresholding the
DAPI channel and by manually correcting mistakes. During
the manual correction, some chromosomes were mistakenly
drawn larger than their proper sizes such as the chromosome
indicated by an arrow in Fig. 1 (b). Fig. 1 (c) agrees well
with human perception. The segmentation accuracy was also
quantitatively measured by comparing with the ground truth.
Among 10 images, the lowest and the highest correct rates
were 97.5% and 98.7%, and the average was 98.2%.

After the segmentation, pixels inside the chromosome
region were classified using the Fuzzy-logic classifier. The
initial classification rates are shown in Table II. Its clas-
sification accuracy is comparable to that of the maximum-
likelihood classifier as shown in Table II. For the maximum-
likelihood classification, 5 images were used as training.
Since the fuzzy-logic classification does not require training,
all 10 images were classified.

Reclassification was performed by adjusting the prior
for each chromosome. The most likely class for a given
chromosome was computed using eq. (4). It always found
the right class when the chromosome segmentation was done
correctly. Incorrect segmentations of chromosomes were
found in the ground truth. Those chromosome were usually
segmented larger than their original sizes. A wrong class was
computed when the chromosome size was significantly larger
than normal. In such cases, the size probability was so high
for the large chromosome that the size pdf won over the other
two terms in eq. (4). In images without incorrect segmenta-
tion, the classification accuracy increased (as shown in Fig.
1) as the prior increased. As the prior approaches unity for a
class, all the pixels inside the chromosome will become one
class. The misclassified pixels were corrected first, then the
translocation was removed as the prior increased. Therefore,
there is a limit on how much the prior can increase to achieve
improved accuracy while preserving translocations.

4. CONCLUSION

We introduced a novel unsupervised classification method
for M-FISH chromosome images and a prior adjusted reclas-
sification method that corrects misclassifications effectively
while keeping translocations intact. The accuracy of the



(a) DAPI channel (b) Ground truth (c) Segmentation Result

Fig. 1. Segmentation result

fuzzy-logic classifier is comparable to that of maximum-
likelihood classifier. We also introduced a novel segmenta-
tion method that utilizes both spectral and edge information.
High segmentation accuracy was obtained using our segmen-
tation method.
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Fig. 2. Fuzzy logic classification and prior adjusted reclas-
sification


