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ABSTRACT

The statistics of natural scenes in the wavelet domain are ac- '
curately characterized by the Gaussian Scale Mixture (GSM) |
model. The model lends itself easily to analysis and many |
applications that use this model are emerging (for e.g., de- -
noising, watermark detection). In this paper, we present an -
error-resilient image communications application that uses | |/ iy
the GSM model and Multiple description coding (MDC)to ™ ™) Raw Coefficients ~  (b) Normalized coéfficients
provide error-resilience. We derive a rate-distortion bound

for GSM random variables, derive the redundancy rate dis-

tortion function, and finally implement an MD image com- Fig. 1. Log histograms of raw and normalized wavelet co-
munication system. efficients in a sub-band.

1. INTRODUCTION coefficients as a scale mixture of Gaussian random variables
captures the statistical properties of wavelet coefficients ac-
curately and succinctly. The model lends itself to analysis
Yince it provides a technigue to “Gaussianize” the wavelet
oefficients. This property has been used in developing ap-
lications such as image de-noising , image compression
}mage quality assessment, watermark detection etc.

In this paper, we propose an error-resilient image com-
{nunications scheme that exploits the properties of the GSM

loss such as FEC. retransmission. multiple description cod-mOdel and uses MDC techniques to achieve error resilience.
' ' P P We first derive a rate-distortion bound for GSM random

ing(MDC) [1] etc., MDC is particularly attractive for image variables and use the result in arriving at a redundancy rate-
sources. MDC schemes perform well over erasure channels

- : distortion function. Finally, we simulate an image commu-
due to the fact that all the descriptions are equally impor- .~ . A .
; nication system that uses an orthogonal pairwise correlating
tant and provide the equal amounts of redundancy. A key

. . . . transform to form multiple descriptions and uses an erasure
assumption made in most MD literature is that the source P P

is Gaussian distributed. However, it has been decidedIyChannel[l]'

shown that natural image sources in the transform domain

(DCT or wavelet) are not Guassian[2, 3] . Therefore, itis 2. THE GAUSSIAN SCALE MIXTURE MODEL

not straightforward to apply standard MD coding results to

image sources. In this section, we describe the model used to represent the
The fact that JPEG2000 — the latest image coding stan-statistics of natural images in the wavelet domain. It has

dard operates in the wavelet domain reflects the importancebeen shown in [3] that the statistics of wavelet coefficients

and popularity of image representation in the wavelet do- fit the GSM model very accurately. A random veclor

main. Itis therefore important to accurately model the statis-is a GSM fif it satisfies the relatiol = zU wherez is a

tics of natural images in the wavelet domain. Significant scalar random variable with > 0 andU ~ N(0,Q) is a

research effort has been expended towards this cause[3, 4JGaussian random vector andU are independent [3]. The

It has been empirically shown in [3] that modelling wavelet key feature of this model is that the conditional distribu-

Reliable image communication has always been an impor-
tant research area and has recently received further attentio
due to the explosive growth in wireless personal communi- c
cation systems. Packet based networks form a major chunli3
of all communication networks and these networks tend to
be lossy. Lossy packet networks necessitate the design o
error-resilient image communication systems.

Of the numerous techniques designed to combat packe



tion fy|.(y|z) is Gaussian. This feature lets us work with o5 __ Rate-Distoron curves for GSM random variables (Quantization)
conditioned random vectors that are actually Gaussian dis-
tributed and therefore not make any assumptions about the 1
Gaussianity of the source. Also, it has been shown in [3]
that normalized wavelet coefficient§(= Y/z) are jointly
Gaussian.

Intuitively, z corresponds to local standard deviation of
wavelet coefficients that scales the Gaussian random vector
U. Figs.1(a) and 1(b) show log histograms of rgw(y))
and normalizedfy . (y|z)) wavelet coefficients respectively.
Itis clear that normalizing the coefficients makes them closer
to a Gaussian distribution. Further, it demonstrates the accu-
racy of the GSM model in representing wavelet coefficients.
We use this model for wavelet coefficients in the sequel.
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Fig. 2. Operational Rate-Distortion curves for a scalar GSM ran-
dom variable 7 (z) = 3¢5, u ~ N(0,1)

3. MULTIPLE DESCRIPTION CODING

4. RATE-DISTORTION ANALYSIS OF GSM
Multiple Description Codes (MDC) are multiple represen- RANDOM VARIABLES

tations of an information source. The descriptions are de-

signed such that an acceptable quality of reconstruction iswe begin our analysis by deriving the rate-distortion bound
possible even from a subset of the descriptions. The sourcgor GSM random variables. This derivation is used for de-
coder intelligently partitions the source information across riving the redundancy rate-distortion function for the case
descriptions. The communication channel is modelled as anof multiple descriptions.

erasure channel. Let Y be a random vector that represents neighboring

Several techniques have been proposed to generate mulvavelet coefficientsY” = 2U where: is a scalar random
tiple descriptions[L, 5, 6]. Of these options, we use the pair- Variable and/ = [u1, uz]" whereu, , up are uncorrelated
wise correlating transform (PCT) approach [1] in this work. Gaussian random variables. o _
Analytical amenability, provision of good error resilience, From the definition of the rate distortion function [7],

and ease of implementation motivated the use of the PCT R(D) = min I(Y;Y) 1)
technique. F@ly):ElY—¥]2<D

The key idea of the PCT technique is the introduction of I(Y;Y) = hY)—-hY]Y) )
controlled correlation between uncorrelated random vectors = h(2)+h(U)—h(Y =Y[Y) (3)

(of dimension 2) via a correlating transform. Correlating the
sources increases the rate required to encode them, which is )

called redundancy. Since we deal with erasure channels, a = I(Y:7) h(z) + llog 2meoy, o, (5)
measure of the system’s performance is the end-to-end dis- D

tortion when one channel is available and the other is erasedgqn.(3) follows since subtracting a constant doesn't affect
This is called the one-channel distortion. The redundancythe entropy_ Eqn (4) results since Conditioning reduces en-
rate-distortion(RRD) function characterizes the one channeliropy and finally we get (5) since the Gaussian distribution
distortion as a function of redundancy. is entropy maximizing. Furthermore, it is known thats

The PCT technique assumes the source to be Gaussiad POsitive random variable which can be approximated by a
distributed. From our discussion in Section [2] we see that Gamma density defined gg(z) = 527)‘3 wherel'(v)
normalized wavelet coefficients are Gaussian distributed, angs the Gamma functiori{(y) = Jo7 27" le~"dx). Evaluat-

hence lend themselves easily to the application of the PCTing the entropy of a Gamma density using the definition of
technique. In order to derive the redundancy rate-distortion differential entropy we get (letting = 1)
function for GSM random vectors, we first derive a rate-

distortion bound for them. This gives us a bound on the rate / F2(2)logfz(2)dz
that needs to be spent to encode a GSM source at a given

distortion. =log[l(M] +7v— (v = 1D¥(v)

v

(2
h(z) +h(U)—hY —=Y) (4
(

Y

(6)
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We now compute the redundancy (or excess rate) required
to encodeV = [v;,v5]7 with respect to the rate required
to encode = [uy,uz]T at two-channel distortiod,. Let
Ry, u,|- denote the encode rate for;, andR,, . denote
the encode rate fo¥. SinceU, V' are conditionally Gaus-
e a2z e sian, we can use the rate-distortion function for Gaussian
variables and arrive at

One-channel distortion D1
e
©

. . .
15 16 17 18 19
Redundancy (9,.,)

Fig. 3. Theoretical and simulated redundancy rate-distortion plot 1 24031 032
Rul,u2|z = §ZOQT + K,
where¥ (v) is the digamma or psi function [8]. Substituting R _ 110 24031 o LK
the result from (6) in (5) we get viealz 5000 Dy ’ ©)
1 2402 o2
L)oo 2% P =Ry vz = Ruyus)z = 5109 ;)1 22 )
R(D) 2 log[T(m)] +7 = (v = ¥ (y) + glog——F—*. ’ ’ 2 7 zt0y, 0f,
(7) o p = log T e
Fig.2 shows the operational rate-distortion curve for a Ouy Oug

scalar GSM random variable obtained from a generalized
Lloyd’s quantizer. We see that the simulation results are
close to the bound defined in (7).

where K is a constant that accounts for entropy coding.

We observe that since we are conditioning Qn: needs

to be sent to the decoder without error for successful recon-
struction. The rate needed to encade lower bounded by

5. REDUNDANCY RATE-DISTORTION ANALYSIS its entropyh(z). Therefore the total excess rate needed is

bounded by
In this section we derive the redundancy rate-distortion func-

tion for the pair-wise correlated GSM source. We assume piot > h(z) +p

a two channel scenario with channel failure probabilities — h(z) +1o Oyy Oy,

p1 and p, respectively. We further assume that the rate- B g Tuy Ouy (10)
distortion bound in (7) is achieved with equality. Siricés o o Ovy Oy,

a GSM random variable, the pdf of the components ak., = logC(M] + 7= (v = () + log Ouy Ousy

uy anduy can be expressed #g, |, (u;]z) ~ N (0,2%02)) _ L _
where: is the scalar random variable (which is assumed to "€ Single channel distortiod, is defined as the average
be known). single channel distortion per random variable [1]. We now

We derive the expression for redundanegt a given express the single channel distortibn in terms of the ex-
two channel distortiorD, needed to achieve a one-channel C€SS rate in order to obtain the redundancy rate-distortion
distortionD; . An orthogonal correlating transforfiis ap- ~ Pound.
plied to the uncorrelated source péir= [u;, us]” to gen-

Dy = E[*){(1 - El(u1 —i1)? —1iz)?|ch. 1
erateV = [vy,vo]7 i.e, V = TU. We evaluateCov(V) = ! ZHA = popEl(n = i) + (uz = 1iz)|eh. 1]

E[VVT] as —l—pl(l — pz)E[(ul — ’lf1)2 + (UQ — ng)z‘ch. 2]}

Cov(V) = E[VVT] The MMSE estimate$;, ¢, are given byFE[v |vs]vy and
o o E[vs|v]u; respectively, since,, v, are Gaussian. The ex-

=TE[UU"|T" where 8) pressions for the estimates are givernvpy= Z%"2l4, and

2. 2 vz
E[UUT) = { z gu 29092 } vy = El2ly,, | Finally 4y, 1, are given by’ [v;45)'. As-
u U1
’ sumingp; = ps = % neglecting effects of quantization and
The orthogonal transforri' is defined as simplifying, we get,

cos sinb
T= { —sin @ cos6

. . 0,2 + 0.2
} substitutingT in (8), D1 (pior) = E[2%] <u14u2> 92(h(x)=pror)  (11)



Fig. 3 shows the plot of the redundancy rate-distortion GSM Model | Gaussian assumption
function of the proposed multiple description coding sys- Barbara 22.32 21.59
tem. The figure is plotted fof(z) = 26—, u; ~ N(0,1) Lena 24.48 23.79
o) : Zeld 57.39 57.07
and, us ~ N(0,0.16),u; L up. We see that the theoretical elda . .

curve and the simulation results match closely. . . I
y Table 1. Image reconstruction results for single description

in PSNR (dB) at correlation angte= 7/16.
6. IMAGE COMMUNICATION SYSTEM

The basic premise of the proposed algorithm is the fact thatF"’]a”y’ it was experimenta”y shown via a MD image cod-

normalizing wavelet coefficients by appropriate scale fac- jng system that the GSM model performs better than cases

tors makes them Gaussian. Furthermore, it is assumed pairgshere the source is assumed to be Gaussian. We are cur-

of wavelet coefficients are uncorrelated and jointly Gaussianrently looking at using other wavelet bases, using overlap-

[3]. ping blocks, varying block sizes and non-orthogonal corre-
The procedure used to implement the system is describeghting transforms.

below. The image is sub-band decomposed to three levels
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