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ABSTRACT

Measurement of visual quality is crucial for many image and video
processing applications. Traditionally, quality assessment (QA)
algorithms predict visual quality by comparing a distorted signal
against a reference, typically by modeling the Human Visual Sys-
tem (HVS). In this paper, we adopt a new paradigm for video
quality assessment that is an extension of our previous work on
still image QA. We propose an information fidelity criterion that
quantifies the Shannon information that is shared between the ref-
erence and the distorted videos relative to the information con-
tained in the reference video itself. We use Natural Scene Statis-
tics (NSS) modeling in concert with an image degradation model
and an HVS model. We demonstrate the performance of our algo-
rithm by testing it on the VQEG Phase I dataset, and show that the
information-fidelity framework is competitive with state of the art
quality assessment methods.

1 Introduction
Measurement of visual quality is becoming increasingly important
in many image and video processing applications, such as acquisi-
tion, compression, communication, restoration, enhancement and
reproduction. The goal of quality assessment (QA) methods is to
assess the quality of images and videos in a perceptually consistent
manner and in close agreement with subjective human judgments.

Traditionally, researchers have focused mainly on measuring vi-
sual quality of videos by modeling the salient features of the hu-
man visual system (HVS) using the so-called full reference (FR)
QA paradigm. In the FRQA framework, the algorithm measures
the quality of a distorted (or test) video against a reference video
that is assumed to have perfect quality. Since the mean squared er-
ror (MSE) between the test and the reference videos is not a good
measure of visual quality, FRQA algorithms typically measure the
distance between the test and reference signals in some perceptual
space using HVS models. A review of recent video QA methods
can be found in [1].

We previously proposed a novel information fidelity approach
to image quality assessment, which is an information-theoretic
framework using natural scene statistics (NSS) models [2]. Im-
ages and videos of the 3-D visual environment belong to a com-
mon class: the class of natural scenes. Due to the nature of image
formation, the class of natural scenes is an extremely tiny subset of
the set of all possible signals, and researchers have developed so-
phisticated models to characterize the statistical properties of this
class. Most real-world distortions disturb these statistics and make
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the signals unnatural. In the information-fidelity framework, we
use a common statistical fidelity measure, the mutual information,
to quantify this unnaturalness. We have previously shown that
this new framework outperforms current state-of-the-art still im-
age quality assessment algorithms by a sizeable margin [2]. This
paper presents extensions of our framework for still image QA to
video QA. As a product of this extension we derive a simple video
QA algorithm based on natural scene statistics whose performance
is competitive with state-of-the-art video QA methods, and which
outperforms the proponents in VQEG Phase-I study.

2 Visual Information Fidelity
We previously proposed a novel method for quantifying still image
quality, the information fidelity paradigm, which is an information
theoretic framework based on NSS models [2]. The setup is shown
in Figure 1. Natural images and videos of perfect quality (the ref-
erence signals) are modeled as the output of a stochastic source. In
the absence of any distortions, this signal passes through the HVS
channel and is received by cognitive processes in the brain. The
distorted signals, however, pass through another channel, such as a
compression process or blurring, before it passes through the HVS
and finally into the receiver. The success of the visual communica-
tion process in the presence of distortion intuitively relates to the
amount of information that can be extracted by the brain from the
distorted signal (that is the information flowing through the lower
path in Figure 1)relative to the information that can be extracted
from the reference signal (the information flowing through the up-
per path in Figure 1).

We previously proposed using mutual information as a mea-
sure of statistical information for quality assessment of still im-
ages. The visual information fidelity (VIF) measure for video QA
that we propose in this paper is also derived from a quantification
of two mutual information quantities: the mutual information be-
tween the input and the output of the HVS channel when no distor-
tion is present (we call this the reference image information) and
the mutual information between the input of the distortion channel
and the output of the HVS channel for the test signal. In order
to quantify the mutual information quantities, we need stochastic
models for the source, distortion, and the HVS. Below we will
outline the models that we use in this paper.

2.1 The Source Model

Natural scenes, that is, images and videos of the three dimensional
visual environment captured using the visible spectrum, comprise
only a tiny subset of the space of all possible signals. Many re-
searchers have attempted to understand the structure of this sub-
space of natural images by studying their statistics. A good review
on NSS models can be found in [3]. The model that we use in
this paper is the Gaussian scale mixture (GSM) model in the spa-
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Fig. 1. Mutual information betweenC andE quantifies the in-
formation that the brain could ideally extract from the reference
signal, whereas the mutual information betweenC andF quanti-
fies the corresponding information that could be extracted from the
distorted signal.

tiotemporal derivative (horizontal, vertical, and temporal discrete-
derivatives [4]) domain. We have previously successfully used the
GSM model in the wavelet domain for image quality assessment
using a similar information fidelity setup [2]. In order to use this
model for video, we first need to motivate the suitability of this
model for videos.

2.1.1 Image Formation

Researchers have argued that the peculiar statistics of natural im-
ages come from the physics of image formation [5, 6]. The laws
that govern the formation of light stimulus that emanates from the
environment dictate the statistics of the signal. Researchers have
identifiedocclusionas the image formation rule that leads to many
of the observed statistics of natural images. That is, images are
formed when objects occlude each other, generally blocking the
light signal coming from objects ‘behind them’. This leads to im-
ages that contain smooth or textured regions separated by strong
edges at object boundaries. Thus, when such an image is filtered
through a zero-mean kernel (a high-pass or a band-pass filter), the
resulting coefficients tend to have a histogram that has a sharp peak
at zero and tails that fall off slowly. The smooth textures give rise
to generally low magnitude coefficients (and hence the sharp peak
at zero in the histogram), while the strong edges yield high magni-
tude coefficients (heavy tails) typically observed in natural images.

2.1.2 Occlusion in Natural Videos

It is obvious that occlusion continues to operate even for natu-
ral videos. Thus, applyingspatial zero-mean kernels would still
give the characteristic histograms. Moreover, it is easy to explain
why such kernels would give similar histograms even when ap-
plied along the temporal domain. Consider two one-dimensional
objects in Figure 2 that are being observed through a camera in
a two dimensional world. When object A moves and occludes
object B, one could see occlusion of B by A in a spatiotemporal
plane much like the occlusion of objects in still images. The spa-
tiotemporal plane consists of generally smooth ‘objects’ separated
by sharp edges that result from ‘occlusion’ of spatiotemporal ob-
jects, and hence the temporal channel should exhibit similar statis-
tical properties as the spatial channels. The argument could easily
be extended to a three dimensional case.

Indeed, this hypothesis holds when one observes the histograms
of temporally filtered natural videos. Figure 3 shows the histogram
of the temporal derivative of ‘Mobile and Calendar’. As expected,
the histogram has a sharp peak at zero and heavy tails. Moreover,
the temporal coefficients also exhibit linear and nonlinear depen-
dencies similar to those observed in spatial coefficients of images
[7]. This is illustrated in Figure 4, which shows the joint histogram
of the logarithm of the magnitude of two temporally adjacent coef-
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Fig. 2. Spatiotemporal representation of motion. Object A moves
and occludes B, which is stationary. Occlusion manifests in the
spatiotemporal domain as spatiotemporal objects ‘occluding’ each
other, similar to spatial-only images.
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Fig. 3. Histogram of coefficients of a bandpass channel of ‘Mobile
and Calendar’ video shows a sharp peak and heavy tails.

ficientsC1 andC2 in the temporal-derivative channel1. The linear
dependency between the logarithm of the coefficient magnitudes
demonstrates a multiplicative dependency between the coefficient
magnitudes, which can be modeled well though a GSM model [7].
Moreover, divisively normalizing the coefficients by estimates of
local standard deviation removes this dependency, as shown in Fig-
ure 4. We therefore conclude that the spatial and temporal channels
of natural videos (such as those resulting from discrete derivatives
for optical flow estimation or other 3D transformations such as
wavelet decompositions) could be modeled well by GSMs.

2.1.3 Representation of Motion

The use of intensity derivatives for optical flow estimation is
widely known in the image processing community. Researchers
have also explored possible connections between motion represen-
tation in HVS and spatiotemporal derivatives and their approxima-
tion using bandpass kernels [8]. In the information-fidelity frame-
work, although we do not deal directly with motion representation,
derivative information does form a bound on motion information.
Any loss in derivative information (which we shall quantify later
in this paper) would necessarily cause a loss in motion information
in the signal.

2.1.4 Gaussian Scale Mixture Model

A GSM is a random field (RF) that can be expressed as a product
of two independent RFs [7] . That is, a GSMC = {−→C i : i ∈
I}, whereI denotes the set of spatial indices for the RF, can be

1Linear dependency betweenC1 andC2 was removed before plotting
the histograms to highlight the nonlinear dependency.
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Fig. 4. Joint histograms of temporally adjacent coefficients before
and after normalization. See text.

expressed as:

C = S · U = {Si · −→U i : i ∈ I} (1)

whereS = {Si : i ∈ I} is an RF of positive scalars and
U = {−→U i : i ∈ I} is a Gaussian vector RF with mean zero and
covarianceCU .

−→
C i and

−→
U i areM dimensional vectors. In this

paper we model each channel (output of a spatiotemporal kernel)
as a GSM. We partition a channel into non-overlapping spatiotem-
poral blocks, and model each block as the vector

−→
C i.

We model each channel with a separate GSM. However, we will
only deal with one channel here and later generalize the results for
multiple channels.

2.2 The Distortion Model

The distortion model that we use is a signal gain and additive noise
model:

D = GC + V = {gi
−→
C i +

−→
V i : i ∈ I} (2)

whereC denotes the RF from a channel in the reference signal,
D = {−→D i : i ∈ I} denotes the RF from the corresponding
channel from the test (distorted) signal,G = {gi : i ∈ I} is a de-
terministic scalar gain (attenuation) field andV = {−→V i : i ∈ I}
is a stationary additive zero-mean Gaussian noise RF with vari-
anceCV = σ2

vI. The RFV is white and is independent ofS and
U . This simple, yet effective, distortion model has been shown to
work well for still image QA purposes [2]. It captures two impor-
tant, and complementary, distortion types: noise (by the noise RF
V) and blur (by measuring the loss in higher frequencies using the
scalar attenuation fieldG). Moreover, the GSM source model in
concert with the gain-and-additive-noise distortion model can be
shown to be approximately equivalent to the contrast gain control
model of visual masking [9].

2.3 The Human Visual System Model

The HVS model that we use is also described separately for each
channel. Since HVS models are the dual of NSS models [10],
many aspects of the HVS are already modeled in the NSS descrip-
tion. The components missing include the optical point spread
function, the contrast sensitivity function, internal neural noise etc.
In the information-fidelity setup, an HVS model is needed to serve
as adistortion baselineagainst which the distortion added by the
distortion channel could be compared. In such we observed that
lumping all sources of the uncertainty that the HVS adds into a
visual noisecomponent serves as an adequate model of HVS un-
certainty for QA purposes. The visual noise model that we use is
an additive white Gaussian noise model, where we model the vi-
sual noise as the RFN = {−→N i : i ∈ I}, where

−→
N i are zero-mean

uncorrelated multivariate Gaussian with the same dimensionality
as
−→
C i:

E = C +N reference signal (3)

F = D +N ′ test signal (4)

whereE andF denote the visual signal at the output of the HVS
model from the reference and the test videos respectively, from
which the brain extracts cognitive information. We model the co-
variance of the visual noise as:

CN = CN′ = σ2
nI (5)

whereσ2
n is an HVS model parameter (variance of the visual

noise).

2.4 The Visual Information Fidelity Criterion

With the source and the distortion models as described above, the
visual information fidelity (VIF) criterion that we propose can be
derived. In fact, using the generalization provided by the vector
models, the formulation of VIF for video remains the same as that
for still images [2]. Thus, assuming that the model parametersG,
σ2

v andσ2
n are known, as well as the underlying variance fieldS,

the reference and distorted image information is given by:

I(
−→
C

N
;
−→
E

N |sN )=
1

2

N∑
i=1

M∑
k=1

log2

(
1 +

s2
i λk

σ2
n

)
(6)

I(
−→
C

N
;
−→
F

N |sN )=
1

2

N∑
i=1

M∑
k=1

log2

(
1 +

g2
i s2

i λk

σ2
v + σ2

n

)
(7)

wherei is an index to a spatiotemporal block andλk are the eigen-
values ofCU . Note that as in [2], we consider only the conditional
mutual information betweenC andE (or F ) givenS. The reason
for this conditioning is totunethe GSM model for a particular ref-
erence signal because we are interested in measuring the quality
of a particular reference-test pair and not the ‘quality’ of a distor-
tion channel for the whole ensemble of natural signals. Thus the
given fieldSi = si becomes the model parameters of a set of in-
dependent but not identically distributed vector Gaussian random
variables whose covariance at indexi is given bys2

i CU .

I(
−→
C

N
;
−→
E

N |sN ) andI(
−→
C

N
;
−→
F

N |sN ) represent the informa-
tion that can ideally be extracted by the brain from a particular
channel in the reference and the test videos respectively. The vi-
sual information fidelity measure is simply the fraction of the ref-
erence image information that could be extracted from the test sig-
nal. Also we have only dealt with one channel so far. One could
easily incorporate multiple channels by assuming that each chan-
nel is completely independent of others in terms of the RFs as well



as the distortion model parameters. Thus our visual information
fidelity (VIF) measure is given by:

VIF=

∑
j∈channels

I(
−→
C

N,j
;
−→
F

N,j |sN,j)
∑

j∈channels
I(
−→
C

N,j
;
−→
E

N,j |sN,j)
(8)

where we sum over the channels of interest, and
−→
C

N,j
represent

N elements of the RFCj that describes the coefficients from chan-
nel j, and so on.

3 Implementation
A number of implementation assumptions need to be made before
the VIF of (8) could be implemented.

Assumptions about the source model.Mutual information (and
hence the VIF) can only be calculated between RF’s and not their
realizations, that is, a particular reference/test video pair under
consideration. We will assume ergodicity of the RF’s, and that
reasonable estimates for the statistics of the RF’s can be obtained
from their realizations. We then quantify the mutual information
between the RF’s having the same statistics as those obtained from
particular realizations. A number of known estimation methods are
available for estimatings2

i andCU (for example [11]).
Assumptions about the distortion model.We propose to parti-

tion the channel into spatiotemporal blocks, and assume that the
field G is constant over such blocks, as are the noise statisticsσ2

v.
The value of the fieldG over blockl, which we denote asgl, and
the variance of the RFV over blockl, which we denote asσ2

v,l, are
fairly easy to estimate (by linear regression) since both the input
(the reference signal) as well as the output (the test signal) of the
system (2) are available [2].

Assumptions about the HVS model.The parameterσ2
n in our

simulations was hand optimized over a few values by running the
algorithm and observing its performance.

4 Results
In this section we present the results of our simulations using the
VIF in (8) using the data from VQEG Phase-I study. In our simula-
tions, we use separable derivative kernels of length5 in the spatial
directions (horizontal and vertical) and3 in the temporal direction.
The channels that we use in (8) are the derivative channels on all
three components in the YUV color space, a total of nine channels.
The vectorsCi were constructed from3 × 3 × 2 blocks. The im-
plementation runs only on one field of the interlaced frames. The
results are given in Table 1.

It can be seen that even with a very simple implementation using
separable kernels and only one level of decomposition, the VIF
outperforms the highest performing proponent in the VQEG study
[12]. Moreover, four of the 20 source sequences in the dataset are
unnatural videos (computer generated or scrolling text), and Table
1 also gives the results when these sequences are excluded from
testing.

5 Conclusions
In this paper we have presented a novel visual information fidelity
criterion that quantifies the Shannon information present in the dis-
torted video relative to the information present in the reference
video. We showed that VIF is a competitive way of measuring
fidelity that relates well with visual quality. We validated the per-
formance of our algorithm using the VQEG Phase-I dataset, and
showed that the proposed method is competitive with the state-of-
the-art methods and outperforms them in our simulations.

CC SROCC

PSNR ([12]) 0.779 0.786
VQEG P8 ([12]) 0.827 0.803
VIF 0.874 0.849
VIF (natural only) 0.891 0.865

Table 1. VIF performance compared against PSNR and the best
performing proponent in [12] (P8) on all data using linear correla-
tion coefficient (CC) after nonlinear regression with logistic func-
tion and the Spearman rank order correlation coefficient (SROCC)
[12].
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