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ABSTRACT the signals unnatural. In the information-fidelity framework, we

. o . . . use a common statistical fidelity measure, the mutual information,
Measurement of visual quality is crucial for many image and video quantify this unnaturalness. We have previously shown that
processing applications. Traditionally, quality assessment (QA) this new framework outperforms current state-of-the-art still im-
algorithms predict visual quality by comparing a distorted signal 546 guality assessment algorithms by a sizeable margin [2]. This
against a reference, typically by modeling the Human Visual Sys- naner presents extensions of our framework for still image QA to
tem (HVS). In this paper, we adopt a new paradigm for video \jgeq QA. As a product of this extension we derive a simple video
quality assessment that is an extension of our previous work 0N aigorithm based on natural scene statistics whose performance

still image QA. We propose an information fidelity criterion that 5 competitive with state-of-the-art video QA methods, and which
quantifies the Shannon information that is shared between the ref-

) X ! ) k outperforms the proponents in VQEG Phase-I study.
erence and the distorted videos relative to the information con-
tained in the reference video itself. We use Natural Scene Statis-2 ~ Visual Information Fidelity
tics (NSS) modeling in concert with an image degradation model
and an HVS model. We demonstrate the performance of our algo-
rithm by testing it on the VQEG Phase | dataset, and show that the
information-fidelity framework is competitive with state of the art
quality assessment methods.

We previously proposed a novel method for quantifying still image
quality, the information fidelity paradigm, which is an information
theoretic framework based on NSS models [2]. The setup is shown
in Figure 1. Natural images and videos of perfect quality (the ref-
erence signals) are modeled as the output of a stochastic source. In
1 Introduction the absence of any distortions, this signal passes through the HVS
. o o ) ) channel and is received by cognitive processes in the brain. The
Measurement of visual quality is becoming increasingly important gisiorted signals, however, pass through another channel, such as a
in many image and video processing applications, such as acquisiompression process or blurring, before it passes through the HVS
tion, compression, communication, restoration, enhancement and,q finajly into the receiver. The success of the visual communica-
reproduction. The goal of quality assessment (QA) methods is 10 ion process in the presence of distortion intuitively relates to the
assess the quality of images and videos in a perceptually consistent o, nt of information that can be extracted by the brain from the
manner and in close agreement with subjective human judgments gistorted signal (that is the information flowing through the lower
Traditionally, researchers have focused mainly on measuring vi- path in Figure 1yelativeto the information that can be extracted
sual quality of videos by modeling the salient features of the hu- fom the reference signal (the information flowing through the up-
man visual system (HVS) using the so-called full reference (FR) per path in Figure 1).
QA paradigm. In the FRQA framework, the algorithm measures = \ye previously proposed using mutual information as a mea-
the quality of a distorted (or test) video against a reference video g,re of statistical information for quality assessment of still im-
that is assumed to have perfect quality. Since the mean squared erygeg The visual information fidelity (VIF) measure for video QA
ror (MSE) between the test and the reference videos is not & good 4t we propose in this paper is also derived from a quantification
measure of visual quality, FRQA algorithms typically measure the ¢ 1y mutual information quantities: the mutual information be-
distance petween the test and reference signals_ in some perceptugleen the input and the output of the HVS channel when no distor-
space using HVS models. A review of recent video QA methods (jop, s present (we call this the reference image information) and
can be found in [1]. _ o the mutual information between the input of the distortion channel
We previously proposed a novel information fidelity approach 4nq the output of the HVS channel for the test signal. In order
to image quality assessment, which is an information-theoretic 1, gyantify the mutual information quantities, we need stochastic

framework using natural scene statistics (NSS) models [2]. Im- yqqels for the source, distortion, and the HVS. Below we will
ages and videos of the 3-D visual environment belong to a com- 5 tline the models that we use in this paper.

mon class: the class of natural scenes. Due to the nature of image
formation, the class of natural scenes is an extremely tiny subset of2-1  The Source Model

the set of all possible signals, and researchers have developed sayatural scenes, that is, images and videos of the three dimensional
class. Most real-world distortions disturb these statistics and makegnly a tiny subset of the space of all possible signals. Many re-
H. R. Sheikh was previously affiliated with the Dept. of Electrical and searchers have attempted to understand the structure of this sub-
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dation. this paper is the Gaussian scale mixture (GSM) model in the spa-
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Fig. 1. Mutual information betweei® and £ quantifies the in-

formation that the brain could ideally extract from the reference i
signal, whereas the mutual information betw&eand F quanti-

fies the corresponding information that could be extracted from the
distorted signal.
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Fig. 2. Spatiotemporal representation of motion. Object A moves
and occludes B, which is stationary. Occlusion manifests in the
spatiotemporal domain as spatiotemporal objects ‘occluding’ each
tiotemporal derivative (horizontal, vertical, and temporal discrete- other, similar to spatial-only images.

derivatives [4]) domain. We have previously successfully used the

GSM model in the wavelet domain for image quality assessment 10
using a similar information fidelity setup [2]. In order to use this
model for video, we first need to motivate the suitability of this 107

model for videos.

2.1.1 Image Formation 5w

Researchers have argued that the peculiar statistics of natural im- 10°
ages come from the physics of image formation [5, 6]. The laws
that govern the formation of light stimulus that emanates from the
environment dictate the statistics of the signal. Researchers have wh :
identifiedocclusionas the image formation rule that leads to many Coeflicient
of the observed statistics of natural images. That is, images are
formed when objects occlude each other, generally blocking the Fig. 3. Histogram of coefficients of a bandpass channel of ‘Mobile
light signal coming from objects ‘behind them’. This leads to im- and Calendar’ video shows a sharp peak and heavy tails.
ages that contain smooth or textured regions separated by strong
edges at object boundaries. Thus, when such an image is filtered
through a zero-mean kernel (a high-pass or a band-pass filter), thdicientsC; andC. in the temporal-derivative chanfellhe linear
resulting coefficients tend to have a histogram that has a sharp peaklependency between the logarithm of the coefficient magnitudes
at zero and tails that fall off slowly. The smooth textures give rise demonstrates a multiplicative dependency between the coefficient
to generally low magnitude coefficients (and hence the sharp peakmagnitudes, which can be modeled well though a GSM model [7].
at zero in the histogram), while the strong edges yield high magni- Moreover, divisively normalizing the coefficients by estimates of
tude coefficients (heavy tails) typically observed in natural images. |ocal standard deviation removes this dependency, as shown in Fig-
o ] ure 4. We therefore conclude that the spatial and temporal channels
2.1.2 Occlusion in Natural Videos of natural videos (such as those resulting from discrete derivatives
for optical flow estimation or other 3D transformations such as
wavelet decompositions) could be modeled well by GSMs.

50

It is obvious that occlusion continues to operate even for natu-
ral videos. Thus, applyingpatial zero-mean kernels would still
give the characteristic histograms. Moreover, it is easy to explain
why such kernels would give similar histograms even when ap- 2.1.3 Representation of Motion
plied along the temporal domain. Consider two one-dimensional
objects in Figure 2 that are being observed through a camera in
a two dimensional world. When object A moves and occludes
object B, one could see occlusion of B by A in a spatiotemporal
plane much like the occlusion of objects in still images. The spa-
tiotemporal plane consists of generally smooth ‘objects’ separated

_by sharp edges that result from ‘occlusion’ of qutlgte_mporal ol:_)- derivative information does form a bound on motion information.
jects, and hence the temporal channel should exhibit similar statls-An loss in derivative information (which we shall quantify later
tical properties as the spatial channels. The argument could eaSinin t}rllis aper) would necessarily cause a loss in mot?on information
be extended to a three dimensional case. in the s[,)igﬁal y

Indeed, this hypothesis holds when one observes the histograms '
of temporally filtered natural videos. Figure 3 shows the histogram 2.1.4 Gaussian Scale Mixture Model

of the temporal derivative of ‘Mobile and Calendar’. As expected, A GSM is a random field (RF) that can be expressed as a product
the histogram has a sharp peak at zero and heavy tails. Moreovergf two independent RFs [7] . Thatis, a GSM= {C; : i €

the temporal coefficients also exhibit linear and nonlinear depen-1} wherel denotes the set of spatial indices for the RF, can be
dencies similar to those observed in spatial coefficients of images

[7] This is illustrated in Figure 4, which shows the jOint histogram lLinear dependency betweéhl andC> was removed before plotting

of the logarithm of the magnitude of two temporally adjacent coef- the histograms to highlight the nonlinear dependency.

The use of intensity derivatives for optical flow estimation is
widely known in the image processing community. Researchers
have also explored possible connections between motion represen-
tation in HVS and spatiotemporal derivatives and their approxima-
tion using bandpass kernels [8]. In the information-fidelity frame-
work, although we do not deal directly with motion representation,
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Fig. 4. Joint histograms of temporally adjacent coefficients before
and after normalization. See text.

expressed as:

C=8-U={S;-TUi:iel} (1)
whereS = {S; : i € I} is an RF of positive scalars and
U= {ﬁi : 4 € I} is a Gaussian vector RF with mean zero and
covarianceCy. C; andTU; are M dimensional vectors. In this

2.3 The Human Visual System Model

The HVS model that we use is also described separately for each
channel. Since HVS models are the dual of NSS models [10],
many aspects of the HVS are already modeled in the NSS descrip-
tion. The components missing include the optical point spread
function, the contrast sensitivity function, internal neural noise etc.
In the information-fidelity setup, an HVS model is needed to serve
as adistortion baselineagainst which the distortion added by the
distortion channel could be compared. In such we observed that
lumping all sources of the uncertainty that the HVS adds into a
visual noisecomponent serves as an adequate model of HVS un-
certainty for QA purposes. The visual noise model that we use is
an additive white Gaussian noise model, where we model the vi-
sual noise as the RF" = {N, : i € I}, whereN, are zero-mean
un%)rrelated multivariate Gaussian with the same dimensionality
asC';:

& C + N reference signal 3)
F D+ N’ testsignal (4)

where€ andF denote the visual signal at the output of the HVS
model from the reference and the test videos respectively, from
which the brain extracts cognitive information. We model the co-
variance of the visual noise as:

Cy =Cy =021 (5)

where o2 is an HVS model parameter (variance of the visual
noise).

2.4 The Visual Information Fidelity Criterion

With the source and the distortion models as described above, the
visual information fidelity (VIF) criterion that we propose can be
derived. In fact, using the generalization provided by the vector
models, the formulation of VIF for video remains the same as that
for still images [2]. Thus, assuming that the model paramejers

paper we model each channel (output of a spatiotemporal kernel)o; ando:; are known, as well as the underlying variance figld

as a GSM. We partition a channel into non-overlapping spatiotem-

poral blocks, and model each block as the vedtor

We model each channel with a separate GSM. However, we will
only deal with one channel here and later generalize the results for

multiple channels.

2.2 The Distortion Model

the reference and distorted image information is given by:
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The distortion model that we use is a signal gain and additive noise wherei is an index to a spatiotemporal block akglare the eigen-

model:

D=GC+V={qCi+Vi:icl} @)

where(C denotes the RF from a channel in the reference signal,

D = {D, : i € I} denotes the RF from the corresponding
channel from the test (distorted) signél= {g; : ¢ € I} is a de-
terministic scalar gain (attenuation) field avid= {V),- eI}

is a stationary additive zero-mean Gaussian noise RF with vari-

anceCy = o-1. The RFV is white and is independent &f and

U. This simple, yet effective, distortion model has been shown to

work well for still image QA purposes [2]. It captures two impor-

values ofCy. Note that as in [2], we consider only the conditional
mutual information betwee@ and& (or F) givenS. The reason

for this conditioning is tdunethe GSM model for a particular ref-
erence signal because we are interested in measuring the quality
of a particular reference-test pair and not the ‘quality’ of a distor-
tion channel for the whole ensemble of natural signals. Thus the
given fieldS; = s; becomes the model parameters of a set of in-
dependent but not identically distributed vector Gaussian random
variables whose covariance at indes given bys?Cy .

1@, EY|sV) and 1(C™; FY |sV) represent the informa-
tion that can ideally be extracted by the brain from a particular

tant, and complementary, distortion types: noise (by the noise RFchannel in the reference and the test videos respectively. The vi-
V) and blur (by measuring the loss in higher frequencies using the sual information fidelity measure is simply the fraction of the ref-
scalar attenuation fielg). Moreover, the GSM source model in  erence image information that could be extracted from the test sig-
concert with the gain-and-additive-noise distortion model can be nal. Also we have only dealt with one channel so far. One could
shown to be approximately equivalent to the contrast gain control easily incorporate multiple channels by assuming that each chan-
model of visual masking [9]. nel is completely independent of others in terms of the RFs as well



as the distortion model parameters. Thus our visual information | [ CcC [ SrRoccC]|

fidelity (VIF) measure is given by: PSNR ([12]) 0.779| 0.786
Nj =Nj N VQEG P8 ([12]) 0.827| 0.803

VIF= Zjeohannels I(ﬁ '7 ? |S ) (8) VIF 0.874 0.849

3 cenamnels 1T BN |sh9) VIF (natural only) 0.891| 0.865

where we sum over the channels of interest, ahd’ represent Table 1. VIF performance compared against PSNR and the best
N elements of the RE; that describes the coefficients from chan- performing proponent in [12] (P8) on all data using linear correla-

nelj, and so on. tion coefficient (CC) after nonlinear regression with logistic func-
. tion and the Spearman rank order correlation coefficient (SROCC)
3 Implementation [12].
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the VIF of (8) could be implemented.
Assumptions about the source moddutual information (and
hence the VIF) can only be calculated between RF’s and not their6 References
realizations that is, a particular reference/test video pair under [1] Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video

consideration. We will assume ergodicity of the RF’s, and that quality assessment,” ifihe Handbook of Video Databases:
reasonable estimates for the statistics of the RF’s can be obtained Design and ApplicationsB. Furht and O. Marques, Eds.
from their realizations. We then quantify the mutual information CRC Press, 2003.

between the RF’s having the same statistics as those obtained from[ 1
particular realizations. A number of known estimation methods are
available for estimating? andCy (for example [11]).

Assumptions about the distortion mod&lle propose to parti- ) ] ]
tion the channel into spatiotemporal blocks, and assume that the [3] A. Srivastava, A. B. Lee, E. P. Simoncelli, and S.-C. Zhu,

H. R. Sheikh and A. C. Bovik, “Image information and vi-
sual quality,” IEEE Trans. Image Processin&ept. 2004,
Accepted.

field G is constant over such blocks, as are the noise statisfics “On advances in statistical modeling of natural images,’
The value of the field; over block, which we denote ag;, and Journal of Mathematical Imaging and Visiprol. 18, pp.
the variance of the RI over blockl, which we denote as? , are 17-33, 2003.
fairly easy to estimate (by linear regression) since both the input [4] H. Farid and E. Simoncelli, “Differentiation of multi-
(the reference signal) as well as the output (the test signal) of the dimensional signals,”IEEE Trans. Image Processingol.
system (2) are available [2]. 13, no. 4, pp. 496-508, 2004.

Assumptions about the HVS mod@he parametes? in our [5] Ann B. Lee, David Mumford, and Jinggang Huang, “Oc-

simulations was hand optimized over a few values by running the

) Lo clusion models for natural images: A statistical study of a
algorithm and observing its performance.

scale-invariant dead leaves moddkternational Journal of
4 Results Computer Visionvol. 41, no. 1/2, pp. 35-59, 2001.

6] D. L. Donoho and A. G. Flesia, “Can recent innovations

In this section we present the results of our simulations using the [ h ; L o T . -
in harmonic analysis ‘explain’ key findings in natural im-

VIF in (8) using the data from VQEG Phase-I study. In our simula- SR
tions, we use separable derivative kernels of legththe spatial ggglstatlstlcs,\ﬁsmn Researchvol. 12, no. 3, pp. 371-393,
directions (horizontal and vertical) aBdn the temporal direction. )

The channels that we use in (8) are the derivative channels on all [7] Martin J. Wainwright and Eero P. Simoncelli, “Scale mix-

three components in the YUV color space, a total of nine channels. tures of gaussians and the statistics of natural imaged;”

The vectorsC; were constructed frord x 3 x 2 blocks. The im- vances in Neural Information Processing Systewd. 12,

plementation runs only on one field of the interlaced frames. The pp. 855-861, 2000.

results are given in Table 1. [8] Eero P. Simoncelli, “Vision and the statistics of the visual
It can be seen that even with a very simple implementation using environment,” Current Opinion in Neurobiologyvol. 13,

separable kernels and only one level of decomposition, the VIF Apr. 2003.

outperforms the highest performing proponent in the VQEG study
[12]. Moreover, four of the 20 source sequences in the dataset are
unnatural videos (computer generated or scrolling text), and Table
1 also gives the results when these sequences are excluded from

[9] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An infor-
mation fidelity criterion for image quality assessment using
natural scene statisticdEEE Trans. Image Processinilar.
2004, Accepted.

testing.

9 . [10] Eero P. Simoncelli and Bruno A. Olshausen, “Natural im-
5 Conclusions age statistics and neural representatioArinual Review of
In this paper we have presented a novel visual information fidelity Neurosciencevol. 24, pp. 1193-216, May 2001.
criterion that quantifies the Shannon information presentin the dis- [11] Vasily Strela, Javier Portilla, and Eero Simoncelli, “Image
torted video relative to the information present in the reference denoising using a local Gaussian Scale Mixture model in the
video. We showed that VIF is a competitive way of measuring wavelet domain,Proc. SPIE vol. 4119, pp. 363-371, 2000.

fidelity that relates weI_I with vi_sual quality. We validated the per- [12] VQEG, “Final report from the video quality experts group
formance of our algorithm using the VQEG Phase-| dataset, and on the validation of objective models of video quality assess-
showed that the proposed method is competitive with the state-of- ment,” http://Awww.vgeg.org/ Mar. 2000

the-art methods and outperforms them in our simulations. ' ' ' ' T '



