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Abstract—Objective methods for assessing perceptual im-
age quality have traditionally attempted to quantify the vis-
ibility of errors between a distorted image and a reference
image using a variety of known properties of the human
visual system. Under the assumption that human visual
perception is highly adapted for extracting structural infor-
mation from a scene, we introduce an alternative framework
for quality assessment based on the degradation of struc-
tural information. As a specific example of this concept,
we develop a Structural Similarity Index and demonstrate
its promise through a set of intuitive examples, as well as
comparison to both subjective ratings and state-of-the-art
objective methods on a database of images compressed with
JPEG and JPEG2000.1
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I. Introduction

Digital images are subject to a wide variety of distor-
tions during acquisition, processing, compression, storage,
transmission and reproduction, any of which may result
in a degradation of visual quality. For applications in
which images are ultimately to be viewed by human be-
ings, the only “correct” method of quantifying visual im-
age quality is through subjective evaluation. In practice,
however, subjective evaluation is usually too inconvenient,
time-consuming and expensive. The goal of research in ob-
jective image quality assessment is to develop quantitative
measures that can automatically predict perceived image
quality.

An objective image quality metric can play a variety of
roles in image processing applications. First, it can be
used to dynamically monitor and adjust image quality. For
example, a network digital video server can examine the
quality of video being transmitted in order to control and
allocate streaming resources. Second, it can be used to
optimize algorithms and parameter settings of image pro-
cessing systems. For instance, in a visual communication
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system, a quality metric can assist in the optimal design of
prefiltering and bit assignment algorithms at the encoder
and of optimal reconstruction, error concealment and post-
filtering algorithms at the decoder. Third, it can be used
to benchmark image processing systems and algorithms.

Objective image quality metrics can be classified accord-
ing to the availability of an original (distortion-free) image,
with which the distorted image is to be compared. Most
existing approaches are known as full-reference, meaning
that a complete reference image is assumed to be known. In
many practical applications, however, the reference image
is not available, and a no-reference or “blind” quality as-
sessment approach is desirable. In a third type of method,
the reference image is only partially available, in the form
of a set of extracted features made available as side infor-
mation to help evaluate the quality of the distorted image.
This is referred to as reduced-reference quality assessment.
This paper focuses on full-reference image quality assess-
ment.

The simplest and most widely used full-reference quality
metric is the mean squared error (MSE), computed by aver-
aging the squared intensity differences of distorted and ref-
erence image pixels, along with the related quantity of peak
signal-to-noise ratio (PSNR). These are appealing because
they are simple to calculate, have clear physical meanings,
and are mathematically convenient in the context of opti-
mization. But they are not very well matched to perceived
visual quality (e.g., [1]–[9]). In the last three decades, a
great deal of effort has gone into the development of quality
assessment methods that take advantage of known charac-
teristics of the human visual system (HVS). The majority
of the proposed perceptual quality assessment models have
followed a strategy of modifying the MSE measure so that
errors are penalized in accordance with their visibility. Sec-
tion II summarizes this type of error-sensitivity approach
and discusses its difficulties and limitations. In Section III,
we describe a new paradigm for quality assessment, based
on the hypothesis that the HVS is highly adapted for ex-
tracting structural information. As a specific example, we
develop a measure of structural similarity that compares lo-
cal patterns of pixel intensities that have been normalized
for luminance and contrast. In Section IV, we compare the
test results of different quality assessment models against
a large set of subjective ratings gathered for a database of
344 images compressed with JPEG and JPEG2000.



2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

Reference
signal

Distorted
signal

Quality/
Distortion
Measure

Channel
Decomposition

Error
Normalization

.

.

.

Error
Pooling

Pre-
processing

CSF
Filtering

.

.

.

Fig. 1. A prototypical quality assessment system based on error sensitivity. Note that the CSF feature can be implemented either as a
separate stage (as shown) or within “Error Normalization”.

II. Image Quality Assessment Based on Error
Sensitivity

An image signal whose quality is being evaluated can
be thought of as a sum of an undistorted reference signal
and an error signal. A widely adopted assumption is that
the loss of perceptual quality is directly related to the vis-
ibility of the error signal. The simplest implementation
of this concept is the MSE, which objectively quantifies
the strength of the error signal. But two distorted images
with the same MSE may have very different types of errors,
some of which are much more visible than others. Most
perceptual image quality assessment approaches proposed
in the literature attempt to weight different aspects of the
error signal according to their visibility, as determined by
psychophysical measurements in humans or physiological
measurements in animals. This approach was pioneered
by Mannos and Sakrison [10], and has been extended by
many other researchers over the years. Reviews on image
and video quality assessment algorithms can be found in
[4], [11]–[13].

A. Framework

Fig. 1 illustrates a generic image quality assessment
framework based on error sensitivity. Most perceptual
quality assessment models can be described with a simi-
lar diagram, although they differ in detail. The stages of
the diagram are as follows:

Pre-processing. This stage typically performs a variety
of basic operations to eliminate known distortions from the
images being compared. First, the distorted and reference
signals are properly scaled and aligned. Second, the signal
might be transformed into a color space (e.g., [14]) that is
more appropriate for the HVS. Third, quality assessment
metrics may need to convert the digital pixel values stored
in the computer memory into luminance values of pixels on
the display device through pointwise nonlinear transforma-
tions. Fourth, a low-pass filter simulating the point spread
function of the eye optics may be applied. Finally, the ref-
erence and the distorted images may be modified using a
nonlinear point operation to simulate light adaptation.

CSF Filtering. The contrast sensitivity function (CSF)
describes the sensitivity of the HVS to different spatial and
temporal frequencies that are present in the visual stim-
ulus. Some image quality metrics include a stage that
weights the signal according to this function (typically im-
plemented using a linear filter that approximates the fre-

quency response of the CSF). However, many recent met-
rics choose to implement CSF as a base-sensitivity normal-
ization factor after channel decomposition.

Channel Decomposition. The images are typically sep-
arated into subbands (commonly called “channels” in the
psychophysics literature) that are selective for spatial and
temporal frequency as well as orientation. While some
quality assessment methods implement sophisticated chan-
nel decompositions that are believed to be closely re-
lated to the neural responses in the primary visual cortex
[2], [15]–[19], many metrics use simpler transforms such as
the discrete cosine transform (DCT) [20], [21] or separa-
ble wavelet transforms [22]–[24]. Channel decompositions
tuned to various temporal frequencies have also been re-
ported for video quality assessment [5], [25].

Error Normalization. The error (difference) between the
decomposed reference and distorted signals in each channel
is calculated and normalized according to a certain masking
model, which takes into account the fact that the presence
of one image component will decrease the visibility of an-
other image component that is proximate in spatial or tem-
poral location, spatial frequency, or orientation. The nor-
malization mechanism weights the error signal in a channel
by a space-varying visibility threshold [26]. The visibility
threshold at each point is calculated based on the energy
of the reference and/or distorted coefficients in a neighbor-
hood (which may include coefficients from within a spatial
neighborhood of the same channel as well as other chan-
nels) and the base-sensitivity for that channel. The normal-
ization process is intended to convert the error into units of
just noticeable difference (JND). Some methods also con-
sider the effect of contrast response saturation (e.g., [2]).

Error Pooling. The final stage of all quality metrics must
combine the normalized error signals over the spatial extent
of the image, and across the different channels, into a single
value. For most quality assessment methods, pooling takes
the form of a Minkowski norm:

E ({el,k}) =

(∑

l

∑

k

|el,k|β
)1/β

(1)

where el,k is the normalized error of the k-th coefficient in
the l-th channel, and β is a constant exponent typically
chosen to lie between 1 and 4. Minkowski pooling may be
performed over space (index k) and then over frequency
(index l), or vice-versa, with some non-linearity between
them, or possibly with different exponents β. A spatial
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map indicating the relative importance of different regions
may also be used to provide spatially variant weighting
[25], [27], [28].

B. Limitations

The underlying principle of the error-sensitivity ap-
proach is that perceptual quality is best estimated by quan-
tifying the visibility of errors. This is essentially accom-
plished by simulating the functional properties of early
stages of the HVS, as characterized by both psychophysical
and physiological experiments. Although this bottom-up
approach to the problem has found nearly universal ac-
ceptance, it is important to recognize its limitations. In
particular, the HVS is a complex and highly non-linear sys-
tem, but most models of early vision are based on linear or
quasi-linear operators that have been characterized using
restricted and simplistic stimuli. Thus, error-sensitivity ap-
proaches must rely on a number of strong assumptions and
generalizations. These have been noted by many previous
authors, and we provide only a brief summary here.

The Quality Definition Problem. The most fundamen-
tal problem with the traditional approach is the definition
of image quality. In particular, it is not clear that error
visibility should be equated with loss of quality, as some
distortions may be clearly visible but not so objectionable.
An obvious example would be multiplication of the image
intensities by a global scale factor. The study in [29] also
suggested that the correlation between image fidelity and
image quality is only moderate.

The Suprathreshold Problem. The psychophysical ex-
periments that underlie many error sensitivity models are
specifically designed to estimate the threshold at which a
stimulus is just barely visible. These measured threshold
values are then used to define visual error sensitivity mea-
sures, such as the CSF and various masking effects. How-
ever, very few psychophysical studies indicate whether such
near-threshold models can be generalized to characterize
perceptual distortions significantly larger than threshold
levels, as is the case in a majority of image processing situ-
ations. In the suprathreshold range, can the relative visual
distortions between different channels be normalized using
the visibility thresholds? Recent efforts have been made
to incorporate suprathreshold psychophysics for analyzing
image distortions (e.g., [30]–[34]).

The Natural Image Complexity Problem. Most psy-
chophysical experiments are conducted using relatively
simple patterns, such as spots, bars, or sinusoidal gratings.
For example, the CSF is typically obtained from threshold
experiments using global sinusoidal images. The masking
phenomena are usually characterized using a superposition
of two (or perhaps a few) different patterns. But all such
patterns are much simpler than real world images, which
can be thought of as a superposition of a much larger num-
ber of simple patterns. Can the models for the interactions
between a few simple patterns generalize to evaluate in-
teractions between tens or hundreds of patterns? Is this
limited number of simple-stimulus experiments sufficient
to build a model that can predict the visual quality of

complex-structured natural images? Although the answers
to these questions are currently not known, the recently es-
tablished Modelfest dataset [35] includes both simple and
complex patterns, and should facilitate future studies.

The Decorrelation Problem. When one chooses to use a
Minkowski metric for spatially pooling errors, one is im-
plicitly assuming that errors at different locations are sta-
tistically independent. This would be true if the processing
prior to the pooling eliminated dependencies in the input
signals. Empirically, however, this is not the case for linear
channel decomposition methods such as the wavelet trans-
form. It has been shown that a strong dependency exists
between intra- and inter-channel wavelet coefficients of nat-
ural images [36],[37]. In fact, state-of-the-art wavelet image
compression techniques achieve their success by exploiting
this strong dependency [38]–[41]. Psychophysically, various
visual masking models have been used to account for the
interactions between coefficients [2], [42]. Statistically, it
has been shown that a well-designed nonlinear gain control
model, in which parameters are optimized to reduce depen-
dencies rather than for fitting data from masking experi-
ments, can greatly reduce the dependencies of the trans-
form coefficients [43], [44]. In [45], [46], it is shown that
optimal design of transformation and masking models can
reduce both statistical and perceptual dependencies. It re-
mains to be seen how much these models can improve the
performance of the current quality assessment algorithms.

The Cognitive Interaction Problem. It is widely known
that cognitive understanding and interactive visual pro-
cessing (e.g., eye movements) influence the perceived qual-
ity of images. For example, a human observer will give
different quality scores to the same image if s/he is pro-
vided with different instructions [4],[30]. Prior information
regarding the image content, or attention and fixation, may
also affect the evaluation of the image quality [4], [47]. But
most image quality metrics do not consider these effects,
as they are difficult to quantify and not well understood.

III. Structural Similarity Based Image Quality
Assessment

Natural image signals are highly structured: Their pixels
exhibit strong dependencies, especially when they are spa-
tially proximate, and these dependencies carry important
information about the structure of the objects in the visual
scene. The Minkowski error metric is based on pointwise
signal differences, which are independent of the underlying
signal structure. Although most quality measures based
on error sensitivity decompose image signals using linear
transformations, these do not remove the strong dependen-
cies, as discussed in the previous section. The motivation
of our new approach is to find a more direct way to compare
the structures of the reference and the distorted signals.

A. New Philosophy

In [6] and [9], a new framework for the design of image
quality measures was proposed, based on the assumption
that the human visual system is highly adapted to extract
structural information from the viewing field. It follows
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Fig. 2. Comparison of “Boat” images with different types of distortions, all with MSE = 210. (a) Original image (8bits/pixel; cropped
from 512×512 to 256×256 for visibility); (b) Contrast stretched image, MSSIM = 0.9168; (c) Mean-shifted image, MSSIM = 0.9900; (d)
JPEG compressed image, MSSIM = 0.6949; (e) Blurred image, MSSIM = 0.7052; (f) Salt-pepper impulsive noise contaminated image,
MSSIM = 0.7748.

that a measure of structural information change can pro-
vide a good approximation to perceived image distortion.

This new philosophy can be best understood through
comparison with the error sensitivity philosophy. First,
the error sensitivity approach estimates perceived errors
to quantify image degradations, while the new philosophy
considers image degradations as perceived changes in struc-
tural information. A motivating example is shown in Fig.
2, where the original “Boat” image is altered with different
distortions, each adjusted to yield nearly identical MSE
relative to the original image. Despite this, the images
can be seen to have drastically different perceptual qual-
ity. With the error sensitivity philosophy, it is difficult
to explain why the contrast-stretched image has very high
quality in consideration of the fact that its visual differ-
ence from the reference image is easily discerned. But it
is easily understood with the new philosophy since nearly
all the structural information of the reference image is pre-
served, in the sense that the original information can be
nearly fully recovered via a simple pointwise inverse linear
luminance transform (except perhaps for the very bright
and dark regions where saturation occurs). On the other
hand, some structural information from the original im-

age is permanently lost in the JPEG compressed and the
blurred images, and therefore they should be given lower
quality scores than the contrast-stretched and mean-shifted
images.

Second, the error-sensitivity paradigm is a bottom-up
approach, simulating the function of relevant early-stage
components in the HVS. The new paradigm is a top-down
approach, mimicking the hypothesized functionality of the
overall HVS. This, on the one hand, avoids the suprathresh-
old problem mentioned in the previous section because it
does not rely on threshold psychophysics to quantify the
perceived distortions. On the other hand, the cognitive
interaction problem is also reduced to a certain extent be-
cause probing the structures of the objects being observed
is thought of as the purpose of the entire process of visual
observation, including high level and interactive processes.

Third, the problems of natural image complexity and
decorrelation are also avoided to some extent because the
new philosophy does not attempt to predict image quality
by accumulating the errors associated with psychophysi-
cally understood simple patterns. Instead, the new philos-
ophy proposes to evaluate the structural changes between
two complex-structured signals directly.
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B. The Structural SIMilarity (SSIM) Index

We construct a specific example of a structural similarity
quality measure from the perspective of image formation.
A previous instantiation of this approach was made in [6]–
[8] and promising results on simple tests were achieved.
In this paper, we generalize this algorithm, and provide a
more extensive set of validation results.

The luminance of the surface of an object being observed
is the product of the illumination and the reflectance, but
the structures of the objects in the scene are independent
of the illumination. Consequently, to explore the structural
information in an image, we wish to separate the influence
of the illumination. We define the structural information in
an image as those attributes that represent the structure of
objects in the scene, independent of the average luminance
and contrast. Since luminance and contrast can vary across
a scene, we use the local luminance and contrast for our
definition.

The system diagram of the proposed quality assessment
system is shown in Fig. 3. Suppose x and y are two non-
negative image signals, which have been aligned with each
other (e.g., spatial patches extracted from each image). If
we consider one of the signals to have perfect quality, then
the similarity measure can serve as a quantitative measure-
ment of the quality of the second signal. The system sep-
arates the task of similarity measurement into three com-
parisons: luminance, contrast and structure. First, the
luminance of each signal is compared. Assuming discrete
signals, this is estimated as the mean intensity:

µx =
1
N

N∑

i=1

xi . (2)

The luminance comparison function l(x,y) is then a func-
tion of µx and µy.

Second, we remove the mean intensity from the signal.
In discrete form, the resulting signal x−µx corresponds to
the projection of vector x onto the hyperplane defined by

N∑

i=1

xi = 0 . (3)

We use the standard deviation (the square root of variance)
as an estimate of the signal contrast. An unbiased estimate
in discrete form is given by

σx =

(
1

N − 1

N∑

i=1

(xi − µx)2
)1/2

. (4)

The contrast comparison c(x,y) is then the comparison of
σx and σy.

Third, the signal is normalized (divided) by its own stan-
dard deviation, so that the two signals being compared
have unit standard deviation. The structure comparison
s(x,y) is conducted on these normalized signals (x−µx)/σx

and (y− µy)/σy.

Finally, the three components are combined to yield an
overall similarity measure:

S(x,y) = f(l(x,y), c(x,y), s(x,y)) . (5)

An important point is that the three components are rela-
tively independent. For example, the change of luminance
and/or contrast will not affect the structures of images.

In order to complete the definition of the similarity mea-
sure in Eq. (5), we need to define the three functions
l(x,y), c(x,y), s(x,y), as well as the combination func-
tion f(·). We also would like the similarity measure to
satisfy the following conditions:

1. Symmetry: S(x,y) = S(y,x);
2. Boundedness: S(x,y) ≤ 1;
3. Unique maximum: S(x,y) = 1 if and only if x = y (in
discrete representations, xi = yi for all i = 1, 2, · · · , N);

For luminance comparison, we define

l(x,y) =
2 µx µy + C1

µ2
x + µ2

y + C1
. (6)

where the constant C1 is included to avoid instability when
µ2

x + µ2
y is very close to zero. Specifically, we choose

C1 = (K1 L)2 , (7)

where L is the dynamic range of the pixel values (255 for
8-bit grayscale images), and K1 ¿ 1 is a small constant.
Similar considerations also apply to contrast comparison
and structure comparison described later. Eq. (6) is easily
seen to obey the three properties listed above.

Equation (6) is also qualitatively consistent with We-
ber’s law, which has been widely used to model light adap-
tation (also called luminance masking) in the HVS. Ac-
cording to Weber’s law, the magnitude of a just-noticeable
luminance change ∆I is approximately proportional to the
background luminance I for a wide range of luminance val-
ues. In other words, the HVS is sensitive to the relative
luminance change, and not the absolute luminance change.
Letting R represent the size of luminance change relative
to background luminance, we rewrite the luminance of the
distorted signal as µy = (1 + R)µx. Substituting this into
Eq. (6) gives

l(x,y) =
2(1 + R)

1 + (1 + R)2 + C1/µ2
x

. (8)

If we assume C1 is small enough (relative to µ2
x) to be

ignored, then l(x,y) is a function only of R, qualitatively
consistent with Weber’s law.

The contrast comparison function takes a similar form:

c(x,y) =
2 σx σy + C2

σ2
x + σ2

y + C2
, (9)

where C2 = (K2 L)2, and K2 ¿ 1. This definition again
satisfies the three properties listed above. An important
feature of this function is that with the same amount of
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Fig. 3. Diagram of the structural similarity (SSIM) measurement system.

contrast change ∆σ = σy−σx, this measure is less sensitive
to the case of high base contrast σx than low base contrast.
This is consistent with the contrast masking feature of the
HVS.

Structure comparison is conducted after luminance sub-
traction and variance normalization. Specifically, we as-
sociate the two unit vectors (x− µx)/σx and (y− µy)/σy,
each lying in the hyperplane defined by Eq. (3), with the
structure of the two images. The correlation (inner prod-
uct) between these is a simple and effective measure to
quantify the structural similarity. Notice that the corre-
lation between (x− µx)/σx and (y− µy)/σy is equivalent
to the correlation coefficient between x and y. Thus, we
define the structure comparison function as follows:

s(x,y) =
σxy + C3

σx σy + C3
. (10)

As in the luminance and contrast measures, we have intro-
duced a small constant in both denominator and numera-
tor. In discrete form, σxy can be estimated as:

σxy =
1

N − 1

N∑

i=1

(xi − µx)(yi − µy) . (11)

Geometrically, the correlation coefficient corresponds to
the cosine of the angle between the vectors x − µx and
y−µy. Note also that s(x,y) can take on negative values.

Finally, we combine the three comparisons of Eqs. (6),
(9) and (10) and name the resulting similarity measure the
Structural SIMilarity (SSIM) index between signals x and
y:

SSIM(x,y) = [l(x,y)]α · [c(x,y)]β · [s(x,y)]γ , (12)

where α > 0, β > 0 and γ > 0 are parameters used to
adjust the relative importance of the three components.
It is easy to verify that this definition satisfies the three
conditions given above. In order to simplify the expression,
we set α = β = γ = 1 and C3 = C2/2 in this paper. This

results in a specific form of the SSIM index:

SSIM(x,y) =
(2 µx µy + C1) (2 σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
. (13)

The “universal quality index” (UQI) defined in [6], [7] cor-
responds to the special case that C1 = C2 = 0, which pro-
duces unstable results when either (µ2

x + µ2
y) or (σ2

x + σ2
y)

is very close to zero.
The relationship between the SSIM index and more tra-

ditional quality metrics may be illustrated geometrically in
a vector space of image components. These image com-
ponents can be either pixel intensities or other extracted
features such as transformed linear coefficients. Fig. 4
shows equal-distortion contours drawn around three differ-
ent example reference vectors, each of which represents the
local content of one reference image. For the purpose of
illustration, we show only a two-dimensional space, but in
general the dimensionality should match the number of im-
age components being compared. Each contour represents
a set of images with equal distortions relative to the en-
closed reference image. Fig. 4(a) shows the result for a
simple Minkowski metric. Each contour has the same size
and shape (a circle here, as we are assuming an exponent of
2). That is, perceptual distance corresponds to Euclidean
distance. Fig. 4(b) shows a Minkowski metric in which
different image components are weighted differently. This
could be, for example, weighting according to the CSF, as
is common in many models. Here the contours are ellipses,
but still are all the same size. These are shown aligned
with the axes, but in general could be tilted to any fixed
orientation.

Many recent models incorporate contrast masking be-
haviors, which has the effect of rescaling the equal-
distortion contours according to the signal magnitude, as
shown in Fig. 4(c). This may be viewed as a type of
adaptive distortion metric: it depends not just on the dif-
ference between the signals, but also on the signals them-
selves. Fig. 4(d) shows a combination of contrast masking
(magnitude weighting) followed by component weighting.
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Fig. 4. Three example equal-distance contours for different quality metrics. (a) Minkowski error measurement systems; (b) component-
weighted Minkowski error measurement systems; (c) magnitude-weighted Minkowski error measurement systems; (d) magnitude and
component-weighted Minkowski error measurement systems; (e) the proposed system (a combination of Eqs. (9) and (10)) with more
emphasis on s(x,y); (f) the proposed system (a combination of Eqs. (9) and (10)) with more emphasis on c(x,y). Each image is
represented as a vector, whose entries are image components. Note: this is an illustration in 2-D space. In practice, the number of
dimensions should be equal to the number of image components used for comparison (e.g, the number of pixels or transform coefficients).

Our proposed method, on the other hand, separately com-
putes a comparison of two independent quantities: the vec-
tor lengths, and their angles. Thus, the contours will be
aligned with the axes of a polar coordinate system. Figs.
4(e) and 4(f) show two examples of this, computed with dif-
ferent exponents. Again, this may be viewed as an adaptive
distortion metric, but unlike previous models, both the size
and the shape of the contours are adapted to the underlying
signal. Some recent models that use divisive normalization
to describe masking effects also exhibit signal-dependent
contour orientations (e.g., [45], [46], [48]), although precise
alignment with the axes of a polar coordinate system as in
Figs. 4(e) and 4(f) is not observed in these methods.

C. Image Quality Assessment using SSIM index

For image quality assessment, it is useful to apply the
SSIM index locally rather than globally. First, image sta-
tistical features are usually highly spatially non-stationary.
Second, image distortions, which may or may not depend
on the local image statistics, may also be space-variant.
Third, at typical viewing distances, only a local area in
the image can be perceived with high resolution by the hu-
man observer at one time instance (because of the foveation
feature of the HVS [49], [50]). And finally, localized qual-

ity measurement can provide a spatially varying quality
map of the image, which delivers more information about
the quality degradation of the image and may be useful in
some applications.

In [6], [7], the local statistics µx, σx and σxy are com-
puted within a local 8 × 8 square window, which moves
pixel-by-pixel over the entire image. At each step, the local
statistics and SSIM index are calculated within the local
window. One problem with this method is that the re-
sulting SSIM index map often exhibits undesirable “block-
ing” artifacts. In this paper, we use an 11 × 11 circular-
symmetric Gaussian weighting function w = {wi | i =
1, 2, · · · , N}, with standard deviation of 1.5 samples, nor-
malized to unit sum (

∑N
i=1 wi = 1). The estimates of local

statistics µx, σx and σxy are then modified accordingly as

µx =
N∑

i=1

wi xi . (14)

σx =

(
N∑

i=1

wi (xi − µx)2
)1/2

. (15)

σxy =
N∑

i=1

wi (xi − µx)(yi − µy) . (16)
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With such a windowing approach, the quality maps exhibit
a locally isotropic property. Throughout this paper, the
SSIM measure uses the following parameter settings: K1=
0.01; K2= 0.03. These values are somewhat arbitrary, but
we find that in our current experiments, the performance of
the SSIM index algorithm is fairly insensitive to variations
of these values.

In practice, one usually requires a single overall qual-
ity measure of the entire image. We use a mean SSIM
(MSSIM) index to evaluate the overall image quality:

MSSIM(X,Y) =
1
M

M∑

j=1

SSIM(xj ,yj) , (17)

where X and Y are the reference and the distorted images,
respectively; xj and yj are the image contents at the j-th
local window; and M is the number of local windows in the
image. Depending on the application, it is also possible
to compute a weighted average of the different samples in
the SSIM index map. For example, region-of-interest image
processing systems may give different weights to different
segmented regions in the image. As another example, it has
been observed that different image textures attract human
fixations with varying degrees (e.g., [51], [52]). A smoothly
varying foveated weighting model (e.g., [50]) can be em-
ployed to define the weights. In this paper, however, we
use uniform weighting. A MatLab implementation of the
SSIM index algorithm is available online at [53].

IV. Experimental Results

Many image quality assessment algorithms have been
shown to behave consistently when applied to distorted im-
ages created from the same original image, using the same
type of distortions (e.g., JPEG compression). However, the
effectiveness of these models degrades significantly when
applied to a set of images originating from different refer-
ence images, and/or including a variety of different types
of distortions. Thus, cross-image and cross-distortion tests
are critical in evaluating the effectiveness of an image qual-
ity metric. It is impossible to show a thorough set of such
examples, but the images in Fig. 2 provide an encouraging
starting point for testing the cross-distortion capability of
the quality assessment algorithms. The MSE and MSSIM
measurement results are given in the figure caption. Obvi-
ously, MSE performs very poorly in this case. The MSSIM
values exhibit much better consistency with the qualitative
visual appearance.

A. Best-case/worst-case Validation

We also have developed a more efficient methodology for
examining the relationship between our objective measure
and perceived quality. Starting from a distorted image, we
ascend/descend the gradient of MSSIM while constraining
the MSE to remain equal to that of the initial distorted
image. Specifically, we iterate the following two linear-
algebraic steps:

(1) Y → Y± λ P (X,Y) ~∇YMSSIM(X,Y)

(a) (b)

(c)

(d)

gradient
ascent

add
noise

original image

gradient
descent

Fig. 5. Best- and worst-case MSSIM images, with identical MSE.
These are computed by gradient ascent/descent iterative search
on MSSIM measure, under the constraint of MSE = 2500. (a)
Original image (100×100, 8bits/pixel, cropped from the “Boat”
image); (b) Initial image, contaminated with Gaussian white
noise (MSSIM = 0.3021); (c) Maximum MSSIM image (MSSIM
= 0.9337); (d) Minimum MSSIM image (MSSIM = −0.5411).

(2) Y → X + σ Ê(X,Y)

where σ is the square root of the constrained MSE, λ con-
trols the step size, Ê(X,Y) is a unit vector defined by

Ê(X,Y) =
Y−X
||Y−X|| ,

and P (X,Y) is a projection operator:

P (X,Y) = I− Ê(X,Y) ÊT (X,Y),

with I the identity operator. MSSIM is differentiable and
this procedure converges to a local maximum/minimum
of the objective measure. Visual inspection of these best-
and worst-case images, along with the initial distorted im-
age, provides a visual indication of the types of distortion
deemed least/most important by the objective measure.
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Therefore, it is an expedient and direct method for reveal-
ing perceptual implications of the quality measure. An
example is shown in Fig. 5, where the initial image is con-
taminated with Gaussian white noise. It can be seen that
the local structures of the original image are very well pre-
served in the maximal MSSIM image. On the other hand,
the image structures are changed dramatically in the worst-
case MSSIM image, in some cases reversing contrast.

B. Test on JPEG and JPEG2000 Image Database

We compare the cross-distortion and cross-image perfor-
mances of different quality assessment models on an image
database composed of JPEG and JPEG2000 compressed
images. Twenty-nine high-resolution 24 bits/pixel RGB
color images (typically 768×512 or similar size) were com-
pressed at a range of quality levels using either JPEG or
JPEG2000, producing a total of 175 JPEG images and
169 JPEG2000 images. The bit rates were in the range
of 0.150 to 3.336 and 0.028 to 3.150 bits/pixel, respec-
tively, and were chosen non-uniformly such that the result-
ing distribution of subjective quality scores was approx-
imately uniform over the entire range. Subjects viewed
the images from comfortable seating distances (this dis-
tance was only moderately controlled, to allow the data to
reflect natural viewing conditions), and were asked to pro-
vide their perception of quality on a continuous linear scale
that was divided into five equal regions marked with ad-
jectives “Bad”, “Poor”, “Fair”, “Good” and “Excellent”.
Each JPEG and JPEG2000 compressed image was viewed
by 13 ∼ 20 subjects and 25 subjects, respectively. The
subjects were mostly male college students.

Raw scores for each subject were normalized by the mean
and variance of scores for that subject (i.e., raw values were
converted to Z-scores [54]) and then the entire data set was
rescaled to fill the range from 1 to 100. Mean opinion scores
(MOSs) were then computed for each image, after removing
outliers (most subjects had no outliers). The average stan-
dard deviations (for each image) of the subjective scores
for JPEG, JPEG2000 and all images were 6.00, 7.33 and
6.65, respectively. The image database, together with the
subjective score and standard deviation for each image, has
been made available on the Internet at [55].

The luminance component of each JPEG and JPEG2000
compressed image is averaged over local 2× 2 window and
downsampled by a factor of 2 before the MSSIM value is
calculated. Our experiments with the current dataset show
that the use of the other color components does not signif-
icantly change the performance of the model, though this
should not be considered generally true for color image
quality assessment. Unlike many other perceptual image
quality assessment approaches, no specific training proce-
dure is employed before applying the proposed algorithm
to the database, because the proposed method is intended
for general-purpose image quality assessment (as opposed
to image compression alone).

Figs. 6 and 7 show some example images from the
database at different quality levels, together with their
SSIM index maps and absolute error maps. Note that

at low bit rate, the coarse quantization in JPEG and
JPEG2000 algorithms often results in smooth representa-
tions of fine-detail regions in the image (e.g., the tiles in
Fig.6(d) and the trees in Fig.7(d)). Compared with other
types of regions, these regions may not be worse in terms
of pointwise difference measures such as the absolute error.
However, since the structural information of the image de-
tails are nearly completely lost, they exhibit poorer visual
quality. Comparing Fig. 6(g) with Fig. 6(j), and Fig.
7(g) with 6(j)), we observe that the SSIM index is better
in capturing such poor quality regions. Also notice that
for images with intensive strong edge structures such as
Fig. 7(c), it is difficult to reduce the pointwise errors in
the compressed image, even at relatively high bit rate, as
exemplified by Fig. 7(l). However, the compressed image
supplies acceptable perceived quality as shown in Fig. 7(f).
In fact, although the visual quality of Fig. 7(f) is better
than Fig. 7(e), its absolute error map Fig. 7(l) appears to
be worse than Fig. 7(k), as is confirmed by their PSNR
values. The SSIM index maps, Figs. 7(h) and 7(i), deliver
better consistency with perceived quality measurement.

The quality assessment models used for comparison in-
clude PSNR, the well-known Sarnoff model [56]2, UQI [7]
and MSSIM. The scatter plot of MOS versus model pre-
diction for each model is shown in Fig. 8. If PSNR is con-
sidered as a benchmark method to evaluate the effective-
ness of the other image quality metrics, the Sarnoff model
performs quite well in this test. This is in contrast with
previous published test results (e.g., [57], [58]), where the
performance of most models (including the Sarnoff model)
were reported to be statistically equivalent to root mean
squared error [57] and PSNR [58]. The UQI method per-
forms much better than MSE for the simple cross-distortion
test in [7], [8], but does not deliver satisfactory results in
Fig. 8. We think the major reason is that at nearly flat re-
gions, the denominator of the contrast comparison formula
is close to zero, which makes the algorithm unstable. By in-
serting the small constants C1 and C2, MSSIM completely
avoids this problem and the scatter slot demonstrates that
it supplies remarkably good prediction of the subjective
scores.

In order to provide quantitative measures on the perfor-
mance of the objective quality assessment models, we fol-
low the performance evaluation procedures employed in the
video quality experts group (VQEG) Phase I FR-TV test
[58], where four evaluation metrics were used. First, logistic
functions are used in a fitting procedure to provide a non-
linear mapping between the objective/subjective scores.
The fitted curves are shown in Fig. 8. In [58], Metric 1
is the correlation coefficient between objective/subjective
scores after variance-weighted regression analysis. Metric
2 is the correlation coefficient between objective/subjective
scores after non-linear regression analysis. These two met-
rics combined, provide an evaluation of prediction accuracy.
The third metric is the Spearman rank-order correlation co-

2The JNDmetrix software available online from the Sarnoff Cor-
poration, at http://www.sarnoff.com/products_services/video_
vision/jndmetrix/.
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Fig. 6. Sample JPEG images compressed to different quality levels (original size: 768×512; cropped to 256×192 for visibility). (a), (b) and
(c) are the original “Buildings”, “Ocean” and “Monarch” images, respectively. (d) Compressed to 0.2673 bits/pixel, PSNR = 21.98dB,
MSSIM = 0.7118; (e) Compressed to 0.2980 bits/pixel, PSNR = 30.87dB, MSSIM = 0.8886; (f) Compressed to 0.7755 bits/pixel, PSNR
= 36.78dB, MSSIM = 0.9898. (g), (h) and (i) show SSIM maps of the compressed images, where brightness indicates the magnitude of
the local SSIM index (squared for visibility). (j), (k) and (l) show absolute error maps of the compressed images (contrast-inverted for
easier comparison to the SSIM maps).

efficient between the objective/subjective scores. It is con-
sidered as a measure of prediction monotonicity. Finally,
metric 4 is the outlier ratio (percentage of the number of
predictions outside the range of ±2 times of the standard
deviations) of the predictions after the non-linear mapping,
which is a measure of prediction consistency. More de-
tails on these metrics can be found in [58]. In addition to
these, we also calculated the mean absolute prediction error
(MAE), and root mean square prediction error (RMS) after
non-linear regression, and weighted mean absolute predic-
tion error (WMAE) and weighted root mean square pre-

diction error (WRMS) after variance-weighted regression.
The evaluation results for all the models being compared
are given in Table I. For every one of these criteria, MSSIM
performs better than all of the other models being com-
pared.

V. Discussion

In this paper, we have summarized the traditional
approach to image quality assessment based on error-
sensitivity, and have enumerated its limitations. We have
proposed the use of structural similarity as an alternative
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Fig. 7. Sample JPEG2000 images compressed to different quality levels (original size: 768×512; cropped to 256×192 for visibility). (a),
(b) and (c) are the original “Stream”, “Caps” and “Bikes” images, respectively. (d) Compressed to 0.1896 bits/pixel, PSNR = 23.46dB,
MSSIM = 0.7339; (e) Compressed to 0.1982 bits/pixel, PSNR = 34.56dB, MSSIM = 0.9409; (f) Compressed to 1.1454 bits/pixel, PSNR
= 33.47dB, MSSIM = 0.9747. (g), (h) and (i) show SSIM maps of the compressed images, where brightness indicates the magnitude of
the local SSIM index (squared for visibility). (j), (k) and (l) show absolute error maps of the compressed images (contrast-inverted for
easier comparison to the SSIM maps).

motivating principle for the design of image quality mea-
sures. To demonstrate our structural similarity concept,
we developed an SSIM index and showed that it compares
favorably with other methods in accounting for our exper-
imental measurements of subjective quality of 344 JPEG
and JPEG2000 compressed images.

Although the proposed SSIM index method is motivated
from substantially different design principles, we see it as
complementary to the traditional approach. Careful anal-
ysis shows that both the SSIM index and several recently
developed divisive-normalization based masking models ex-

hibit input-dependent behavior in measuring signal distor-
tions [45], [46], [48]. It seems possible that the two ap-
proaches may eventually converge to similar solutions.

There are a number of issues that are worth investigation
with regard to the specific SSIM index of Eq. (12). First,
the optimization of the SSIM index for various image pro-
cessing algorithms needs to be studied. For example, it
may be employed for rate-distortion optimizations in the
design of image compression algorithms. This is not an
easy task since Eq. (12) is mathematically more cumber-
some than MSE. Second, the application scope of the SSIM
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Fig. 8. Scatter plots of subjective mean opinion score (MOS) versus model prediction. Each sample point represents one test image. (a)
PSNR; (b) Sarnoff model [56]; (c) UQI [7] (equivalent to MSSIM with square window and K1 = K2 = 0); (d) MSSIM (Gaussian window,
K1 = 0.01, K2 = 0.03).

TABLE I

Performance comparison of image quality assessment models. CC: correlation coefficient; MAE: mean absolute error; RMS:

root mean squared error; OR: outlier ratio; WMAE: weighted mean absolute error; WRMS: weighted root mean squared

error; SROCC: Spearman rank-order correlation coefficient

Non-linear Regression Variance-weighted Regression Rank-order
Model CC MAE RMS OR CC WMAE WRMS OR SROCC
PSNR 0.905 6.53 8.45 0.157 0.903 6.18 8.26 0.140 0.901
Sarnoff 0.956 4.66 5.81 0.064 0.956 4.42 5.62 0.061 0.947
UQI 0.866 7.76 9.90 0.189 0.861 7.64 9.79 0.195 0.863

MSSIM 0.967 3.95 5.06 0.041 0.967 3.79 4.87 0.041 0.963

index may not be restricted to image processing. In fact,
because it is a symmetric measure, it can be thought of as
a similarity measure for comparing any two signals. The
signals can be either discrete or continuous, and can live in
a space of arbitrary dimensionality.

We consider the proposed SSIM indexing approach as a
particular implementation of the philosophy of structural
similarity, from an image formation point of view. Under
the same philosophy, other approaches may emerge that
could be significantly different from the proposed SSIM in-
dexing algorithm. Creative investigation of the concepts of
structural information and structural distortion are likely

to drive the success of these innovations.
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