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ABSTRACT

Measurement of image quality is crucial for many image-
processing algorithms. Traditionally, image quality assessment
algorithms predict visual quality by comparing a distorted image
against a reference image, typically by modeling the Human Vi-
sual System (HVS), or by using arbitrary signal fidelity criteria.
In this paper we adopt a new paradigm for image quality assess-
ment. We propose an information fidelity criterion that quanti-
fies the Shannon information that is shared between the reference
and the distorted images relative to the information contained in
the reference image itself. We use Natural Scene Statistics (NSS)
modeling in concert with an image degradation model and an HVS
model. We demonstrate the performance of our algorithm by test-
ing it on a data set of 779 images, and show that our method is
competitive with state of the art quality assessment methods, and
outperforms them in our simulations.

1. INTRODUCTION

Digital image and video processing systems are generally involved
with signals that are meant to convey reproductions of visual in-
formation for ‘human consumption’. Tradeoffs between system
resources and the visual quality are typically involved in design-
ing such systems, and accurate quality measurement algorithms
are needed in order to make these tradeoffs efficiently. The ob-
vious way of measuring quality is to solicit the opinion of human
observers. However, such subjective evaluations are not only cum-
bersome and expensive, but they also cannot be incorporated into
automatic systems that adjust themselves in real-time based on the
feedback of output quality. The goal of Quality Assessment (QA)
research is to discover automatic ways of accurately measuring vi-
sual quality.

Traditionally, researchers have focussed on measuring quality
by quantifying the similarity between a distorted (or test) image
and a reference image that is assumed to have perfect quality. The
Mean Squared Error (MSE), which is theL2 norm of the arith-
metic difference between the test and the reference images, is
widely used to quantify (the loss of) visual quality. Unfortunately
MSE, which is typically transformed into the Peak Signal to Noise
Ratio (PSNR), does not correlate strongly enough with perceptual
quality for most applications. In order to quantify the similarity
between the test and the reference images in a perceptually mean-
ingful manner, researchers have explored measuring error strength
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Fig. 1. Mutual information betweenC andE quantifies the in-
formation that the brain could ideally extract from the reference
image, whereas the mutual information betweenC andF quan-
tifies the corresponding information that could be extracted from
the test image.

after processing the test and the reference images with HVS mod-
els. The underlying premise is that the sensitivities of the HVS are
different for different aspects of the visual signal that it perceives,
such as brightness, contrast, frequency content, and the interaction
between different signal components, and it makes sense to com-
pute the strength of the error between the test and the reference
signals once the different sensitivities of the HVS have been accu-
rately accounted for. Thiserror sensitivity paradigmis abottom-
up approach in which researchers model the low-level features of
the HVS to achieve consistent quality predictions. Although such
methods have met with good success, there are many questions
that arise in their design [1]. Some researchers have therefore also
explored arbitrary signal fidelity criteria that are not affected by
assumptions about HVS models, but are motivated instead by the
need to capture the loss of visualstructurein the signal that the
HVS hypothetically extracts for cognitive understanding. Such
top-downmethods have also met with good success [1]. A review
of recent QA methods can be found in [2].

In this paper we explore a novel information theoretic criterion
for image fidelity using Natural Scene Statistics (NSS). Images
and videos of the three dimensional visual environment come from
a common class: the class of natural scenes. Natural scenes form
a tiny subspace in the space of all possible signals, and researchers
have developed sophisticated models to characterize these statis-
tics. Most real-world distortion processes disturb these statistics
and make the image or video signalsunnatural. Previously, we
proposed using natural scene models in conjunction with distor-
tion models to quantify the Shannon information shared between
the test and the reference images, and showed that this shared im-
age information is an aspect of fidelity that correlates well with
visual quality [3]. In this paper we also quantify the information
content of the reference image, since perceptual quality is likely
to vary with therelative information loss, and propose a unified
information fidelity criterion based on NSS, distortion and HVS
modeling. This is shown pictorially in Figure 1.



2. INFORMATION FIDELITY

Natural images of perfect quality can be modelled as the output of
a stochastic source, which are then distorted by a ‘channel’ (the
distortion operator) to give the test images. The mutual informa-
tion between the test and the reference images is a measure of the
information that is shared between the output of the channel and its
input, and in the context of natural image sources it could quantify
perceptual image fidelity [3]. We propose that this mutual infor-
mation can also be compared against the information content of
the reference image in order to quantify information fidelityrela-
tive to the information content of the reference image. We discuss
the components of the proposed method in this section.

2.1. The Source Model

Natural scenes, that is, images and videos of the three dimensional
visual environment captured using the visible spectrum, comprise
only a tiny subset of the space of all possible signals. Many re-
searchers have attempted to understand the structure of this sub-
space of natural images by studying their statistics. A good review
on NSS models can be found in [4]. Researchers believe that the
visual stimulus emanating from the natural environment drove the
evolution of the HVS, and that modeling natural scenes and the
HVS are essentially dual problems [5]. While many aspects of the
HVS have been studied and incorporated into quality assessment
algorithms, a usefully comprehensive (and feasible) understanding
is still lacking. NSS modeling may serve to fill this gap.

The natural scene model that we use in this paper is the Gaus-
sian scale mixture (GSM) model in the wavelet domain [6]. A
GSM is a random field (RF) that can be expressed as a product of
two independent RFs. That is, a GSMC = {−→C i : i ∈ I}, whereI
denotes the set of spatial indices for the RF, can be expressed as:

C = S · U = {Si · −→U i : i ∈ I} (1)

whereS = {Si : i ∈ I} is an RF of positive scalars and
U = {−→U i : i ∈ I} is a Gaussian vector RF with mean zero
and covarianceCU .

−→
C i and

−→
U i areM dimensional vectors, and

we assume the RFU to be white. In this paper we model each
subband of a scale-space-orientation wavelet decomposition (such
as the steerable pyramid [7]) as a GSM. We partition the subband
into non-overlapping blocks ofM coefficients each, assume each
block to be independent of others, and model each block as the
vector

−→
C i. With such a construction, it is easy to make the fol-

lowing observations:C is normally distributed givenS, and that−→
C i are conditionally independent giveS [6]. The GSM model has
been shown to capture key statistical features of natural images,
such as the heavy-tailed marginal distributions of, and the non-
linear dependencies between, the wavelet coefficients of natural
images [6].

We model each subband in the wavelet decomposition with a
separate GSM. However, we will only deal with one subband here
and later generalize the results for multiple subbands.

2.2. The Distortion Model

The distortion model that we use is a signal gain and additive noise
model in the wavelet domain:

D = GC + V = {gi
−→
C i +

−→
V i : i ∈ I} (2)

whereC denotes the RF from a subband in the reference signal,
D = {−→D i : i ∈ I} denotes the RF from the corresponding

subband from the test (distorted) signal,G = {gi : i ∈ I} is a de-
terministic scalar gain (attenuation) field andV = {−→V i : i ∈ I} is
a stationary additive zero-mean Gaussian noise RF with variance
CV = σ2

vI. The RFV is white and is independent ofS andU .
This is a simple, yet effective, distortion model that works well for
quality assessment purposes. It captures two important, and com-
plementary, distortion types: white noise (by the noise RFV) and
blur (by measuring the loss in higher frequencies using the scalar
attenuation fieldG). We also believe that this model adequately re-
flects ‘natural distortion operators’ in response to which the HVS
has evolved over eons. A more detailed motivation for this model
has been presented in [3].

2.3. The Human Visual System Model

The HVS model that we use is also described in the wavelet do-
main. Since HVS models are the dual of NSS models [5], many
aspects of the HVS are already modelled in the NSS description.
The components missing include the optical point spread function,
the contrast sensitivity function, internal neural noise etc. A more
detailed comparison of quality assessment using NSS models ver-
sus HVS models has been discussed in [3]. We found from exper-
iments that just modeling the internal neural noise gives marked
improvement in performance in terms of the ability of the overall
algorithm to predict quality.

The internal neural noise model that we use is an additive white
Gaussian noise model. Thus we model the neural noise as the
RFN = {−→N i : i ∈ I}, where

−→
N i are zero-mean uncorrelated

multivariate Gaussian with the same dimensionality as
−→
C i:

E = C +N reference image (3)

F = D +N test image (4)

whereE andF denote the visual signal at the output of the HVS
model from the reference and the test images respectively, from
which the brain extracts cognitive information. We model the co-
variance of the additive noise as:

CN = σ2
nI (5)

whereσ2
n is an HVS model parameter (variance of the internal

neuron noise).

2.4. The Visual Information Fidelity Criterion

With the source and the distortion models as described above, the
visual information fidelity criterion that we propose can be de-

rived. Let
−→
C

N
= (

−→
C 1,

−→
C 2, . . . ,

−→
C N ) denoteN elements from

C. LetSN ,
−→
D

N
,
−→
E

N
and

−→
F

N
be correspondingly defined. In this

section we will assume that the model parametersG, σ2
v andσ2

n are
known. In order to keep the problem analytically tractable, we will
analyze the conditional mutual information betweenC andE (or
F ) givenS. This is also in line with some divisive normalization
based HVS models which process the signals after ‘conditioning’
them with local variance estimates [6].

For the reference image, we can analyzeI(
−→
C

N
;
−→
E

N |SN =
sN ), wheresN denotes arealizationof SN . In this paper we will

denoteI(
−→
C

N
;
−→
E

N |−→S N
= sN ) asI(

−→
C

N
;
−→
E

N |sN ). With the
stated assumptions onC and the distortion model (2), we get:

I(
−→
C

N
;
−→
E

N |sN )=

N∑
j=1

N∑
i=1

I(
−→
C i;

−→
E j |−→C i−1

,
−→
E

j−1
, sN ) (6)



=

N∑
i=1

I(
−→
C i;

−→
E i|si) (7)

=

N∑
i=1

(h(
−→
C i +

−→
N i|si)− h(

−→
N i|si)) (8)

=
1

2

N∑
i=1

log2

(
|s2

i CU + σ2
nI|

|σ2
nI|

)
(9)

where we get (6) from chain rule [8], and (7) from the conditional
independence ofC andN givenS. Similarly we can show that for
the test image

I(
−→
C

N
;
−→
F

N |sN )

=

N∑
i=1

(h(gi
−→
C i +

−→
V i +

−→
N i|si)− h(

−→
V i +

−→
N i|si)) (10)

=
1

2

N∑
i=1

log2

(
|g2

i s2
i CU + (σ2

v + σ2
n)I|

|(σ2
v + σ2

n)I|

)
(11)

SinceCU is symmetric, it can be factored asCU = QΛQT,
whereQ is an orthonormal matrix andΛ is a diagonal matrix of
eigenvaluesλk. One can use this matrix factorization to show:

I(
−→
C

N
;
−→
E

N |sN )=
1

2

N∑
i=1

M∑
k=1

log2

(
1 +

s2
i λk

σ2
n

)
(12)

I(
−→
C

N
;
−→
F

N |sN )=
1

2

N∑
i=1

M∑
k=1

log2

(
1 +

g2s2
i λk

σ2
v + σ2

n

)
(13)

I(
−→
C

N
;
−→
E

N |sN ) andI(
−→
C

N
;
−→
F

N |sN ) represent the informa-
tion that can ideally be extracted by the brain from a particular
subband in the reference and the test images respectively. The vi-
sual information fidelity measure that we propose in this paper is
simply the fraction of the reference image information that could
be extracted from the test image. Also we have only dealt with one
subband so far. One could easily incorporate multiple subbands by
assuming that each subband is completely independent of others in
terms of the RFs as well as the distortion model parameters. Thus
our visual information fidelity (VIF) measure is given by:

VIF=

∑
j∈subbands

I(
−→
C

N,j
;
−→
F

N,j |sN,j)
∑

j∈subbands
I(
−→
C

N,j
;
−→
E

N,j |sN,j)
(14)

where we sum over the subbands of interest, and
−→
C

N,j
repre-

sentN elements of the RFCj that describes the coefficients from
subbandj, and so on.

3. IMPLEMENTATION

A number of implementation assumptions need to be made before
the VIF of (14) could be implemented.

Assumptions about the source model.Note that mutual infor-
mation (and hence the VIF) can only be calculated between RF’s
and not theirrealizations, that is, a particular reference and the
test image under consideration. We will assume ergodicity of the
RF’s, and that reasonable estimates for the statistics of the RF’s can
be obtained from their realizations. We then quantify the mutual
information between the RF’s having the same statistics as those

obtained from particular realizations. For the vector GSM model,
the maximum-likelihood estimate ofs2

i can be found as follows
[9]:

ŝ2
i =

−→
C

T

i Cu
−1−→C i

M
(15)

Estimation of the covariance matrixCU is also straightforward
from the reference image wavelet coefficients [9]:

ĈU =
1

N

N∑
i=1

−→
C i
−→
C

T

i (16)

In (15) and (16),E[S2
i ] is assumed to be unity without loss of

generality [9].
Assumptions about the distortion model.We propose to parti-

tion the subbands into blocks, and assume that the fieldG is con-
stant over such blocks, as are the noise statisticsσ2

v. The value of
the fieldG over blockl, which we denote asgl, and the variance of
the RFV over blockl, which we denote asσ2

v,l, are fairly easy to
estimate (by linear regression) since both the input (the reference
signal) as well as the output (the test signal) of the system (2) are
available:

ĝl=Ĉov(C, D)Ĉov(C, C)−1 (17)

σ̂2
v,l=Ĉov(D, D)− ĝlĈov(C, D) (18)

where the covariances are approximated by sample estimates us-
ing sample points from the corresponding blocks in the reference
and the test signals.

Assumptions about the HVS model.The parameterσ2
n in our

simulations was hand optimized by running the algorithm using
different values and observing the performance of the algorithm.

4. RESULTS

In this section we present the results of our simulations using the
VIF proposed in (14). We compare the performance of our algo-
rithm against the well known Sarnoff model [10] and SSIM [1].

4.1. Simulation Details

For the wavelet decomposition, we used the steerable pyramid with
six orientations [7]. These wavelets have better orientation se-
lectivity, as well as a loose shift-invariance, than the commonly
used cartesian-separable wavelets. Vectors

−→
C i and

−→
D i were con-

structed from non-overlapping3 × 3 neighborhoods, and the dis-
tortion model was estimated with18×18 non-overlapping blocks.
Only the horizontal and vertical subbands at the finest level were
used in the summation of (14). The value ofσ2

n used was0.1.
MSSIM (Mean SSIM) was calculated on the luminance compo-
nent after decimating (filtering and downsampling) it by a factor
of 4 [1]. The JND-Metrix was evaluated on full color images,
whereas the VIF and SSIM operated upon the luminance compo-
nent only.

4.2. Subjective Validation Study

We tested our algorithm’s performance on an extensive subjective
study. In these experiments, a number of human subjects were
asked to assign each image with a score indicating their assess-
ment of the quality of that image. Twenty-nine high-resolution
24-bits/pixel RGB color images (typically768 × 512) were dis-
torted using five distortion types: JPEG2000, JPEG, white noise



Validation against DMOS
Model CC RMSE

PSNR 0.826 9.087
Sarnoff 0.901 6.992
MSSIM 0.911 6.629
VIF (proposed) 0.950 5.046

Table 1. Validation scores for different quality assessment meth-
ods: PSNR, JND-Metrix 8.0 [10], MSSIM [1], and the VIF.

in the RGB components, Gaussian blur, and transmission errors
in the JPEG2000 bit stream using a fast-fading Rayleigh channel
model. A total of 779 distorted images were derived. About 20-25
human observers rated each image. Each distortion type was eval-
uated by different subjects in different experiments using the same
equipment and viewing conditions. The raw scores were converted
to difference scores (between the test and the reference) and then
converted to Z-scores and finally a Difference Mean Opinion Score
(DMOS) for each distorted image.

4.3. Discussion

The performance metrics that we report here are the linear corre-
lation coefficient (CC) and the root mean squared error (RMSE)
between DMOS and the predicted DMOS. It is generally accept-
able for a QA method to stably predict subjective quality within
a non-linear mapping, since the mapping can be compensated for
easily. Moreover, since the mapping is likely to depend upon the
subjective validation/application scope and methodology, it is best
to leave it to the final application, and not to make it part of the QA
algorithm. In this paper we use a five-parameter non-linearity (a
logistic function with additive linear term) for all methods except
for the VIF, for which we used the mapping on the logarithm of
the VIF. The mapping used was:

Quality(x)=β1f (β2, (x− β3)) + β4x + β5 (19)

f(τ, x)=
1

2
− 1

1 + exp(τx)
(20)

Table 1 gives these results, which are also shown in Figure 2 for
the VIF. The VIF gives notably superior performance over MSSIM
and Sarnoff’s JND-Metrix. The improvement over Sarnoff’s JND-
Metrix in our testing is roughly the same as that of JND-Metrix
over PSNR.

5. CONCLUSIONS

In this paper we have presented a novel visual information fidelity
criterion that quantifies the Shannon information present in the dis-
torted image relative to the information present in the reference
image. We showed that VIF is a competitive way of measuring fi-
delity that relates well with visual quality. We validated the perfor-
mance of our algorithm using an extensive study involving 779 im-
ages, and we showed that the proposed method is competitive with
the state-of-the-art methods and outperforms them in our simula-
tions. We are currently working on extending our work for video
quality assessment as well.
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Fig. 2. Quality predictions by the VIF after compensating for qual-
ity calibration. The distortion types are: JPEG2000 (red), JPEG
(green), white noise in RGB space (blue), Gaussian blur (black),
and transmission errors in JPEG2000 stream (cyan).
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