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ABSTRACT Competing theories for gaze prediction can be classi-

- ) . ] o fied into two general categories - top-down and bottom-
The ability to automatically detect ‘visually interesting’ re- up. Top-down approaches for gaze prediction emphasize

gions in an image hgs many practi_c_al applications es_pecia"ya high-level understanding of the scene and has been popu-
in the design of active machine vision systems. This paper,y iy task specific experiments (visual search). The rapidity
describes a data-driven approach that uses eye tracking inynq sheer volume of eye movements, however, pose serious
tandem with principal component analysis to extract low- cpajlenges to this theory. The human eye makes an average
level image features that attract human gaze. Data analysigy 1g 000 fixations in an hour. It seems implausible that the
on an ensemble of image patches extracted at the observerfyys yses semantic scene information to make a majority of
point of gaze revealed features that resemble derivatives ofese fixations. Further, cognitive interpretation of scenes is

the 2D Gaussian operator. Dissimilarities between humang,, from being sufficiently mature to warrant the use of these
and random fixations are investigated by comparing the fea-\naories for gaze prediction in natural viewing tasks.
tures extracted at the point of gaze to the general image

structure obtained by random sampling in monte-carlo sim-
ulations. Finally, a simple application where these features
are used to predict fixations is illustrated.

The second theory of gaze prediction is an empirical
bottom-up approach. Here, eye movements are believed
to be quasi-random and driven by low-level image struc-
ture. Since the HVS evolved in a natural environment and
natural images occupy a relatively small subspace of all

1. INTRODUCTION possible images, it is theorized [1] that early visual pro-

cessing may exploit the statistics inherent in its environ-

Despite a large field of view, the human visual system (HVS) ment to represent the input as efficiently as possible. Ap-
processes only a tiny central region (the fovea) with very proaches supporting this theory propose a computational
great detail while the resolution drops rapidly towards the model for human gaze prediction based on image process-
periphery. As a result, to build a detailed representation ing that accentuates image features that are deemed rele-
of a scene from this multi-resolution input, the human eye vant. In an interesting study, Privitera & Stark [2] used a
uses rapid eye movements callatcadedo actively scan suite of algorithms such as detecting the presence of sym-
the environment. To assimilate visual information, the hu- metry, center surround regions in images that resemble re-
man eye therefore uses a combination of steadyiegtons  ceptive field profiles, wavelets, contrast, and edges- per-
linked by ballistic saccades. This active interaction with the unit-area to predict points on interest in an image and com-
visual scene clearly has promising advantages in both speed@ared these predictions with human eye fixations. They re-
and storage requirements when extended to active machin@ort that43% — 54% of their predictions match human fix-
vision systems. ations.

Artificial active vision systems find applications in a di- A more recent version of the bottom-up approach is based
verse array of problems such as automatic pictorial databasen natural scene statistics. In one reported work [3], the
qguery, image understanding, and automated visual searclstatistics of natural images at point of gaze were compared
in, for example, cancer detection and autonomous vehicleto the statistics of random patches from the same image
navigation. However, the fundamental question in the areasets. Their results show that the human fixation regions
of foveated, active artificial vision of ‘How do we decide have higher spatial contrast and spatial entropy than the cor-
where to point the cameras next?’ has not been thoroughlyresponding random fixation regions indicating that the hu-
addressed. This paper presents an approach to answer thean eye may be trying to select image regions that help
guestion by attempting to understand and model human eyanaximize the information content transmitted to the visual
fixations in natural viewing tasks. cortex by minimizing the redundancy in the image represen-



tation. These results seem to indicate that eye movementshan the popular video-based eye trackers and is essential
are possibly drawn to image features that are signatures ofor resolving any phase-sensitive image components in sub-
naturally occurring scenes and motivates the approach usedequent analysis. A bite bar and forehead rest was used to
in this paper. restrict the observer’s head movements. The observer was
Using a combination of eye tracking and image anal- first positioned in the eye tracker and a positive lock estab-
ysis, this paper presents an image-based theory of humatished onto the observer's eye. A linear interpolation on
eye movements to isolate and understand the data-drivera 3 « 3 calibration grid was then done to establish the lin-
mechanisms that guide eye movements. In our approach, weear transformation between the output voltages of the eye
recorded human eye movements in a free-viewing scenarictracker and the position of the observer’s gaze on the com-
where observers viewed a database of natural and man-madeuter display. The output of the eye tracker (horizontal and
images. Image patches at the observer’s point of gaze werevertical eye position signals) was sampled2a0H > and
then extracted to create a bank of image patches that thestored for offline data analysis.
observer found ‘interesting.” We then subjected this bank
to Principal Component Analysis (PCA) to extract the most
‘common’ image features that drew the observer’s fixation.
Such a generic data-driven approach is powerful becauseThe eye movement trajectories (hereafter referred to as scan-
unlike the top-down and bottom-up approaches, it revealspaths) were first classified into fixations and saccadic eye
low-level fixation attractors without making any assump- movements using spatio-temporal criteria derived from the
tions about what image features should be analyzed. known dynamic properties of human saccadic eye move-
This paper is organized as follows. In Section 2 we de- ments. A typical eye scanpath for a single trial is shown in
scribe the experimental methodology. Section 3 presentsFig. 6(a) as a dotted line with white dots indicating fixa-
the results and Section 4 presents the conclusions and somgons. A region of interest (ROI) 082 « 32 pixels around

2.4. Data Analysis-PCA

future directions. each fixation was extracted from the image. To avoid any
edge effects, each image patch was masked with a radi-
2. EXPERIMENTAL METHODS ally symmetric mask that tapered to zero rapidly towards
the edges. The set of all ROIs for an observer for a given
2.1. Observers image databaseNatural/* Man-madé was used to create

an image patch data bank which was analyzed using PCA.
Six observers, three of them familiar with the experiments PCA (also referred to as the Hotelling transform or the
and three na}ive observers, were used for the experimgqt. Allk arhunen - Loeve transform) [4] is a technique for extract-
observers either had normal or corrected-to-normal vision. ing inter-pixel relationships in a data set. PCA is often used

in dimensionality reduction to represent maximum informa-
2.2. Stimuli and Tasks tion (in the minimum mean square sense) about a given data
set using the least number of uncorrelated linear descrip-
tors: the principal components (computed as the eigenvec-
tors of the covariance matrix of the data set). Each eigen-
‘vector has a corresponding eigenvalue that represents the
variance (in the data set) captured by that vector. Once
i ) X _ _ computed, these orthonormal eigenvectors are ordered ac-
and displayed on a1 inch monitor with screen resolution o 4ing t their eigenvalues so that the component that ac-

at640+480 pixels at a distance dB0cm from the observer. counts for the most variation in the data is represented first

This setup corresponded to about 52 pixels/degree of V'Sualand hence captures the fundamental structure of the data set.

The stimuli consisted of images from thédtural database
consisting of landscapes and tiMdn-madédatabase with
scenes consisting of urban scapes. Figs. 1(a) and 1(b) il
lustrate some of the images from tiMdn-madéand ‘Nat-
ural’ sets respectively. All images weil0 * 480 pixels

angle.
Observers were presented with ab®0® images from
each database in separate sessions and instructed to view the 3. RESULTS
displayed image until they were confident of being able to
describe the scene. Fig. 2 illustrates the results of applying PCA to an image

bank consisting of abod000 image patches extracted from
the fixations of an observer using thdan-madédatabase.

Fig. 2(a) shows the first5 eigenvectors ordered from left
Human eye movements were recorded using an SRI Gen+o right and top to bottom in descending order of their cor-
eration V Dual Purkinje eye tracker. It has an accuracy of responding eigenvalues (Fig. 2(b)). The first eigenvector
< 10’ of arc, precision of- 1’ of arc and a response time of  simply represents the average of all the image patches and
underlms. This spatio-temporal resolution is much better is not of much significance. The first bar on the eigenvalue

2.3. Eye Tracking



plot therefore corresponds to the second eigenvector shown3.2. Discussion for Natural’ database

To compare aqd contrast the PC.A results obtain_ed byComparing the PCA results in Fig. 4 and Fig. 5, the eigen-
actua:.humF?Cn Af\|xat|ons th thosae obtgmed_by randomhlmagevectors and the relative magnitudes of the eigenvectors for
lsam;:()jmg, d Wafs per ﬁrme agaclin org)lmagekpatc €S S€4he human versus random fixation are very similar. Hor-
ected at random from the image database ta Ing care 9zontal structures therefore seem to be the most common
keep the number of patches the same as that obtained frOnFeatures in natural images and the ones that draw human

tEe h_u(rjnan flxat}orr]]s. Sbtat|st|cal, f(_jlffe_rencg_s]:fln freSUItr']S ar€ fixation (unlike the vertical edges foMan-madescenes).
thus Indicators of how observers' fixations difter from those -, ¢ probably incorrect at this point to deduce that human

obtained by randomly'samplmg the image. Fig. 3 Sh,OWS fixations are random because, comparing the absolute mag-
the results corresponding to the random fixation scenario fornitudes of the eigenvalues in Fig. 4(b) and Fig. 5(b) the
the ‘Man-madédatabase. The error bars on the eigenvalues strength of the eigenvalues for human fixations are statisti-

repres_enl stz_andard devia_tion variation optained by monte- cally much larger (greater than 1 standard deviation) than
carlo simulations where d.'ﬁerem random 'mage patchgs Werkhat for the random indicating that the human eye samples
selected for each simulation. Figs. 4 and 5 illustrate similar more horizontal and vertical edges than that selected by ran-
results for the Naturar database. domly sampling the image. The results appear to be consis-

A glance at these eigenvectors indicate that they resem+ent across observers for thgatural database.
ble derivatives of 2D Gaussians. The lower order vectors

(2 and 3) resemble vertical and horizontal edge detec’[ors3 3. Application - Predicting visually interesting regions
while components (4-6) resemble bar detectors at differ- "
ent orientations (the actual sign of the eigenvectors beingSince the eigenvectors obtained by PCA of human fixations
irrelevant). However, there are many interesting differences capture the ‘visually interesting’ image features they can be
across these cases as described below. The following disused as filter kernels to predict regions of interest in an im-
cussions focus on the second and third vectors for ease ohge. Fig. 6(a) shows an image with an observer’s eye scan-
comparison. path superimposed as a white dashed line and the white dots
indicating fixations. Fig. 6(b) shows the results of convolv-
ing the image using the second to fifth eigenvectors from

3.1. Discussion for Man-made database Fig. 2 weighted according to their respective eigenvalues
and then adding the absolute value of the result of each of
To get an idea of the general image structure in tari- the kernels. This result can be interpreted as a likelihood

made database, we will first make some inferences from map that reflects the probability (represented as intensity)
Fig. 3 which was obtained by random sampling of the im- that a pixel will draw a human fixation. A relatively good
ages. Observing the second eigenvector in Fig. 3(a), itoverlap between the bright regions and the true fixations (in-
is clear that horizontal edges are the most dominant im-dicated by white dots) in Fig. 6(b) suggests that the PCA
age features in theMan-made database followed by the  kernels are able to pick out some visually interesting regions
vertical edge. Comparing their corresponding eigenvaluesin the image.

(Fig. 3(b)), the contribution of the horizontal edges is al-

most twice that of the vertical edge. However, in contrast, 4. CONCLUSIONS

the second eigenvector for the human fixations in Fig. 2(a)

is vertical indicating that this partiCUlar observer aCtua”y In this paper we use a combination of eye tracking and prin_
preferred vertical edges despite the abundance of horizontjpal component analysis to extract low-level image features
tal edges in the database. Another interesting difference isthat attract human fixations in a scene. The results of the
that unlike the random fixation case, second and third eigen'ana|ysis indicate that humans are not random in their deci-
vectors for human fixations have similar Welghts as seenin sion of where to fixate next but rather seem to have prefer-
Fig. 2(b). Thatis, the bank of image patches labelled by the ences to certain derivative of Gaussian-like low-level image
human eye as ‘interesting’ have similar contributions from structures that are idiosyncratic across observers but clearly
both the horizontal and vertical edges. deviant from the general image structure. One of the ma-
Compared across observers, the second and third eigenjor drawbacks of PCA is that it exploits only linear corre-

vectors take orientations rotated away from the horizontal lation. We are extending our analysis to include the more
axis by different amounts indicating a desire to fixate at powerful Independent Component Analysis [5] which can
regions that are not commonplace in the image databaseexploit even non-linear dependencies in the data. Also, we
A separate analysis of the average patch orientations conare currently investigating quantitative measures to compare
firmed these results indicating that the orientation speci- the predictions of interesting regions by the kernels with the
ficity of eigenvectors indeed reflect image content. fixations of a human observer.
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