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ABSTRACT

The ability to automatically detect ‘visually interesting’ re-
gions in an image has many practical applications especially
in the design of active machine vision systems. This paper
describes a data-driven approach that uses eye tracking in
tandem with principal component analysis to extract low-
level image features that attract human gaze. Data analysis
on an ensemble of image patches extracted at the observer’s
point of gaze revealed features that resemble derivatives of
the 2D Gaussian operator. Dissimilarities between human
and random fixations are investigated by comparing the fea-
tures extracted at the point of gaze to the general image
structure obtained by random sampling in monte-carlo sim-
ulations. Finally, a simple application where these features
are used to predict fixations is illustrated.

1. INTRODUCTION

Despite a large field of view, the human visual system (HVS)
processes only a tiny central region (the fovea) with very
great detail while the resolution drops rapidly towards the
periphery. As a result, to build a detailed representation
of a scene from this multi-resolution input, the human eye
uses rapid eye movements calledsaccadesto actively scan
the environment. To assimilate visual information, the hu-
man eye therefore uses a combination of steady eyefixations
linked by ballistic saccades. This active interaction with the
visual scene clearly has promising advantages in both speed
and storage requirements when extended to active machine
vision systems.

Artificial active vision systems find applications in a di-
verse array of problems such as automatic pictorial database
query, image understanding, and automated visual search
in, for example, cancer detection and autonomous vehicle
navigation. However, the fundamental question in the area
of foveated, active artificial vision of ‘How do we decide
where to point the cameras next?’ has not been thoroughly
addressed. This paper presents an approach to answer the
question by attempting to understand and model human eye
fixations in natural viewing tasks.

Competing theories for gaze prediction can be classi-
fied into two general categories - top-down and bottom-
up. Top-down approaches for gaze prediction emphasize
a high-level understanding of the scene and has been popu-
lar in task specific experiments (visual search). The rapidity
and sheer volume of eye movements, however, pose serious
challenges to this theory. The human eye makes an average
of 18,000 fixations in an hour. It seems implausible that the
HVS uses semantic scene information to make a majority of
these fixations. Further, cognitive interpretation of scenes is
far from being sufficiently mature to warrant the use of these
theories for gaze prediction in natural viewing tasks.

The second theory of gaze prediction is an empirical
bottom-up approach. Here, eye movements are believed
to be quasi-random and driven by low-level image struc-
ture. Since the HVS evolved in a natural environment and
natural images occupy a relatively small subspace of all
possible images, it is theorized [1] that early visual pro-
cessing may exploit the statistics inherent in its environ-
ment to represent the input as efficiently as possible. Ap-
proaches supporting this theory propose a computational
model for human gaze prediction based on image process-
ing that accentuates image features that are deemed rele-
vant. In an interesting study, Privitera & Stark [2] used a
suite of algorithms such as detecting the presence of sym-
metry, center surround regions in images that resemble re-
ceptive field profiles, wavelets, contrast, and edges- per-
unit-area to predict points on interest in an image and com-
pared these predictions with human eye fixations. They re-
port that43%− 54% of their predictions match human fix-
ations.

A more recent version of the bottom-up approach is based
on natural scene statistics. In one reported work [3], the
statistics of natural images at point of gaze were compared
to the statistics of random patches from the same image
sets. Their results show that the human fixation regions
have higher spatial contrast and spatial entropy than the cor-
responding random fixation regions indicating that the hu-
man eye may be trying to select image regions that help
maximize the information content transmitted to the visual
cortex by minimizing the redundancy in the image represen-



tation. These results seem to indicate that eye movements
are possibly drawn to image features that are signatures of
naturally occurring scenes and motivates the approach used
in this paper.

Using a combination of eye tracking and image anal-
ysis, this paper presents an image-based theory of human
eye movements to isolate and understand the data-driven
mechanisms that guide eye movements. In our approach, we
recorded human eye movements in a free-viewing scenario
where observers viewed a database of natural and man-made
images. Image patches at the observer’s point of gaze were
then extracted to create a bank of image patches that the
observer found ‘interesting.’ We then subjected this bank
to Principal Component Analysis (PCA) to extract the most
‘common’ image features that drew the observer’s fixation.
Such a generic data-driven approach is powerful because,
unlike the top-down and bottom-up approaches, it reveals
low-level fixation attractors without making any assump-
tions about what image features should be analyzed.

This paper is organized as follows. In Section 2 we de-
scribe the experimental methodology. Section 3 presents
the results and Section 4 presents the conclusions and some
future directions.

2. EXPERIMENTAL METHODS

2.1. Observers

Six observers, three of them familiar with the experiments
and three naive observers, were used for the experiment. All
observers either had normal or corrected-to-normal vision.

2.2. Stimuli and Tasks

The stimuli consisted of images from the ‘Natural’ database
consisting of landscapes and the ‘Man-made’ database with
scenes consisting of urban scapes. Figs. 1(a) and 1(b) il-
lustrate some of the images from the ‘Man-made’ and ‘Nat-
ural’ sets respectively. All images were640 ∗ 480 pixels
and displayed on a21 inch monitor with screen resolution
at640∗480 pixels at a distance of180cm from the observer.
This set up corresponded to about 52 pixels/degree of visual
angle.

Observers were presented with about100 images from
each database in separate sessions and instructed to view the
displayed image until they were confident of being able to
describe the scene.

2.3. Eye Tracking

Human eye movements were recorded using an SRI Gen-
eration V Dual Purkinje eye tracker. It has an accuracy of
< 10′ of arc, precision of∼ 1′ of arc and a response time of
under1ms. This spatio-temporal resolution is much better

than the popular video-based eye trackers and is essential
for resolving any phase-sensitive image components in sub-
sequent analysis. A bite bar and forehead rest was used to
restrict the observer’s head movements. The observer was
first positioned in the eye tracker and a positive lock estab-
lished onto the observer’s eye. A linear interpolation on
a 3 ∗ 3 calibration grid was then done to establish the lin-
ear transformation between the output voltages of the eye
tracker and the position of the observer’s gaze on the com-
puter display. The output of the eye tracker (horizontal and
vertical eye position signals) was sampled at200Hz and
stored for offline data analysis.

2.4. Data Analysis-PCA

The eye movement trajectories (hereafter referred to as scan-
paths) were first classified into fixations and saccadic eye
movements using spatio-temporal criteria derived from the
known dynamic properties of human saccadic eye move-
ments. A typical eye scanpath for a single trial is shown in
Fig. 6(a) as a dotted line with white dots indicating fixa-
tions. A region of interest (ROI) of32 ∗ 32 pixels around
each fixation was extracted from the image. To avoid any
edge effects, each image patch was masked with a radi-
ally symmetric mask that tapered to zero rapidly towards
the edges. The set of all ROIs for an observer for a given
image database (‘Natural’/‘ Man-made’) was used to create
an image patch data bank which was analyzed using PCA.

PCA (also referred to as the Hotelling transform or the
Karhunen - Loeve transform) [4] is a technique for extract-
ing inter-pixel relationships in a data set. PCA is often used
in dimensionality reduction to represent maximum informa-
tion (in the minimum mean square sense) about a given data
set using the least number of uncorrelated linear descrip-
tors: the principal components (computed as the eigenvec-
tors of the covariance matrix of the data set). Each eigen-
vector has a corresponding eigenvalue that represents the
variance (in the data set) captured by that vector. Once
computed, these orthonormal eigenvectors are ordered ac-
cording to their eigenvalues so that the component that ac-
counts for the most variation in the data is represented first
and hence captures the fundamental structure of the data set.

3. RESULTS

Fig. 2 illustrates the results of applying PCA to an image
bank consisting of about3000 image patches extracted from
the fixations of an observer using the ‘Man-made’ database.
Fig. 2(a) shows the first15 eigenvectors ordered from left
to right and top to bottom in descending order of their cor-
responding eigenvalues (Fig. 2(b)). The first eigenvector
simply represents the average of all the image patches and
is not of much significance. The first bar on the eigenvalue



plot therefore corresponds to the second eigenvector shown.

To compare and contrast the PCA results obtained by
actual human fixations to those obtained by random image
sampling, PCA was performed again on image patches se-
lected at random from the image database taking care to
keep the number of patches the same as that obtained from
the human fixations. Statistical differences in results are
thus indicators of how observers’ fixations differ from those
obtained by randomly sampling the image. Fig. 3 shows
the results corresponding to the random fixation scenario for
the ‘Man-made’ database. The error bars on the eigenvalues
represent1 standard deviation variation obtained by monte-
carlo simulations where different random image patches were
selected for each simulation. Figs. 4 and 5 illustrate similar
results for the ‘Natural’ database.

A glance at these eigenvectors indicate that they resem-
ble derivatives of 2D Gaussians. The lower order vectors
(2 and 3) resemble vertical and horizontal edge detectors
while components (4-6) resemble bar detectors at differ-
ent orientations (the actual sign of the eigenvectors being
irrelevant). However, there are many interesting differences
across these cases as described below. The following dis-
cussions focus on the second and third vectors for ease of
comparison.

3.1. Discussion for ‘Man-made’ database

To get an idea of the general image structure in the ‘Man-
made’ database, we will first make some inferences from
Fig. 3 which was obtained by random sampling of the im-
ages. Observing the second eigenvector in Fig. 3(a), it
is clear that horizontal edges are the most dominant im-
age features in the ‘Man-made’ database followed by the
vertical edge. Comparing their corresponding eigenvalues
(Fig. 3(b)), the contribution of the horizontal edges is al-
most twice that of the vertical edge. However, in contrast,
the second eigenvector for the human fixations in Fig. 2(a)
is vertical indicating that this particular observer actually
preferred vertical edges despite the abundance of horizon-
tal edges in the database. Another interesting difference is
that unlike the random fixation case, second and third eigen-
vectors for human fixations have similar weights as seen in
Fig. 2(b). That is, the bank of image patches labelled by the
human eye as ‘interesting’ have similar contributions from
both the horizontal and vertical edges.

Compared across observers, the second and third eigen-
vectors take orientations rotated away from the horizontal
axis by different amounts indicating a desire to fixate at
regions that are not commonplace in the image database.
A separate analysis of the average patch orientations con-
firmed these results indicating that the orientation speci-
ficity of eigenvectors indeed reflect image content.

3.2. Discussion for ‘Natural’ database

Comparing the PCA results in Fig. 4 and Fig. 5, the eigen-
vectors and the relative magnitudes of the eigenvectors for
the human versus random fixation are very similar. Hor-
izontal structures therefore seem to be the most common
features in natural images and the ones that draw human
fixation (unlike the vertical edges for ‘Man-made’ scenes).
It is probably incorrect at this point to deduce that human
fixations are random because, comparing the absolute mag-
nitudes of the eigenvalues in Fig. 4(b) and Fig. 5(b) the
strength of the eigenvalues for human fixations are statisti-
cally much larger (greater than 1 standard deviation) than
that for the random indicating that the human eye samples
more horizontal and vertical edges than that selected by ran-
domly sampling the image. The results appear to be consis-
tent across observers for the ‘Natural’ database.

3.3. Application - Predicting visually interesting regions

Since the eigenvectors obtained by PCA of human fixations
capture the ‘visually interesting’ image features they can be
used as filter kernels to predict regions of interest in an im-
age. Fig. 6(a) shows an image with an observer’s eye scan-
path superimposed as a white dashed line and the white dots
indicating fixations. Fig. 6(b) shows the results of convolv-
ing the image using the second to fifth eigenvectors from
Fig. 2 weighted according to their respective eigenvalues
and then adding the absolute value of the result of each of
the kernels. This result can be interpreted as a likelihood
map that reflects the probability (represented as intensity)
that a pixel will draw a human fixation. A relatively good
overlap between the bright regions and the true fixations (in-
dicated by white dots) in Fig. 6(b) suggests that the PCA
kernels are able to pick out some visually interesting regions
in the image.

4. CONCLUSIONS

In this paper we use a combination of eye tracking and prin-
cipal component analysis to extract low-level image features
that attract human fixations in a scene. The results of the
analysis indicate that humans are not random in their deci-
sion of where to fixate next but rather seem to have prefer-
ences to certain derivative of Gaussian-like low-level image
structures that are idiosyncratic across observers but clearly
deviant from the general image structure. One of the ma-
jor drawbacks of PCA is that it exploits only linear corre-
lation. We are extending our analysis to include the more
powerful Independent Component Analysis [5] which can
exploit even non-linear dependencies in the data. Also, we
are currently investigating quantitative measures to compare
the predictions of interesting regions by the kernels with the
fixations of a human observer.
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Fig. 1. Sample Images
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Fig. 2. PCA on ‘Man-made’ at fixations
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(b) Eigenvalues

Fig. 3. PCA on ‘Man-made’ at random locations
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(b) Eigenvalues

Fig. 4. PCA on ‘Natural’ at fixations
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(b) Eigenvalues

Fig. 5. PCA on ‘Natural’ at random locations

(a) Image with observer’s eye
scanpath superimposed

(b) Prediction of interesting
regions by PCA kernels

Fig. 6. Comparing true fixations with PCA predictions.
White dots indicate fixations


