S. LIU AND A. BOVIK 1

Local Bandwidth Constrained Fast Inverse
Motion Compensation for DCT-Domain

Video Transcoding

Shizhong Liu student member and Alan C. Bovik Fellow IEEE

Laboratory for Image and Video Engineering
Dept. of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712-1084, USA

Email: {sliu2, bovik} @ ece.utexas.edu

This work was supported in part by Texas Instruments, Inc. and by the Texas Advanced Technology Program.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 2

Abstract

Discrete cosine transform (DCT) based digital video coding standards such as MPEG and H.26x are
becoming more widely adopted for multimedia applications. Since the standards differ in their format
and syntax, video transcoding, where a compressed video bit-stream is converted from one format to
another format, is of interest for purposes such as channel bandwidth adaptation and video composition.
DCT-domain video transcoding is generally more efficient than spatial domain transcoding. However,
since the data is organized block by block in the DCT-domain, inverse motion compensation becomes the
bottleneck for DCT-domain methods. In this paper, we propose a novel local bandwidth constrained fast
inverse motion compensation algorithm operating in the DCT-domain. Relative to Chang’s algorithm, the
proposed algorithm achieves computational improvement of 25% to 55% without visual degradation. A
by-product of the proposed algorithm is a reduction of blocking artifacts in very low bit-rate compressed
video sequences. The proposed algorithm can be combined with other fast methods presented in the
literature for more computational savings. We also present a look-up-table (LUT) based implementation
method by modeling the statistical distribution of the DCT coefficients in natural images and video
sequences. By this method, we obtain a further another 31-48% improvement in computation. The
memory requirement of the LUT is about 800KB which is reasonable. Moreover, the LUT can be shared

by multiple DCT-domain video processing applications running on the same computer or video server.

Keywords

DCT-domain, inverse motion compensation, MPEG video, video transcoding, video composition.

I. INTRODUCTION

Digital video data are becoming widely available as MPEG or H.26x bit-streams. Both
MPEG and H.26x are based on the Discrete Cosine Transform (DCT) [1-3]. In a typical
DCT compression scheme, the input image is divided into small blocks, and each block is
transformed independently to convert the image elements to DCT coefficients. These DCT
coefficients are then quantized using a scalar quantizer defined by the so-called quantization
matrix. Since the DCT can efficiently concentrate most of the signal energy into relatively
few coefficients, the DCT block is quite sparse after quantization. Finally, all quantized
DCT coefficients are converted to a bit-stream via variable length encoding. Besides
reducing the spatial redundancy of the image, video compression standards also exploit
temporal redundancy by coding some video frames as P or B type frames to achieve higher
compression ratio [1-3]. Different compression schemes have different goals and target

applications, hence different properties. MPEG1/2 are mainly designed for video storage

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 3

and high quality video communications, so they make a tradeoff between random access
and compression ratio via the Group of Picture (GOP) structure [1]. H.26x standards focus
on low bandwidth real time visual communication without considering random access [2,3].
MJPEG is preferred for video editing because of its random access property and moderate
compression ability [4]. In practice, certain applications require real-time manipulation of
the video stream in order to implement video composition [5-8] or to adapt output channel
bandwidth [9-12]. For instance, a video gateway that connects a fast network to a slower
network might transcode the video coming from the fast network to a low bandwidth
format better suited for the slow link, e.g., from MJPEG to H.261 [13], from MPEG to
H.26x [12], or from MPEG to MPEG [11], etc. Meanwhile, in video composition [4-6], we
may need to transcode a MPEG or H.26x bit-stream to MJPEG format to facilitate video
editing.

There are two general approaches for processing compressed video bit-streams: spatial-
domain processing and compressed-domain processing. In spatial-domain methods, the
video bit-stream is first fully decompressed, then processed in the decompressed-domain
(spatial-domain), and finally re-compressed for storage or transmission. In compressed-
domain methods, the video bit-stream is first partially decoded to the DCT-domain, then
processed in the DCT-domain, and finally re-encoded. Compressed domain processing de-
livers several potential advantages vis-a-vis spatial domain processing such as: A) smaller
data volume to be processed; B) lower computational complexity since the process of
complete decompression and compression can be avoided; C) preservation of image fi-
delity because of the absence of decompression-compression processes. Inverse motion
compensation is a necessary step in most video composition or transcoding applications
in order to convert the inter-coded frames to intra-coded frames [4] or compensate the
transcoding errors in the anchor frames back to the prediction error frames for drift-free
video transcoding [11]. Since the data is organized block by block in the DCT-domain,
inverse motion compensation in the DCT-domain is more complex than its counterpart
in the spatial-domain and hence becomes the bottleneck of DCT-domain video processing
methods [4,5,11].

The problem of DCT-domain inverse motion compensation was studied by Chang et

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 4

al. [6]. The general setup is shown in Fig. 1, where % is the current block of interest, 1,
To, T3 and x4 are the reference blocks from which # is derived. According to [6], # can be
expressed as a superposition of the appropriate windowed and shifted versions of z, x4,

x3 and x4, t.€.,
4
=) qaTige (1)
i=1

where ¢;;, 1 = 1,...,4,7 = 1,2 are sparse 8 x 8 matrices of zeros and ones that perform

windowing and shifting operations. For example, for i =1,

O I, O O
qi11 = y Q12 = 3 (2)
O O I, O

where I, and I, are identity matrices of dimension h x h and w X w, respectively. The
values h and w are determined by the motion vector corresponding to Z. According to [6],

we can obtain its DCT-domain counterpart as
. 4
X =) QuXiQx (3)
i=1

where X , Xi, Qi1 and Qo are the DCT’s of z, x;, ¢;1 and g, respectively. Be noted
that the matrices ;1 and @;» are constant hence can be pre-computed and stored in
memory [6].

Brute-force computation of (3) in the case where the reference block Z is not aligned in
any direction with the block structure requires eight floating-point matrix multiplications
and three matrix additions. Several algorithms have been proposed to reduce the compu-
tational complexity of the DCT-domain inverse motion compensation. In [7], Merhav et
al. proposed to factorize the constant matrices (J;; into a series of relatively sparse matri-
ces instead of fully pre-computing them. As a result, some of the matrix multiplications
in (3) can be replaced by simple addition and permutation operations such that computa-
tional complexity can be reduced. Assuncdo et al. [11] approximated the elements of Q;;
to binary numbers with a maximum distortion of 31—2 so that all multiplications can be im-
plemented by basic integer operations such as shift and add. They showed that in terms
of operations (shift, add) required, their algorithm has only 28% of the computational
complexity of the method proposed by Merhav et al. [7] while the distortion introduced

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 5

by the approximation is negligible (about 0.2 dB as reported in [11]). In general, motion
compensation in MPEG stream is done on macro-block basis, meaning that all blocks in
the same macro-block have the same motion vector(s). For example, in 4:2:0 format, one
macro-block consists of four luminance blocks and two chrominance blocks. Based on this
observation, Song et al. [14] presented a fast algorithm for DCT-domain inverse motion
compensation by exploiting the shared information among the blocks within the same
macro-block instead of constructing the DCT-domain values of each target block sepa-
rately like the methods in [7,11]. They showed about 44% improvement over the method
in [6]. One important aspect of the proposed method is that it can be implemented on top
of the algorithms proposed in [7] or [11] for further computational savings. However, the
proposed method doesn’t apply to the case where one macro-block has multiple motion
vectors. For instance, MPEG4 supports four motion vectors per macro-block. While all
three methods above adopted the two dimensional procedure shown in Fig. 2, Acharya et
al. [4] developed another implementation diagram shown in Fig. 3, where the 2-D problem
was decomposed into two separate 1-D problems. They showed that the decomposition is
more efficient than computing the combined operation. In Fig. 3, the intermediate blocks

Gy, G1 and the target block X are given by the following equations:

Go = X1Qpo + XoQm (4)
G = X3Qz0 + XuQa (5)
X = QyoGo + Qy1 G (6)

where Q12 = (32 o R0, Q22 = Qa2 o @z and Q11 = Qa o QyOa Q31 =Qun o le-

In this paper, we propose a novel technique to speed-up the DCT-domain inverse mo-
tion compensation. While most algorithms proposed in the literature so far focus on how
to reduce the computational complexity of (3) via matrix factorization or approximation,
we approach the problem from a different angle by analyzing the statistical properties of
natural image/video data. By modeling a natural image as a 2-D separable Markov Ran-
dom Field [15], we estimate the local bandwidth of the target block to be reconstructed
from the reference blocks. The algorithm can reduce the processing time by avoiding

the computations of those DCT coefficients outside the estimated local bandwidth. To

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 6

compute the DCT coefficients inside the estimated local bandwidth, other fast algorithms
proposed in the literature such as [6,7,11,14] can be employed. However, to evaluate
the computational improvement achieved only by our algorithm, we implement Chang’s
method to calculate those DCT coefficients inside the estimated local bandwidth. Note
that the separable diagram shown in Fig. 3 is used in our implementation. Experimental
results show that the proposed algorithm achieves computational improvement of 25% to
55% without visual degradation, compared to Chang’s algorithm in [6]. A by-product of
the proposed algorithm is a reduction of blocking artifacts in very low bit-rate compressed
video sequences. The proposed algorithm can work on top of other fast methods presented
in the literature (e.g., algorithms in [7,11,14]) for more computational savings. We also
present a look-up-table (LUT) based implementation of our algorithm by modeling the sta-
tistical distribution of the DCT coefficients in natural images and video sequences. By this
method, we obtain a further another 31-48% improvement in computation. The memory
requirement of the LUT is about 800KB which is reasonable. Moreover, the LUT can be
shared by multiple DCT-domain video processing applications running on the same com-
puter or video server. One advantage of the LUT method is that the computational cost
for motion vectors with half-pixel precision is the same as that for integer-pixel accurate
motion vectors. However, in methods proposed in [6,11,16], the computational complexity
for sub-pixel accurate motion vectors is higher than that for integer-pixel accurate motion
vectors.

The rest of this paper is organized as follows. In Section II, a novel algorithm for
DCT-domain inverse motion compensation is introduced and its performance is analyzed.
In Section III, we present a LUT based implementation of our algorithm. Section IV is

experimental results and discussions. Finally, we conclude this paper in Section V.

II. LocAL BANDWIDTH CONSTRAINED INVERSE MOTION COMPENSATION
A. The Basic Idea

As discussed in the last section, inverse motion compensation consists of two basic
operations, i.e., windowing and shifting. The windowing operation keeps the data inside

the window unchanged but zeros all data outside the window (See Fig. 2 and Fig. 3). As

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 7

a result, it usually introduces a steep change at the edge of the window, which means that
many artificial high frequency components are possibly introduced by the algorithm. To
clarify, let us study the 1-D case. Fig. 4 shows a narrow-band signal y(n) obtained by
summing two functions, i.e., y(n) = y;(n) + y-(n), 0 < n < N. Let w;(n), w,(n) be two

window functions, i.e.,

1, 0<n<M;

?

wi(n) = {

0, otherwise.

1, M<n<N;
wr(n>={

0, otherwise.
We can write y,(n) = y(n)wi(n) and y,(n) = y(n)w,(n). Let Y(e/), Yi(e/¥), Y, (e/),
Wi (e’*) and W, (e’*) be the Discrete Time Fourier Transforms of y(n), y(n), y,(n), wi(n)

and w,(n), respectively. Then the following equations can be obtained:
Yi(e’) = Y () @ Wi(e') (7)

Y (e) =Y (™) ® Wi(e™) (8)

where ® denotes convolution of two periodic functions with the limits of integration ex-

tending over only one period. We also have

sinjw(M +1)/2]

W= = i)

9)

Let B, By, B,, B!, and B’, be the bandwidths of y(n), y;(n), y,(n), w;(n) and w,(n), respec-

tively. From (9), we can roughly estimate B!, ~ 1\;11’ M being the length of the window.

B! has similar format as B!,. From (7) and (8), we can obtain the following inequalities:
B, > maz(B, B%) (10)

B, > max(B, B],). (11)

Let E; be the frequency components beyond B in B;, and E, be the frequency components
beyond B in B,. Since y(n) = yi(n) + y-(n), the following equation must be satisfied

E +E, =0. (12)

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 8

This means that all frequency components beyond B will disappear after summation, im-
plying that there is no need to compute them. Therefore, if we can estimate the frequency
bandwidth B of y(n) before constructing Y (e/*), we need only compute those frequency
components inside B when computing Y;(e/*) and Y, (e/“). This is the basic idea of the

proposed algorithm described in the next subsection.

B. Local Bandwidth Constrained Inverse Motion Compensation

Generally, neighboring pixels are highly correlated in images. This inter-pixel correlation
is often modeled by using Markov Random Field (MRF) models [17]. In [15], Sikora et al.
also assumed that the 2-D image random field is separable with identical and stationary
correlation along each image dimension and that the simple first order AR(1) Markov
model was adopted to model the pixel-to-pixel correlation along image rows and columns.
For each image row, the variance-normalized AR(1) 1-D auto-correlation function can
expressed as

R, = o, (13)

where n describes the distance between two images pixels and o denotes the pixel-to-pixel
correlation in the row. « typically takes values ranging from 0.9 to 0.98 [15,18]. Fig. 5
shows two 1-D eight point adjacent blocks L; and L, in an image row. According to
the above model, L; and L, should have the same power spectral density function, hence
the same bandwidth because they have the same correlation function [19]. Similarly, if
we want to extract L3 (shown in Fig. 5) from L; and L,, we can predict that L3 also
has the same bandwidth as L; and L, based on the model. However, images are usually
non-stationary, so the bandwidth of L; is often different from that of L,. To account for

this, we take the maximum bandwidth as the estimate for Ls, i.e.,
B3 ~ maa:(Bl, BQ), (14)

where B;, By and Bj are the bandwidth of L,, L, and Ls, respectively. For example, if
the maximum index of the non-zero DCT coefficients (here we use DCT coefficients as
the representations of frequency components) is 2 in L; and 4 in Ly, we estimate that

the maximum index of the non-zero DCT coeflicients in L3 is 4. To extract the DCT

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 9

coefficients directly from the DCT’s of L; and Ls, we only need to compute those DCT
coefficients with index no greater than 4 in Lj.

The separable implementation scheme (See Fig. 3) can be employed to convert the 2-D
problem into two 1-D problems. In (4), (5) and (6), the constant matrices Q, Qz1, Qyo
and (),1 can be pre-computed and stored in memory. In horizontal translation, we estimate
the local bandwidth row by row. For example, in (4), we take the first row of X; as L,
and take the first row of X, as Ly. Accordingly, the first row of Gy corresponds to Lj in
Fig. 5. Then we can utilize the same method as described above to estimate the maximum
index of the non-zero DCT coefficients in the first row of Gy, thereafter extract those DCT
coefficients with indices no greater than the estimate local bandwidth. All other rows are
processed in the same fashion as the first row. After extracting the two intermediate DCT
blocks Gy and G in (4) and (5), we round all elements in the two blocks to the nearest
integers in order to eliminate those small numbers without introducing significant errors.
Similarly, in (6), the vertical translation can be implemented column by column to extract
the final target block X.

Let us go through a specific example to further clarify the algorithm. Suppose we have
two horizontally adjacent DCT blocks X; and X, shown in (15), we extract Gy from X;
and X5 by (4) using the proposed algorithm. The maximum indices of non-zero coefficients
in the first row of X; and X, are 0 and 1, respectively. According our algorithm, only
two coeflicients with the indices of 0 and 1 will be computed in the first row of G, while
the rest of entries in this row are set to zero. In the fifth row, the maximum index of
the non-zero coefficients is 2 in X; , and there is no non-zero coefficient in X,. Therefore
in the fifth row of Gy, three coefficients with indices from 0 to 2 are computed, and the
rest are set to zero. Since all items in the eighth row of both X; and X5 are zero, no

computation is needed for this row, i.e., all entries of this row are set to zero in Gy.

1096 0 0 0 0 0 O 1120 -19 0 0 0 0 0 O
—29 0 0 0 0 0 O —-29 0 0O 0 0 0 0 O
11 27 0 0 0 0 0 O —11 0 0 0 0 0 0 O
Xy = 27 13 0 0 0 0 0 O Xy = —13 0 0O 0 0 0 0 O (15)

13 0 -5 0 0 0 0 O 0 0 0 0 0 0 0 O

—-15 0 0 0 0 0 O 0 0 0O 0 0 0 0 O

—-15 0 0 0 0 O 0 0 0O 0 0 0 0 O

L 0 0 0 0 0 0] | 0 0 0 0 0 0 0 0 |

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 10

C. Accuracy of Local Bandwidth Estimation

As discussed, image/video data is usually a non-stationary random signal. To account
for this, the maximum bandwidth of two adjacent blocks is taken as the estimate of the
bandwidth of the block to be extracted. However, estimation error still exists under
certain circumstances. For example, in Fig. 5, assume L; and Ly are both constant blocks
but there is a discontinuity at the boundary between the two blocks. According to the
proposed algorithm, the block L3 should also be a constant block since both L; and Ly only
have DC component in the frequency domain. However, the block L3 actually contains
a step discontinuity. The probability of such kind of estimation error will be higher in
the images containing lots of edge information than in the relatively smooth images. In
addition, since each block in the frame is independently quantized by certain quantization
factor, the correlation between adjacent blocks is reduced, which may also make the local
bandwidth estimation inaccurate. Several monochrome images with the dimension of
512 x 512 have been selected to examine the accuracy of the proposed method for local
bandwidth estimation in real images. In the experiment, if the estimated bandwidth
is smaller than the actual bandwidth of the target block, the estimation is considered
incorrect. Otherwise, the estimation is correct. The results are shown in Fig. 6. It can be
seen that more than 97% of the estimations are correct for all quantization parameters.
The correctness of estimation declines as the quantization increases, implying that more

distortion would be introduced in the image/video with large quantization parameter.

III. LUT BASED IMPLEMENTATION METHOD

The proposed algorithm, described in Section II, can reduce the computational com-
plexity of DCT-domain inverse motion compensation by avoiding the computations cor-
responding to the DCT coeflicients outside the estimated local bandwidth. To compute
the DCT coefficients inside the estimated local bandwidth, the algorithms proposed in
the literature such as [6,7,11,14] can be employed. However, one problem of the existing
algorithms is that the complexity for extracting a block with half-pixel accurate motion
vector is much higher than that with integer-pixel motion vector. This may cause jerki-

ness in applications such as real-time video transcoding. Here we present a look-up-table

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 11

(LUT) based implementation method by modeling the statistical distribution of the DCT
coefficients in typical images and video sequences. One advantage of the LUT method is
that the computational cost for motion vectors with half-pixel precision is the same as that
for integer-pixel accurate motion vectors. This can help reduce the jerkiness in real-time

applications such as video transcoding.

A. Modeling distribution of DCT coefficients

All DCT coefficients in MPEG or H.26x coded images are quantized to integers with
value ranging from -2048 to 2047. Since the DCT concentrates most of the signal energy
into relatively few coefficients, most AC coefficients have small values. The distribution of

AC coefficients can be modeled as a Laplacian distribution with zero mean as follows |20,

21]:

p(x) = Seap(~Alz) (16)
where
Y 17)
EX]) (

Let 02 be the variance of X, then o = % Given a positive threshold T H, one can have
TH
P(X|<TH) = [pla)ds
—-TH
TH

= | A exp(—Ax)dx (18)

A few JPEG-coded images and I frames from several MPEG-coded video sequences are
selected to estimate the value of A according to (17). As a result, we obtain A ~ 0.0284.
If we set a threshold TH = 20 ~ 100, then more than 94% of AC coefficients have
absolute value smaller than the threshold TH according to (18). This implies that a lot
of computation can be saved by pre-computing the multiplication results for all those
coefficients having absolute value smaller than the threshold TH. In the following, the
implementation of the LUT based method will be discussed.

B. LUT design

By using the separable approach [4], only 1-D case needs to be considered to build
the LUT. So two tables are needed to save all multiplication results with (), and ;1

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 12

in (4) and (5). In Fig. 1, w has 16 possible values including half-pixel resolution, i.e.,
w = 0,0.5,1,...,7.5. For 1-D case, each non-zero element in {X;} contributes to eight
entries of Gy or G;. As a result, a four dimensional table is needed to save the pre-
computed results, i.e. Table[v][p][w][i], where v represents the absolute value of DCT
coefficients, p represents the column position of DCT coefficients in {X;}, w is shown in
Fig. 1 and ¢ represents the column position of the pre-computed results in the target block.
Both p and 7 have eight possible values each. v has 100 possible values since T'H is 100.

If four bytes are used to store each entry of the table, the size of table is
size=4xvXxpxwxi=4x100x 8 x 16 x 8 = 400K B. (19)

Hence, the total memory requirement for two tables is about 800K B when TH = 100.
This is reasonable based on the current computer memory capacity. Furthermore, the
LUT can be shared by multiple DCT-domain video processing applications running on
the same computer or video server. The vertical operations in (6) can be converted to the

horizontal operations via matrix transposition so that the LUT can be reused.

C. DC coefficients

In DCT-coded images, the distribution of DC coefficients has a large mean value (e.g.,
1000) and a larger variance relative to the distribution of AC coefficients as shown in
Fig. 7(a). Since the LUT is created by modeling the distribution of AC coefficients, it
doesn’t apply to DC coefficients because most DC coefficients are much larger than the
threshold T'H. For adjacent DCT blocks, the DC coefficients are highly correlated in
typical images [15]. Therefore, the difference between adjacent DC coefficients should
have much smaller mean value and dynamical range than the DC coefficient itself. With
this observation, (4) can be rewritten as

Go = XiQzo + XoQu

= Xl ha X2 (Q:EO + le) +

2
X=X Qn). (20)

2
Let Q1 = Qo0 + Qz1, Q@+ has the property:

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 13

This means that the summation of the DC components of X; and X5 only contributes to
the DC component of Gyg. So we can just sum up both DC coefficients from X; and X5,
then fill it in the DC entry of Gy without any further computation. The difference between
the DC component of X; and that of X, has distribution similar to the distribution of
AC coefficients as shown in Fig. 7(b). In the selected JPEG-coded images, more than
70% of the difference values have absolute value below the threshold TH so that their

multiplication results in (20) can be directly obtained from the LUT.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed algorithm and LUT based implementation
method, We implement three methods for DCT-domain inverse motion compensation,
which are
« Method I: Chang’s method in [6] with full computation of all DCT coefficients in each
target block to be extracted.

« Method II: The proposed local bandwidth constrained algorithm which skips the DCT
coefficients outside the estimated bandwidth and calculates those DCT coefficients inside
the estimated bandwidth using Chang’s method.

o Method III: Method IT with LUT based implementation.

All three methods are integrated into our DCT-domain video transcoder, for comparison,
as the inverse motion compensation module, respectively. The input of the transcoder
is a MPEG-coded video bit-stream with the frame rate of 30 frames per second. The
GOP structure of the encoded video is M = 3, N = 12, i.e., IBBPBBPBBPBB. To
evaluate the performance of the proposed algorithm, we transcode all P and B frames in
the incoming bit-stream back to I frames by DCT-domain inverse motion compensation.
Since the proposed algorithm only computes those DCT coefficients inside the estimated
bandwidth, we first investigate the distortion caused by the algorithm by comparing the
PSNR values of those I frames recovered from P or B frames using both Method I and
Method II, respectively. Then we measure the computing time of all three methods to show
the computational improvement of the proposed algorithms. Be noted that LUT based
implementation does not introduced further distortion. Hence all frames reconstructed by

Method IIT have the same PSNR values as those by Method II.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 14

A. Distortion Introduced by the Proposed Method

The complexity of converting one P or B frame to an I frame really depends on the
characteristics of the test video sequence. If there is little motion in the video sequence
such as "header and shoulder” sequences, most of the macro-blocks are skipped in the P
or B frame with zero motion vectors. To recover those skipped macro-blocks with zero
motion vectors, we simply copy the DCT coefficients from the reference blocks without any
computation, because in this case, the motion vectors are aligned to the block boundaries.
To test our algorithm more efficiently, we select four video sequences with intensive motion
activities, i.e., Foreman, Coastquard, Mobile and Stefan. All sequences are CIF resolution
with 352 pixels per line and 288 lines. To evaluate the performance of our algorithm at
different coding bit-rate, the sequences are encoded at 4 Mb/s and 1 Mb/s, respectively.
The PSNR results for each frame after inverse motion compensation are shown in Fig. 8
and Fig. 9, respectively. For the bit-rate of 4 Mb/s, the average PSNR degradation is 0.11
dB in Foreman, 0.12 dB in Coastguard, 0.22 dB in Mobile and 0.16 dB in Stefan. For
the bit-rate of 1 Mb/s, the average PSNR degradation is 0.29 dB in Foreman, 0.35 dB in
Coastguard, 0.51 dB in Mobile and 0.36 dB in Stefan. The PSNR degradation depends on
the images being tested. For example, in the sequence mobile, the pictures have a lot of
strong edges and are very dynamic; hence the AR model of our algorithm is inaccurate,
which increases the error probability of local bandwidth estimation as discussed in Section
II(c). As a result, the PSNR of mobile degrades more than that of other sequences.
Similarly, at low bit-rates, since each block in the frame is independently quantized by a
large quantization factor, the correlation between adjacent blocks is reduced. Thus, the
error probability of local bandwidth estimation increases as shown in Fig. 6, which causes
more degradation at low bit-rates as shown in the experimental results. However, for
both encoding bit-rates, the amount of distortion introduced by the proposed algorithm
is hardly visible. A by-product of our algorithm is to reduce the blocking artifacts in
images coded at very low bit-rates because the local bandwidth constrained inverse motion
compensation also works as a low-pass filter to the reconstructed block. To show this, we
encode the gray-level image Lena at 0.25 bits/pixel (Fig. 10(a)) using JPEG. Then we

shift the image by 4 pixels in the vertical direction and reconstruct the shifted image

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 15

using inverse motion compensation. The images reconstructed by Method I and Method
IT are shown in Fig. 10(b) and Fig. 10(c), respectively. Fig. 10(d) shows the difference
between the two reconstructed images. Clearly, image reconstructed by Method II is
smoother than that by Method I. Additionally, we applied the blocking artifact measuring
method proposed in [22] to both reconstructed images. The measuring results are 6.1 for
the image reconstructed by Method I, and 3.5 for the image reconstructed by Method 1II,
respectively. The results also show that the blocking artifacts in the image reconstructed
by Method II are much less severe than in the image reconstructed by Method I. Since our
algorithm is equivalent to adaptive low-pass filtering according to the local bandwidth, in

Fig. 10(d), no large errors exist in areas with high spatial frequencies.

B. Computational Savings

In the experiments, all three methods for DCT-domain inverse motion compensation
are integrated into our DCT-domain video transcoder, for comparison, as the inverse
motion compensation module, respectively. Only the computing time to convert one P or
B frame to an I frame is measured. The computing time is measured on a Windows N'T
workstation with 512MB memory and 300MHz Pentium II Processor (32K non-blocking,
level-one cache, and 512K unified, non-blocking, level-two cache.). Table I and Table II
list the average time to reconstruct one P or B frame to one I frame by three methods at
bit-rates of 4 Mb/s and 1 Mb/s, respectively. Relative to Method I, Method II achieves
25 - 30% computational savings at the bit-rate of 4 Mb/s, and 45 - 55% at the bit-rate
of 1 Mb/s, respectively. Generally, the computational savings achieved by the proposed
algorithm is inversely proportional to the encoding bit-rate since the DCT block becomes
sparser as the bit-rate goes down. On the average, Method III, employing the LUT based
implementation, obtains another improvement of 48% at the bit-rate of 4 Mb/s and 31%
at the bit-rate of 1 Mb/s, compared to Method II. Fig. 11 shows the computing time
corresponding to each P or B frame in the sequence Mobile for all three methods. As can
be seen, the computing time in Method III is almost constant for different P or B frames
while the computing time in Method I and Method II changes dramatically. One reason
is the complexity involved in the processing of motion vectors with half-pixel precision.

When a half-pixel accurate motion vector is used, either two or four pixels are needed to

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 16

compute the actual prediction of one pixel, depending on the motion vector has half-pixel
precision in one or two directions. In the DCT-domain, this means that either two or
four blocks need to be extracted from the reference frame(s) to obtain the final target
block by averaging the extracted blocks. As a result, in Method I and II, the complexity
for half-pixel accurate motion vector is two or four times that for motion vector with
integer-pixel resolution. Although some fast algorithms for fractal motion vectors have
been proposed in [11,16], the complexity is still high compared to that for integer motion
vectors. However, in the LUT implementation, the complexity corresponding to fractal
motion vectors is the same as that for integer motion vectors because the results for half-
pixel resolution are pre-computed and saved in the LUT.
TABLE 1
AVERAGE TIME TO CONVERT ONE P OR B FRAME TO ONE I FRAME AT THE BIT-RATE OF 4 MB/s

(UNIT: SECONDS)

Video Sequence P frame B frame
Method T | Method II | Method TIT | Method I | Method IT | Method TII
Foreman 0.3137 0.2387 0.0931 0.4738 0.3644 0.1423
Coastguard 0.2374 0.1700 0.0912 0.3417 0.2464 0.1190
Mobile 0.3487 0.2513 0.1642 0.4136 0.3113 0.2007
Stefan 0.2057 0.1370 0.0780 0.3667 0.2484 0.1416
TABLE I1

AVERAGE TIME TO CONVERT ONE P OR B FRAME TO ONE I FRAME AT THE BIT-RATE OF 1 MB/S

(UNIT: SECONDS)

Video Sequence P frame B frame
Method I \ Method I \ Method IIT | Method I | Method IT | Method TIT

Foreman 0.2512 0.1324 0.0651 0.3987 0.2152 0.1036
Coastguard 0.1912 0.0937 0.0656 0.3099 0.1490 0.0964
Mobile 0.2983 0.1550 0.1150 0.3686 0.2061 0.1702
Stefan 0.1636 0.0743 0.0605 0.2941 0.1408 0.1147

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 17

C. Discussions

In our experiments, Chang’s method [6] is employed to compute the DCT coefficients
within the estimated local bandwidth. Experimental results have shown that the proposed
algorithm achieves computational improvement of 25% to 55% without visual degradation.
Meanwhile, the proposed algorithm can work on top of other existing fast algorithms (e.g.,
algorithms in [7,11,14]) for further computational savings. For example, to extract a block
from the reference blocks, the proposed method can be first employed to estimated the
local bandwidth of the target block; then the method in [7] or [11] may be used to calculate
the DCT coefficients within the estimated local bandwidth; finally, the shared information
among the blocks inside the same macro-block can be exploited by the method in [14].

In the experiments, all video sequences are encoded with frame based motion compensa-
tion and frame DCT coding mode. However, MPEG-2 standard supports both progressive
and interlaced video format. In interlaced video, each frame consists of two fields, i.e., top
field and bottom field. The two fields of a frame may be coded separately (field pictures)
or coded together as a frame (frame pictures). Both frame pictures and field pictures
may be used in a single video sequence. In a frame picture, both frame DCT coding and
field DCT coding can be used on macro-block basis. Therefore, if the reference blocks
have different coding format from the target block (e.g., reference blocks are field DCT
coded and the target block is frame DCT coded.), the reference blocks must be converted
into the same coding format as that of the target block before the proposed algorithm
for DCT-domain inverse motion compensation is applied. Similarly, for those different
motion compensation (MC) modes supported by MPEG-2, such as frame prediction, field
prediction, 16 x 8 and dual prime modes, corresponding conversion may also be needed
before inverse motion compensation. While in this paper, we focus on developing the novel
algorithms for DCT-domain inverse motion compensation by assuming the current frame
has the same coding format with the reference frame(s), the detailed descriptions of the
DCT-domain algorithms for the conversion between different coding modes in MPEG-2

can be found in [11,23].

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 18

V. CONCLUSION

Inverse motion compensation is the bottleneck for DCT-domain video transcoding. In
this paper, we propose a novel local bandwidth constrained inverse motion compensation
algorithm, in which only those DCT coefficients inside the estimated bandwidth are com-
puted. The local bandwidth estimation is based on the assumption that the image can
be modeled as two separable AR sequences in the horizontal and vertical directions, re-
spectively. Relative to Chang’s algorithm, the proposed algorithm achieves computational
improvement of 25% to 55% without visual degradation. A by-product of the proposed
algorithm is a reduction of blocking artifacts in very low bit-rate compressed video se-
quences. The proposed algorithm can be combined with other fast methods presented in
the literature for more computational savings. We also present a LUT based implemen-
tation method by modeling the statistical distribution of the DCT coefficients in natural
images and video sequences. By this method, we obtain a further another 31-48% im-
provement in computation. One advantage of the LUT method is that the computational
cost for motion vectors with half-pixel precision is the same as that for integer-pixel ac-
curate motion vectors. This can help reduce the jerkiness in real-time video transcoding.
The memory requirement of the LUT is about 800KB which is reasonable. Moreover, the
LUT can be shared by multiple DCT-domain video processing applications running on the
same computer or video server. Some other applications, such as DCT-domain scene-cut
detection and DCT-domain feature extraction for video indexing, can also benefit from

the fast inverse motion compensation algorithm proposed in this paper.

REFERENCES

[1] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard. New
York, NY: Chapman & Hall, 1997.

[2] “Video codecs for audiovisual services at p x 64kb/s.” ITU-T Rec. H.261, Mar. 1993.

[3] “Video coding for low bitrate communication.” ITU-T Rec. H.263, 1998.

[4] S. Acharya and B. Smith, “Compressed domain transcoding of MPEG.” Proceedings of the International
Conference on Multimedia Computing and Systems (ICMCS), Austin, TX, June 1998.

[6] S.F. Chang and D. G. Messerschmitt, “A new approach to decoding and compositing motion-compensated
DCT based images,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing, (Minneapolis, MN),
pp. 421424, Apr. 1993.

[6] S.-F. Chang and D. G. Messerschmitt, “Manipulation and compositing of MC-DCT compressed video,” IEEE
J. on Selected Areas in Comm., vol. 13, pp. 1-11, Jan. 1995.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 19

[7] N. Merhav and V. Bhaskaran, “Fast algorithm for DCT-domain image down-sampling and for inverse motion
compensation,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 7, pp. 468476, June 1997.

[8] B. Shen, K. Sethi, and V. Bhaskaran, “DCT convolution and its application in compressed domain,” IEEE
Trans. on Circuits and Systems for Video Tech., vol. 8, pp. 947-952, Dec. 1998.

[9] H. Sun, W. Kwok, and J. W. Zdepski, “Architectures for MPEG compressed bitstream scaling,” IEEE Trans.
on Circuits and Systems for Video Tech., vol. 6, pp. 191-199, Apr. 1996.

[10] K.-S. Kan and K.-C. Fan, “Video transcoding architecture with minimum buffer requirement for compressed
MPEG-2 bitstream,” Signal Processing, vol. 67, pp. 223-235, 1998.

[11] P. A. A. Assuncao and M. Ghanbari, “A frequency-domain video transcoder for dynamic bit-rate reduction
of MPEG-2 bit streams,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 8, pp. 953-967, Dec.
1998.

[12] T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower spatio-temporal resolutions and
different encoding formats,” IEEE Trans. on Multimedia, vol. 2, pp. 101-110, June 2000.

[13] E. Amir, S. McCanne, and H. Zhang, “An application-level video gateway,” in Proc. of the Third ACM
International Conference on Multimedia, (San Francisco, CA), Nov. 1995.

[14] J. Song and B.-L. Yeo, “A fast algorithm for DCT-domain inverse motion compensation based on shared
information in a macroblock,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 10, pp. 767-775,
Aug. 2000.

[15] T. Sikora and H. Li, “Optimal block-overlapping synthesis transforms for coding images and video at very
low bitrates,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 6, pp. 157-167, Apr. 1996.

[16] N. Merhav and V. Bhaskaran, “Fast inverse motion compensation algorithms for mpeg and for partial dct
information,” J. Visual Communication and Image Representation, vol. 7, pp. 395-410, Dec. 1996.

[17] G. R. Cross and A. K. Jain, “Markov random field texture models,” IEEE Trans. Pattern Anal. Machine
Intell., vol. PAMI-5, pp. 25-39, Jan. 1983.

[18] I. M. Pao and M. T. Sun, “Modeling DCT coefficients for fast video encoding,” IEEE Trans. on Circuits and
Systems for Video Tech., vol. 9, pp. 608616, June 1999.

[19] M. H. Hayes, Statistical Digital Signal Processing and Modeling. New York, NY: John Wiley & Sons, Inc.,
1996.

[20] K. A. Birney and T. R. Fischer, “On the modeling of DCT and subband image data for compression,” IEEE
Trans. on Image Processing, vol. 4, pp. 186-193, Feb. 1995.

[21] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT coefficient distributions for images,”
IEEE Trans. on Image Processing, vol. 9, pp. 1661-1666, Oct. 2000.

[22] Z. Wang, A. C. Bovik, and B. L. Evans, “Blind measurement of blocking artifacts in images,” in Proc. IEEE
Int. Conf. Image Proc., (Vancouver, Canada), pp. 981-984, Oct. 2000.

[23] J. Song and B.-L. Yeo, “Fast extraction of spatially reduced image sequences from MPEG-2 compressed
video,” IEEE Trans. on Circuits and Systems for Video Tech., vol. 9, pp. 1100-1114, Oct. 1999.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 20

Xl X2
X \
E
X, X,
Reference blocks Current block

Fig. 1. DCT domain inverse motion compensation.

x>

Fig. 2. Tlustration of 2-D block windowing and shifting operations (Black area means zero).

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 21

/HG°

“ AV

X I
Xy X,
Gl

Fig. 3. Illustration of separable block windowing and shifting operations (Black area means zero).

X >

y,(n)

y(n)

n
0O M N-l\
y.(n) ‘||||‘||)
0O M N-1

O M N-1

Fig. 4. 1-D windowing operation.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 22

L
< 3 >
w 8-w
< > >

A
A

Fig. 5. 1-D block extraction.

I
©
©
5

o
©
®

Probability of correct estimation

0.975} —©- lena |
! —=— mandrill
—&- barbara
0.97- ——_pepper B
0.965 B
0.96 B
0.955 B
0.95 1 1 1 1 1 1 1
2 4 6 8 10 12 14

Quantization parameter

Fig. 6. Accuracy of local bandwidth estimation.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK

250
—— Barbara
- = Lena
2001 Pepper |
150 1
100 1
50f 1
| \
:)
J Ay

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Absolute value of DC component

(a) Histograms of DC coefficients in images with
the Bin size 40.

23

- = - Lena

E— Barbara

- - Pepper

0 100 200 300 400 500 600 700 800 900 1000

Absolute value of difference between adjacent DC components

(b) Histograms of difference between adjacent

coefficients in images with the Bin size 20.

DC

Fig. 7. Distribution of DC component and the difference of adjacent DC components in natural images.

January 19, 2002

DRAFT

S. LIU AND A. BOVIK

42
— Method |
—0- Method Il and Il
41 ‘ q
o
¢ A 4 f a
40 o |
! 11 , el
® b ¥ 3 & Iy I o)
. i o $ 3 8%
g |4 Tl e ui e 500
Ssg ® 5 MR Y iy r’ f
|
Z o YAy ® O & g x| ¢ &%
4 b o 8 Y ¥ LA RSNt
5 D 2 15®
& 3
& Y
asf| ¥ 18 & 9
37rE E
36
0 10 20 30 40 50 60 70 80 90 100
frame number
(a) PSNR of Foreman at 4 Mb/s.
35
—k Method |
—0~ Method Il and Il
34 |
I !
33 I 1 i f ! b
I i ! i l
& inl] 3N | &
i 1 Al A I i ¢ 4
x 32 # ALY 1 I AN ENE
z 1Bk i oo | Y S 3 4
7 410 e 9 o >
a b 3 é& & 1 % A & 0& i R |
! ® v v) k&, Gk
i ® &y 13 égw STl
S] S X |
st R %% 3 & & 4 65
(¢ 03 O
& 5
30 q
20
0 10 20 30 40 50 60 70 80 90 100

frame number

(c) PSNR of Mobile at 4 Mb/s.

PSNR (dB)

PSNR (dB)

100

41
—k Method |
—~0- Method Il and Il
401 1
1
| ¢ ¢
4
¢
391 1
l 3 ¢
¢ o A
| % ¥ g
b o 4
38 X 'H ! ¢] & @
) o
a8 & P b 5 [¢ \% A
&% ! LS w0 AR
371 » &] q
¥ B oY %
X &
o & ¥
sl ¥ v ,
)
3
351 ¢ 4
o
24
0 10 20 30 40 50 60 70 80 90
frame number
(b) PSNR of Coastguard at 4 Mb/s.
42
—*— Method |
—0~ Method Il and Il
a0 1 1
&
38 1
I
36 § | 4
& 4 At
PR 1 X
AX % b\l 1
$V0 OB ¢
341 % 1
14 e ¢
321 4
3014)
28
0 10 20 30 40 50 60 70 80 90

100
frame number

(d) PSNR of Stefan at 4 Mb/s.

Fig. 8. PSNR value of each frame reconstructed by different inverse motion compensation algorithms.

January 19, 2002

DRAFT

S. LIU AND A. BOVIK 25

37 34

—#— Method | —#— Method |
—0- Method Il and Il —0- Method Il and Ill
3650 & B 3351 g
36H ‘ B 33t g
k)
A | ‘ g : ‘ l
L | Il % O [\ Lo i L I q]
355 ’A s H‘l‘gﬁ\ ﬂ)gy‘ ‘ 325 . A ‘A” ; ‘”
o K | & b ¥ i ! o L i\ R
&) g ALY febko) I ISk I = ¢ Pe b [o ,',’" ATAN
@ 351 Rl PV ! 151 | i b x 320 BT IR ¢ k Ny b
g g% d “ . o !)@l‘ y %6@ N A z ¥ i o ‘<5 ?!%%H V\\AH,’ 0 ’%%v'bé%‘
&] o s e sl 29 (o Sune sl LK T it Y
3451 TaTi P19 4 ¢ o 315 gl Mg e o Y SN ;é | -
e oQl <) b IO % ! o b
&y 0 ¢ LS ! l N ([0 {7
% Ho AN *‘ /!
ur g : il ar I“Q!\ ! L\"V <‘>‘®® 7
¥ gk %‘y K
| b Q % &
&l f
3351 g 3051¢, 1 it g
° $
2 20
0 10 20 30 40 50 60 70 80 90 100] 10 20 30 40 50 60 70 80 %0 100
frame number frame number
(a) PSNR of Foreman at 1 Mb/s. (b) PSNR of Coastguard at 1 Mb/s.
27 36

—*— Method | —*— Method |
—0- Method Il and Il —0— Method Il and Il

26.5

26
o o
2 k=2
X 255 o
z z
))
o o

25

245

2 2

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 EY 100
frame number frame number
(c) PSNR of Mobile at 1 Mb/s. (d) PSNR of Stefan at 1 Mb/s.

Fig. 9. PSNR value of each frame reconstructed by different inverse motion compensation algorithms.

January 19, 2002 DRAFT

S. LIU AND A. BOVIK 26

(a) Image Lena JPEG-coded at 0.25 bits/pixel. (b) Image reconstructed by Method I.

(c) Image reconstructed by method II and III. (d) Difference between (b) and (c).

Fig. 10. Illustration of reduction of blocking artifacts by the proposed algorithm.

January 19, 2002 DRAFT

S. LIU AND A.

BOVIK

0.6 T
—* Method |
- Method Il
V- Method llI
05r B

=) o
w s
T T

Time (second)

=3
~
T

0.1r

Time (second)

(a) Time for

10 15 20
Frame number

reconstructing each P frame at 4

25

Mb/s.
T
—* Method |
—0- Method Il
v-_Method Il
05F ~

Time (second)
2
T

0.1r

Time (second)

Frame number

(c) Time for reconstructing each P frame at 1

Mb/s.

25

0.6

05

o
=

o
w

oS
N

0.1

27

v

v vV Vv

T
—— Method |
—0- Method Il

v Method Il

(b) Time for

Mb/s.

0.5

o
w

o
N

0.1

10

reconstructing each

Frame number

15

20 25

B frame at 4

T
—*— Method |

v-_Method Il

2
3 <7
o0 @ AN /p@ ¥,
N NN P NN N
[N ’v\gv O/vel’vvv Ny
v v v 5-¢ vV v ¥ vy
v v v
v
. . . .
5 10 15 20 25

(d) Time for

Mb/s.

Frame number

reconstructing each B frame at 1

Fig. 11. The computing time for reconstructing each P or B frame in the video sequence Mobile.

January 19, 2002

DRAFT

