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Abstract— Multiplex Fluorescence In-Situ Hybridization
(M-FISH) is a recently developed chromosome imaging
method in which each chromosome is labelled with 5 fluors
(dyes) and is also counterstained with DAPI. This paper
proposes an automatic pixel by pixel classification algorithm
for M-FISH images using a Bayes Classifier. The M-FISH
pixel classification was approached as a 25 class 6 feature
pattern recognition problem. The classifier was trained and
tested on non-overlapping data sets and an overall classifi-
cation accuracy of 95% was obtained.
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I. Introduction

Images of chromosomes contain vital information about
the health of a human being. Multiplex fluorescence in
situ hybridization is a recently developed technology for
chromosome analysis. In this technique chromosomes are
dyed with multiple dyes so that each chromosome class
appears to be a distinct color. In comparison to conven-
tional chromosome analysis, superior detection of subtle
and complex chromosomal rearrangements can be achieved
with M-FISH analysis. M-FISH images are captured with
a fluorescent microscope. To view each of the fluorescent
dyes multiple optical filters are used. Each of the dyes are
visible in different optical wavelengths referred to as spec-
tral channels. Thus a set of M-FISH images can be viewed
as a multi-spectral set. A typical M-FISH set consists of 6
images. Hence each pixel can be viewed as a 6 feature
vector in a 6 dimensional space where each element repre-
sents the response of the dye. Traditionally, segmentation
and classification are carried out as two separate sequen-
tial steps. We have combined these two steps into a single
step, to classify the pixels into 24 chromosome types (22
autosomes + 2 sex chromosomes). In Sections II and III
the Bayes Classifier and the methodology are discussed re-
spectively. In Section IV the results are presented.

II. Bayes Classifier

Suppose we wish to classify objects into N different
classes based on certain measured features of the object.
If we measure d features of each object then each object
can be described by a feature vector which has d compo-
nents. Each object can also be viewed as a point in a d
dimensional space called the feature space. All possible d
dimensional feature vectors reside in this space. Let x de-
note a feature vector. Let P (wi) denote the probability
that an object belongs to class wi where i varies from 1 to
N , for a N class classification problem. This is called the a
priori probability. Note that

∑
i P (wi) = 1. Let p(x|wi)
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denote the class-conditional probability distribution func-
tion. It represents the probability distribution function for
a feature vector x given that x belongs to class wi. The
joint probability distribution function of an object belong-
ing to class wi and having feature vector x is p(wi, x). Let
P (wi|x) be the posteriori probability which is the proba-
bility that the object belongs to class wi given the feature
vector x. Given P (wi) and p(x|wi), the a posteriori prob-
ability for an object represented by the feature vector x is
given by the Bayes theorem [2]:

P (wi|x) =
p(x|wi)P (wi)

p(x)
(1)

where p(x) =
∑N

i=1p(x|wi)P (wi). P (wi|x) represents the
probability that an object described by the feature vector
x, belongs to the class wi. The theorem is applicable for
all probability density functions however depending on the
nature of the data, the Gaussian density function is often
used to model the distribution of feature values of a par-
ticular class. The general multivariate Gaussian density
function in d dimensions is given by:

p(x) =
1

(2π)d/2 |∑|1/2
exp

[
−1

2
(x− µ)t

−1∑
(x− µ)

]
(2)

where x is a d component feature vector, µ is the d com-
ponent mean vector,

∑
is the d × d covariance matrix,

|∑| and
∑−1 are it’s determinant and inverse respectively.

Also (x − µ)t denotes the transpose of (x − µ). During
the training phase, the mean vector µ, and the d × d co-
variance matrix

∑
are calculated for each class from the

training data. To classify an object described by the fea-
ture vector x, we calculate P (wi|x) for each class i. The
class to which the object belongs is given by the Bayes
Decision Rule which is,

decide wi if P (wi|x) > P (wj |x)∀ j 6= i (3)
If certain classification mistakes are more expensive than
others then a N ×N cost matrix C can be used to account
for this. The elements of the cost matrix, Ci,j represent
the cost of assigning an object to class i when it actually
belongs to class j. For example if all errors are equally
costly, then

Ci,j = 1 forj 6= i and Ci,j = 0 forj = i (4)
Then the risk of assigning an object to class i is given by
Ri =

∑N
j=1 Ci,jP (wj |x).

III. Methodology

Our objective is to classify human chromosomes. The 46
human chromosomes consist of 22 pairs of similar, homol-
ogous and 2 sex-determinative chromosomes. These repre-
sent 24 classes. The background was included as a class.
Since an M-FISH set consists of 6 images, each pixel can be
represented by six features, which are the gray-scale values
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(a) Actual Classmap (b) Computed Classmap

Fig. 1

Results

in the six color channels (five labels and DAPI counter-
stain). Therefore, a 6-feature 25 class Bayes Classifier was
used to do a pixel by pixel classification. The images for
training and testing were selected from a public database
of hand segmented M-FISH images. This database is
made available online by Advanced Digital Imaging Re-
search at:http://www.adires.com/projects/mfish db.shtml.
For each set of M-FISH images the database also contains
a labelled classmap image in which each pixel is labelled
according to the class to which it belongs to. Such a class-
map is show in Fig 1(a). In this figure a separate color is
used for each class. The classifier was trained on a set of 6
M-FISH images. The mean vector and the 6×6 covariance
matrix for each class was calculated from the training data.
The classifier was tested on different sets of MFISH images
where each set consisted of 6 images. To remove the back-
ground fluorescence from each image, a two-dimensional
cubic function was fitted to a set of background points from
the image and then subtracted from each image[3].
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IV. Results

The classification was done for 5 sets of M-FISH images
and a classmap was generated by the classifier for each set.
The classifier accuracy was calculated by comparing the
calculated class-map to the actual class-map provided in

the database. One such pair of the actual classmap and
the calculated class-map is shown in Fig.1(a) and Fig.1(b)
respectively. The average overall classification accuracy
obtained was 95.694%. The overall classification of non-
background pixels was 91.428%. The overall classification
accuracy of the background pixels was 96.004%. Fig. 2
shows the average classification accuracy for each of the
chromosome classes.

V. Conclusion

An automatic pixel-by-pixel classification method for M-
FISH images was implemented and tested. Promising re-
sults were obtained with the preliminary tests. The classi-
fication accuracy can be improved by adjusting the values
of the cost matrix as classifying a pixel belonging to a par-
ticular class incorrectly is more expensive than classifying
a background pixel incorrectly. The confusion matrix can
be studied to see which errors were most frequent and the
costs for making those errors can be increased. Also, the di-
mensionality of the data can be reduced by using Principal
Component Analysis [2] and the transformed data could
now be the input to the classifier.
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