
A REAL-TIME EMBEDDED SOFTWARE IMPLEMENTATION OF A TURBO ENCODER
AND SOFT OUTPUT VITERBI ALGORITHM BASED TURBO DECODER

M. Farooq Sabir, Rashmi Tripathi, Brian L. Evans and Alan C. Bovik

Dept. of Electrical and Comp. Eng., The University of Texas, Austin, TX, 78712-1084 USA
{mfsabir,rashmi,bevans,bovik}@ece.utexas.edu

ABSTRACT

Turbo codes are used for error protection, esp. in wireless
systems. A turbo encoder consists of two recursive system-
atic convolutional component encoders connected in par-
allel and separated by a random interleaver. A turbo de-
coder, which is iterative, is typically based on either a Soft
Output Viterbi Algorithm (SOVA) or a maximum a posteri
(MAP) algorithm. MAP is roughly three times more com-
putationally complex than SOVA, but provides 0.5 dB of
coding gain. In this paper, we implement a turbo encoder
and SOVA-based turbo decoder in real-time software on a
TMS320C6700 digital signal processor (DSP). The contri-
butions of this paper are: (1) first publicly available im-
plementation of a SOVA-based turbo decoder on a C6000
DSP, (2) speedup of 162x for the encoder on a C6200 DSP
and 11.7x for the decoder on a C6700 DSP over level three
C compiler optimization, and (3) dataflow modeling for a
turbo channel coding subsystem.

1. INTRODUCTION

Turbo codes [1] can be used for error protection (e.g., in the
cdma2000 standard) and in joint source-channel coding. An
example of joint source-channel coding is the use of turbo
codes in conjunction with JPEG2000 for image communi-
cation over noisy channels [2]. The error protection can be
unequal in that some message bits receive more protection
than others. Unequal error protection is particularly useful
in scalable bitstream image transmission in which the most
important visual information is encoded first. In embedded
foveation image coding (EFIC) [3], for example, wavelet
coefficients that contribute more to the foveated visual qual-
ity are encoded and transmitted first. This EFIC bitstream
can be truncated at any point to give a higher compression
ratio as compared to that of the original image.

In this paper, we present a real-time implementation of a
rate compatible punctured turbo encoder and an iterative
soft output viterbi algorithm (SOVA) based turbo decoder
on a TMS320C6000 digital signal processor (DSP). This is

B. L. Evans was supported by The State of Texas Advanced Technol-
ogy Program under project 003658-0614-2001.

Fig. 1. A Rate1/3 Turbo Encoder [1]

a first publicly available implementation of a SOVA based
turbo decoder on a C6700 DSP processor. After code and
memory optimizations, a speedup of 162x for the encoder
and 11.7x for the decoder were achieved, over level three C
compiler optimization. Dataflow modeling for this turbo en-
coding and decoding system is also presented in this paper.
The source code described in this paper is available online at
http : //live.ece.utexas.edu/research/turbodsp/index.htm

2. TURBO CODES

A turbo encoder consists of two “recursive systematic con-
volutional” encoders, connected in parallel [1, 4, 5]. The
input to the second encoder is an interleaved version of the
input to the first encoder. This structure is called parallel be-
cause the input to both of the encoders is the same set of bits,
rather than the output of one being the input to the other,
as in serial concatenated codes. The component codes in



Fig. 2. Iterative SOVA based Turbo Decoder [1]

a turbo encoder are two recursive systematic convolutional
encoders. The are called “systematic” because one of the
outputs of the encoders is the input itself, whereas the prop-
erty “recursive” comes due to the presence of a feedback
loop in the encoders. A rate1/3 turbo encoder is shown in
Fig. 1.

The generator matrix of a rate1/2 component code can
be represented as

G(D) =
[
1

g1(D)
g0(D)

]
(1)

whereD represents the delay andg0(D) andg1(D) are the
feedback and feedforward polynomials respectively. The
degree of these polynomials isn, which depends on the
number of delays in the convolutional encoders. As shown
in Fig. 1, the same set of input bits is encoded twice, once
by each component encoder. The input to the first encoder
is the original input sequencex, whereas the input to the
second encoder is the interleaved version ofx, denoted by
x̃. The first output of the turbo encoder, which is the first
output of the first encoder as well, is the original input se-
quence itself, denoted byy0. The second output of the first
encoder is the parity informationy1. For the second en-
coder we are only concerned with the parity outputy2 and
not with the systematic bits. Hence the three outputsy0,
y1 andy2 are multiplexed to form the resultant output of the
turbo encoder. Hence the resulting rate of this turbo encoder
is 1/3.

2.1. Interleaving for turbo codes

The interleaver used in the turbo codes is a pseudo-random
block scrambler, defined by a permutation ofN elements
with no repetitions [1]. In this interleaver, a block ofN
inputs are read into the interleaver, and the output is read
pseudo-randomly. Hence the interleaver plays two impor-
tant roles in turbo encoders. On one hand it generates long
block codes by using small memory convolutional codes,
and hence achieves a coding gain, whereas on the other
hand it decorrelates the inputs to the two encoders, so that
an iterative suboptimum decoding algorithm can be applied,
based on the information exchange between the two en-
coders. Due to the use of interleaver, there is a high prob-
ability that all the three output bits corresponding to an in-
put bit are not corrupted at the same time (burst error), and
hence after correcting some errors in the first decoder, a few
more errors can be corrected in the second decoder. This
process can be carried out iteratively, exchanging informa-
tion between the two decoders again and again, and hence
correcting more errors in every iteration. The interleaving
must be available at the decoders as well, in order for the
decoding to be performed correctly.

2.2. Puncturing

After encoding, puncturing is performed on the encoded bit-
stream. In order to provide unequal error protection to the
encoded bitstream, different levels of puncturing are applied
at different parts of the encoded bitstream. The puncturing
is employed such that the higher rate codes are embedded
in the lower rate codes. The codes generated by this scheme
of puncturing are called rate compatible punctured codes.
In this paper we employed rate compatible punctured turbo
codes to provide different levels of error protection to the
different parts of the bitstream. All the higher level codes
were derived from the same rate1/3 mother code, produced
by the encoder shown in Fig. 1.

2.3. Turbo Decoding

The decoding of the turbo codes can be performed using the
Maximum a Posteriori (MAP) algorithm or the Maximum
Likelihood (ML) algorithm based on the overall trellis of
the code. However, these methods can be implemented only
for short interleavers and are too complex for medium and
long interleavers. One of the important practical features of
turbo codes is the use of a simple suboptimum algorithm
for decoding. One important reason why simple MAP de-
coding is not practical is that the overall trellis for the turbo
codes is time varying and the number of states grows expo-
nentially with the size of the interleaver in the turbo codes.
Hence the MAP algorithm can only be used to decode in
the case of very short interleavers. Due to these reasons,



Fig. 3. Image transmission system with unequal error protection using an embedded foveation image coding (EFIC) en-
coder/decoder for the source coding and turbo encoder/decoder for the channel coding. The numbers above input (output)
ports mean the number of bits input (output) per invocation of the block. BPSK means binary phase shift keying, i.e. two-level
modulation.

iterative decoding algorithms are used to decode the turbo
codes. Different iterative decoding algorithms like the Iter-
ative MAP [1], the Iterative Log-Map [1] and the Iterative
Soft Output Viterbi Algorithm (SOVA) [1] are used to de-
code the turbo codes. In this report we only present iterative
SOVA because it is shown in [1, 6] that the complexity of
the iterative SOVA is much lower than the MAP and the
Log-MAP algorithms.

2.3.1. Decoding of turbo codes using iterative SOVA

The block diagram of the iterative SOVA is shown in Fig.
2. The input to the first decoder is the received bits cor-
responding to the actual information (systematic) bits, and
the output of the first component encoder, represented byr0

andr1 respectively. This first decoder generates a soft esti-
mate of the output and the extrinsic informationΛ1e. This
extrinsic information is passed through the same interleaver
as the one used in the encoder and is passed to the second
decoder, to be used as an estimate of the priori probability
by the second decoder. The inputs to the second decoder
are the received bits corresponding to the output of the sec-
ond encoder, represented byr2, andr0 passed through the
same interleaver as used at the encoder, represented byr̃0.
The second decoder also generates a soft decisionΛ2 and
the extrinsic informationΛ2e. This extrinsic information is
then passed back to the first encoder after deinterleaving,
as an a priori estimate for the next decoding iteration. The
decoder generates a hard decision after the desired number
of iterationsI are performed and then deinterleaves it and
passes it to the output.

3. DATAFLOW MODELING

In this section we discuss how the different blocks of our
system were modelled using different models of computa-
tional dataflow. Fig. 3 shows the number of input and output
samples for the different blocks in the channel coding sub-
system and channel model. The bitstream is divided into
512 sub-blocks of size512 samples for ease of implemen-
tation. Different groups of these sub-blocks were then pro-
tected using different rate codes. The different values of the
number of output samples from the channel coding subsys-
tem,u, is shown in Fig. 3. The values ofu depend on the
part of the bitstream being encoded, i.e. the block number
being processed, and are shown in Fig. 4. The values of
u correspond for different puncturing vectors ranging from
rate1/3 to rate1/1 punctured turbo codes.

The channel coding subsystem in Fig. 3 is periodic. For
system-level modeling and simulation of periodic systems,
two common dataflow models are synchronous dataflow and
cyclostatic dataflow [7]. In synchronous dataflow, each block
consumes (produces) a fixed positive integer number of sam-
ples on each input (output) port, and this behavior does not
change during execution. In cyclostatic dataflow, the con-
sumption (production) of samples on a port has fixed but
periodic behavior. Cyclostatic dataflow is a superset of syn-
chronous dataflow.

The turbo encoder, turbo decoder, and the binary phase
shift keying (BPSK) modulator are naturally modelled us-
ing synchronous dataflow. The puncture and the insert ze-
ros blocks are naturally modelled in cyclostatic dataflow, al-
though they can also be modelled in synchronous dataflow
when using a long enough period. Synchronous dataflow
and cyclostatic dataflow graphs have the huge advantage



Block Input Output
Number Samples Samples

1–4 1548 1548
5–8 1548 1420
9–16 1548 1292
17–32 1548 1162
33–64 1548 1032
65–128 1548 839
129–256 1548 645
257–512 1548 516

(a) puncture block
Block Input Output

Number Samples Samples

1–4 1548 1548
5–8 1420 1548
9–16 1292 1548
17–32 1162 1548
33–64 1032 1548
65–128 839 1548
129–256 645 1548
257–512 516 1548

(b) insert zeros block

Fig. 4. Number of input and output tokens for each block.
Behavior is cyclic, and repeats every 262144 samples (512
blocks× 512 samples/block).

that they can always be statically scheduled. Static sched-
ules are useful for fast simulation and efficient synthesis.
Synopsys Co-Centric System Design Studio [7] supports
cyclostatic dataflow, and Agilent’s Advanced Design Sys-
tem supports synchronous dataflow.

4. DSP SOFTWARE IMPLEMENTATION

We implement the channel coding subsystem in Fig. 3 on a
TMS320C6701 DSP. A SOVA-based turbo decoder has not
been publicly released on this DSP family before, although
a MAP-based turbo decoder has been [8]. Our goal is to
optimize the turbo encoder and SOVA-based turbo decoder
for computation time. It will be critical to have all code and
critical data segments reside on-chip. Since large blocks
of data are needed to be stored efficiently in the internal
memory for every subsequent iteration, limited on-chip data
memory size of 64KB imposes a challenging task on the
optimization of highly complex encoder and iterative SOVA
decoder.

We first wrote all of the modules of the channel coding
system in C and then compiled them on the TMS320C6701
DSP using Code Composer version 1.0. Ultimately, we im-
plemented the encoder, puncture block, and BPSK modula-
tor fixed-point assembly. We realized the SOVA-based de-
coder and the insert zeros block in floating-point assembly.

Optimization
Stage

Cycle Count
(Millions)

Original Code 4.18
Level 3 3.07

Memory Optimization 1.20
Loop Unrolling 0.135

Assembly 0.019

(a) encoder

Optimization
Stage

Cycle Count
(Millions)

Original Code 170
Level 3 119

Memory Optimization 21.1
Loop Unrolling 18.3

Assembly 10.2

(b) decoder

Optimization
Stage

Cycle Count (K)

Original Code 128.7
Level 3 97.3

Memory Optimization 20.1

(c) puncture block

Optimization
Stage

Cycle Count (K)

Original Code 821.4
Level 3 659.1

Memory Optimization 505.6

(d) insert zeros block

Fig. 5. Cycle counts for different stages of optimization.

The code is optimized with respect to execution time and
memory usage. The different optimization stages for en-
coder, decoder, puncture and insert zeros blocks are shown
in Fig. 5.

High levels of optimization are achieved, as shown in
Fig. 5. All optimization stages shown include level 3 op-
timization except for the original code. Results show that
for the encoder, a reduction of approximately 63 times in
the execution time is achieved by writing the routine in as-
sembly and using loop unrolling as compared to only mem-
ory optimization. Similarly, for the decoder, a reduction of
approximately two times in the execution time is achieved.
Using memory optimization, execution time was reduced
approximately 6 and 1.5 times for the puncture and the in-
sert zeros blocks, respectively. The assembly generated by
the code composer after memory optimization for the punc-
ture and the insert zeros block was optimized, and no further
optimization was achieved by writing these routines in as-
sembly.



(a) 8:1 compression ratio

(b) 32:1 compression ratio by bitstream truncation

Fig. 6. Bit error rate (BER) vs. signal-to-noise ratio (SNR)
for embedded foveated image compressed source.

5. SIMULATION

In order to validate the DSP implementation, the entire sys-
tem is simulated over a Rayleigh fading channel. The per-
formance of this unequal error protection is also compared
to that of the uniform error protection case, in which the
same rate turbo code is used to protect the entire bitstream.
Rate 2/3 (66.67% transmission efficiency) turbo code is
used for the uniform error protection, whereas the equiva-
lent rate for the unequal protection is3/4 (75% transmission
efficiency). Fig. 6(a) shows the performance characteristics
for EFIC, at a compression ratio of 8:1, in terms of bit er-
ror rate (BER) vs. signal to noise ratio (SNR) curves. At a
BER of 10−2, 1 dB of coding gain is achieved for uniform
rate puncturing as compared to the variable rate puncturing.
This is so because the former provides larger number of re-
dundant bits and hence offers more error protection.

Fig. 6(b) shows that at a BER of10−2, 2 dB of coding
gain is achieved for variable rate puncturing as compared

to the uniform rate puncturing. This is because the former
provides greater protection to the more important bits and
truncating results in discarding the less protected, less im-
portant bits, that contain more errors. Truncating the uni-
formly protected bitstream does not reduce the BER signif-
icantly because the error is uniformly distributed over the
entire bitstream.

6. CONCLUSION

In this paper, we presented a real time implementation of
the iterative soft output viterbi algorithm based punctured
turbo encoder/decoder over a TMS320C6x DSP processor.
A speedup of 162x for the encoder and 11.7x for the decoder
is achieved over the level three C compiler optimization. All
the modules in the system are modelled using computational
dataflow models. This is the first publicly available imple-
mentation of a SOVA-based turbo decoder on a C6700 DSP
processor.

7. REFERENCES

[1] B. Vucetic and J. Yuan,Turbo Codes. Kluwer Academic Publishers,
2000.

[2] B. Banister, B. Belzer, and T. Fischer, “Robust image transmission
using JPEG2000 and turbo-codes,”IEEE Signal Processing Letters,
vol. 9, pp. 117–119, Apr. 2002.

[3] Z. Wang and A. C. Bovik, “Embedded Foveation Image Coding,”
IEEE Transactions on Image Processing, vol. 10, pp. 1397–1410, Oct.
2001.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting coding
and decoding: turbo-codes,”IEEE Transactions on Communications,
vol. 44, pp. 1261 –1271, Oct. 1996.

[5] A. Ushirokawa, T. Okamura, N. Kamiya, and B. Vucetic, “Principles
of turbo codes and their applications to mobile communciations,”IE-
ICE Transactions on Fundamentals, vol. E81-A, pp. 1320–1329, July
1998.

[6] J. Hagenauer, P. Robertson, and L. Papake, “Iterative (‘Turbo’) de-
coding of systematic convolutional codes with MAP and SOVA algo-
rithms,” Proc. ITG Conference on Source and Channel Coding, Mu-
nich, Oct. 1994.

[7] S. A. Edwards,Languages for Embedded Digital Systems. Kluwer
Academic Publishers, 2000.

[8] J. Nikolic-Popovic, “Implementing a MAP Decoder for cdma2000
Turbo Codes on a TMS320C62x DSP Device.” Texas Instruments Ap-
plication Report, SPRA629, May 2000.


